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GENERAL DESCRIPTION OF THESIS

Topicality of Subject Matter

The subject of the promotion thesis is short-term network traffic forecasting by means of neural
networks. Forecasting is a special research study aimed at the evaluation of future development of
objects or phenomena. Forecasts have to precede strategic planning, assess the potentia directions of
development, and take into account the consequences of fulfilment or failure of plans.

There are three main parameters, the prediction of which plays an important role in design,
optimization and performance of modern telecommunications networks. They are:

1) Traffic loads produced by users or subscribers,
2) Number of users/ subscribers or telephone lines, and
3) Demand of inhabitants for telecommunications services.

These parameters are closely interrelated and their reliable forests are determined not only by
accurate computing methods but also by financial capabilities of an operator. However, from both a
theoretical and practical point of view, forecasts of traffic dynamics raise the most interest. It is also
one of the strategic engineering tasks specified by ITU-T.

The topicality of the problem of forecasting lies in the fact that knowledge of network
performance facilitates network management, in particular — helps to develop the algorithm of
preventing an overload of transmission channels. Accurate and reliable forecasts allow planning the
capacity of a network on time and sustain the required level of quality of service. Besides, the
properties of network traffic directly influence both capital costs of equipment and expected income of
an operator.

The emergence of packet-switched Internet networks as well as transformation of traditional
telephone networks into multi-service systems provides new opportunities to a user in the sphere of
hig/ her activities. It has changed not only the architecture of a network but also satistical nature of
teletraffic, which is now characterized by the effects of self-similarity and strong long-range
dependence. Therefore, new approaches to the analysis and forecasting of states and parameters of
packet-switched networks are strongly required. A non-linear neural network is one of these methods,
which israpidly gaining recognition in time series forecasting.

We can often hear that neural networks are more art than science. This is primarily due to the
lack of a functional algorithm for applying neural networks to time series forecasting. Because of that,
the active expert assessment is still necessary at all the stages of implementation, which prevents the
automation of a forecasting process. It is also important to understand that, in contrast to some linear
time series methods, neural networks have not originaly been developed to meet the challenges of
forecagting.

The attempts to predict the traffic loads of both a conventional telephone network and a packet-
switched Internet network by means of neural networks have been made many times in the past.
However, most of these research papers solve atrivial task of time series approximation, with more or
less success, without taking into account a general theory of neura networks and time series
forecagting. Thus, the main problems of applying neural networks to network traffic forecasting are:

- the absence of a consistent and efficient algorithm for gpplying the method of neural networks
in time series forecasting;

- the absence of efficient and comprehensive criteria for selecting the final forecasting model and
evaluating its quality.



Objectsof Research

The objects of this research are the time series of different lengths and aggregation rates, which
describe:
- traffic of aconventional circuit-switched telephone networks (i.e. POTS);
- traffic of apacket-switched IP network.

The real measurements of IP network traffic were taken at the transport layer. All the
measurements were brought to a form suitable for further satistical analysis and forecasting.

Main Goal and Tasks

The main goal of the promotion thesis is to address and solve the problems related to the use of
neura networks in time series forecasting, and, after real data testing and comparing the produced
results, give practical recommendations on the effective application of neura networks and statistical
models to network traffic forecasting.

The main tasks of the thesis are formulated as follows:

1) Develop a functional algorithm for implementing neural networks to solve a short-term
forecagting task, which would provide a maximum automation of the process of selecting an
optimal modd and guarantees an appropriate quality of forecasts.

2) Give practical recommendationson

- selecting the models and methods to produce the operative forecasts (for 24 hours ahead) and
short-term forecasts (for up to two weeks ahead);

- verifying aforecasting model;

- producing operative and short-term forecasts (or ex ante forecasts);

- assessing the accuracy of forecasts (or ex ante forecasts).

3) Produce the empirical operative and short-term forecads of traffic of conventional telephone
networks and packet switched IP networks by applying the method of neura networks,
evaluate the accuracy of forecasts and compare them with the forecasts produced by traditional
linear models and “naive” methods. The topicality of this problem is mainly related to the fact
that complexity of neura networks has provoked strong opinion about their advantages over
simpler linear methods in solving a forecasting task. However, none of the scientific papers or
books, known to the author, has accomplished a comprehensive comparison of the results
produced by non-linear neural networks and traditional linear methods.

Hypothesisto Defend
The author advances the hypothesi s that:

the proposed algorithm of solving a forecasting task with neural networks allows automating
the identification of neura network solutions, which are capable of producing reliable
forecasts,

reliable operative and short-term forecasts can be produced by using not only non-linear neural
networks, but also simpler linear models such as ARIMA and exponential smoothing, if an
aggregation / sampling period of packet-switched network traffic is properly selected (usudly
over some minutes);

neura networks outperform linear methods in the case of predicting traffic of real telephone
networks, if the observations are taken over relatively small read-out periods (e.g., over 15-
minute periods following ITU-T Recommendation E.492).



Main M ethods of Research
In order to fulfil the indicated tasks, the following main methods were applied:

1) Neural networks — the method of artificial intelligence and universal approximator, which
allows revealing non-linear dependencies of stochastic processes.

2) Autoregressive integrated moving average models (ARIMA) and exponential smoothing — the
classic linear methods of time series forecasting, which are useful for modelling and
forecasting short-range dependent processes.

3) Spectral analysis helps to identify the periodic and quasi-periodic components of time series. It
is also useful in evaluating the Hurst exponent.

4) Correlation analysis allows identifying the statistical dependencies between members of atime
series taken with a time shift (autocorrelation) or statistical bonds between two processes
(cross-correlation).

5) Regression analysisis helpful inidentifying the reliable model for atrend component, if any.

6) The methods of non-parametric statistics are useful in testing the hypothesis of stationarity or
normality of time series in the absence of clear knowledge about the probability distribution of
aprocess.

Structure

The thesis consists of two volumes. The first volume contains four main chapters:

- Chapter 1 examines the main aspects and prerequisites of network traffic forecasting.

- Chapter 2 describes in detail the methods applied in the practical studies, such as non-linear
neural networks, ARIMA models, exponential smoothing models and “naive” methods.

- Chapter 3 highlights the main contribution of the author to the theory of time series
forecagting. The description of the proposed advanced agorithm and the main aspects of its
practical realization are given in detail.

- Chapter 4 analyzesthe results of practical studies.

The first volume consists of 174 pages and contains 25 figures and 11 tables. The list of cited
literature and other sources includes 207 bibliographic names. The second volume includes 96 annexes
and consists of 116 pages.

Novety
The novelty of the thesisis attributed to the following original results:

Based on the methods of mathematical statistics and theory of neural networks, there has
been developed an advanced algorithm aimed at solving the task of short-term traffic forecasting by
meansof neural networks.

In comparison to most classic schemes of setting a neural network to fulfil a certain task (see,
for example, [9; 53, p. 84]), the proposed algorithm focuses on the estimation of forecasting abilities
rather than approximation accuracy, allows automating the process of determining an optimal solution
and includes three procedures, which are:

- the use of multiple cycles of weight initialization of aneural network during atraining process;
- the procedure of selecting the intermediate forecasting model, taking into account the residual
autocorrelation and the estimates of information criteria;
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- the procedure of selecting the final forecasting model, taking into account the accuracy of ex
ante forecasts.

The incorporation of these procedures into a classic algorithm allows identifying neural
network solutions in a more effective way and significantly improves the accuracy and reliability of
produced forecasts.

Neura networks belong to heuristic methods. It implies that the identification of optimal
parameters of architecture and learning should involve intensive test-and-trial procedures, since these
parameters do not comply with strict mathematical rules. The algorithm, proposed in the thesis, is also
based on the experience of the author and represents the results of years of the practical studies of real
time series. However, the motivation of including these procedures into the algorithm arises from the
theory of neural networks and time series forecasting.

For the first time, there has been conducted a profound statistical analysis of real network
traffic forecasts, produced by non-linear neural networks, classc linear methods and “naive’
methods.

Statistically significant differences in accuracy have not been identified between the forecasts
produced by neural networks and classic linear models in most cases tested by the Diebold-Mariano
criterion [6]. The analyzed time series are typical for these categories of traffic loads. It means that
linear statistical methods would produce reliable and accurate operative / short-term forecasts for many
other time series with similar statistical properties as well.

Practical Significance

The proposed algorithm and practical recommendations can be applied to produce operative
and short-term forecasts of telephone network traffic as well as packet-switched Internet traffic
generated at the transport and application layers. In turn, the produced forecasts can be useful in
planning the capacity of transmission channels, thereby providing the required level of quality of
service (QoS).

The algorithms and recommendations developed by the author can be applied to other time
series with similar statistical properties — for example, in producing predictions of power consumption
or road traffic.

Approbation

The proposed algorithm and recommendations were successfully applied to produce the
forecadts of several time series describing the traffic of real telecommunications networks. Operative
and short-term traffic forecasts have been obtained for:

- the circuit switched telephone network of Augstceltne S A, which specializes in maintenance of
corporate customers,

- the packet switched IP network of INBOKSS S A, which specializes in providing free e-mail
services.

Theresults of the thesis were declared and discussed at the following scientific conferences:

1) The 9" International Conference Reliability and Statistics in Transportation and Communication
(RelStat’09), Riga, Oct. 21-24, 2009. Topic of presentation — Forecasting Network Traffic: A
Comparison of Neural Networks and Linear Models.

2) The50™ International Scientific Conference of Riga Technical University, Riga, Oct.14-16, 2009.
Topic of presentation— An Advanced Algorithm for Forecasting Traffic Loads by Neural Networks.
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The 28" Annual International Symposium on Forecasting, Nice (France), June 22-25, 2008. Topic
of presentation — Preprocessing of Input Data of Neural Networks: The Case of Predicting
Telecommunication Network Traffic.

The other reports at scientific conferences associated with the subject of the thesis:

4)

5)

6)

7

8)

The 18" European Regional Conference of the International Telecommunications Society, |stanbul
(Turkey), Sep. 4-6, 2007. Topic of presentation — Perspective Evaluation of the Electronic
Communications Market in Latvia.

The 6™ International Conference Reliability and Statistics in Transportation and Comrmunication
(RelStat’ 06), Riga (Latvia), Oct. 25-28, 2006. The theme of presentation — Forecasting Methods
and Long-term Evaluation of the Electronic Communications Market in Latvia.

The 17" European Regional Conference of the International Telecommunications Society.
Amsterdam (Netherlands), Aug. 22-24, 2006. The theme of presentation — New Technologies and
their Influence on the Universal Service Policy.

The 16" European Regional Conference of the International Telecommunications Society (ITS
Europe 2005), Porto (Portugd), Sep. 4-6, 2005. The theme of presentation — The Necessity of
Including Mobile Telephony in a Minimum Set of Universal Service.

International Conference Reliability and Statistics in Trangportation and Communication
(RelStat’04), Riga (Latvia), Oct.14-15, 2004. The theme of presentation — Financial Risk of
Providing the Universal Telecommunications Service in Latvia.

The papersin peer-reviewed scientific journals:

1)

2)

3)

Klevecka, |. “Forecasting Traffic Loads: Neural Networks vs. Linear Models.” Computer
Modelling and New Technologies 14.2. (2010): 20-28. [ISSN 1407-5806; Thomson Reuters
Researcher I1D]

Klevecka, 1. “An Advanced Algorithm for Forecasting Traffic Loads by Neura Networks’.

Scientific Journal of Riga Technical University (Series "Telecommunications and Electronics') 9

(2009): 48-55. [ISSN 1407-8880; EBSCO Hogt, ProQuest, VINITI]

Klevecka, 1., and J. Lelis. “Pre-Processing of Input Data of Neural Networks: The Case of

Forecasting Telecommunication Network  Traffic.” Spec. issue of  Telektronikk:

Telecommunications Forecasting (in co-operation with International Institute of Forecasters)

104.3/4 (2008): 168-178. [ISSN 0085-7130; Thomson Reuters Researcher 1D, ACM Digital

Library]

Cited in:

- Nikolov, V., and V. Bogdanov. “ Integration of Neural Networks and Expert Systems for Time
Series Prediction.” Proceedings of the 11" International Conference on Computer Systems and
Technologies (CompSysTech’10). New York: ACM Press, 2010. 534-539. [ACM Digital
Library]

- Chulaka Gunasekara, R., et. d. , Prophetia: Artificia Intelligence for TravelBox® Technology.”
Advances in Computational Intelligence. Eds. Wen Yu and Edgar N. Sanchez. Berlin:
Springer-Verlag, 2009. 21-34. [Springer Link]

The abstractsin the proceedings of international scientific conferences:

4)

5)

Klevecka, |. “Forecasting Network Traffic: A Comparison of Neural Networks and Linear
Models.” Abstracts of the 9" International Conference “ Reliability and Statistics in Transportation
and Communication” (RelSat'09). Oct. 2009, Riga, Latvia Riga Transport and
Telecommunication Institute, 2009. 36. [ISBN 978-9984-818-22-1; Thomson Reuters Researcher
ID]

Klevecka, 1., and J. Lelis. ,Preprocessng of Input Data of Neural Networks. The Case of
Predicting Telecommunication Network Traffic.” Program and Abstracts of the 28" Annual
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International Symposium on Forecasting. June 2008, Nice, France. France: International Institute
of Forecasters, 2008. 29. [ISSN 1997-4116; Thomson Reuters Researcher 1D]

The other papersin peer-reviewed scientific journals associated with the subject of the thesis:

6) Klevecka, I., and J. Lelis. “Application of Extrapolation Methods to the Technology Diffusion
Forecasting.” Scientific Proceedings of Riga Technical University (Series "Telecommunications
and Electronics') 7 (2007): 52-59. [ISSN 1407-8880; ProQuest, VINITY]

7) Klevecka, I. and J. Lelis. “Financial Risk of Providing the Universal Telecommunications Service
in Latvia” Transport and Telecommunication 6.1 (2005):139-144. [ISSN 1407-6160; Thomson
Reuters Researcher|D].

The papersin the proceedings of scientific conferences associated with the subject of the thesis:

8) Klevecka, 1., and J. Lelis. “Perspective Evaluation of the Electronic Communications Market in
Latvia.” Proceedings of the 18" European Regional ITS Conference. Sep. 2007, Istanbul, Turkey.
Berlin: International Telecommunications Society, 2007. 1-37. CD-ROM. [Thomson Reuters
Researcher|D].

9) Klevecka, I., and J. Lelis. “Forecasting Methods and Long-term Evaluation of the Electronic
Communications Market in Latvia” Proceedings of the 6™ International Conference “ Reliability
and Satistics in Trangportation and Communication” . Oct. 2006, Riga, Latvia Riga: Transport
and Telecommunication Institute, 2006. 37-45. [ISBN 9984-9865-9-4; Thomson Reuters
Researcher ID].

10) Klevecka, 1., J. Lelis, and J. Ulmanis. “The Necessity of Including Mobile Telephony in a
Minimum Set of Universal Service.” Papers of the 16™ European Regional TS Conference. Sep.
2005, Porto, Portugal. Berlin: International Telecommunications Society, 2005. 1-13. CD-ROM.
[Thomson Reuters Researcher ID].
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ID]

12) Klevecka, 1., J. Lelis, R. Bergmanis, and G. Macs. “New Technologies and their Influence on the
Universal Service Policy.” Abstract Booklet of the 17" European Regional ITS Conference. Aug.
2006, Amsterdam, Netherlands. Berlin: International Telecommunications Society, 2006. 59-60.
[ISBN 90-8559-205-4, Thomson Reuters Researcher D]

13) Klevecka, 1., J. Lelis, and J. Ulmanis. “The Necessity of Including Mobile Telephony in a
Minimum Set of Universal Service.” Abstracts of the 16" ITS European Regional Conference. Sep.
2005, Porto, Portugal. Berlin: International Telecommunications Society, 2005. 16-17. [Thomson
Reuters Researcher 1D]

14) Klevecka, I., and J. Ldlis. “Financial Risk of Providing the Universal Telecommunications Service
in Latvia” Programme and Abstracts of the International Conference RelStat’04.” Oct. 2004,
Riga, Latvia. Riga: Transport and Telecommunication Ingtitute, 2004. 54. [ISBN 9984-668-76-2;
Thomson Reuters Researcher 1D].
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SYNOPSIS OF THESIS

CHAPTER 1 MAIN ASPECTSOF NETWORK TRAFFIC FORECASTING

Chapter 1 examines the agpects of applying the models and methods of time series theory to network
traffic forecasting. Main statistical properties and genesis of time series are discussed. The chapter
also contains a review of scientific papers dedicated to traffic forecasting carried out by means of
neural networks.

Concept of Time Series

In modeling and forecasting we usually assume that network traffic is represented as time
series. A time series is a time-ordered sequence of observation values of a physical variable, usualy
made at equally spaced time intervals Dt, represented as a set of discrete values x(t,), X(t,),Kx(t ) .

In statistical analysis, this sequence of N observations is often considered as a sample taken from a
longer general sequence of random numbers. The observations or elements of time series are typicaly
labeled in accordance with a time moment they refer to (eg., x;, X,, X;). Thus, the order of the

elements of atime seriesis of great importance.

It is necessary to keep in mind that, unlike the observations of random variables, the elements
of time series are not statistically independent [49, p.780]. Some rules and properties of the statistical
analysis of random samples cannot be gpplied to time series, and this requires the implementattion of
specific methods and approaches. On the other hand, the correlations between time series observations
set up a specific base for predicting an analyzed variable, i.e. for producing the estimate X(N + L) of an

unknown value x(N+L) taking into account the historical values x(t,), x(t,),Kx(t, ), where N is the

length of an analyzed time series and L is a forecasting horizon.

The genesis of observations is the structure and classification of the main factors, under the
influence of which the values of time series are formed. There are four types of such factors and
components of time series [49, p.781; 52, p.242; 57, p.354]:

1) Long-term factors form the general dynamic tendency of an analyzed parameter x(t). This
tendency is usually described by a deterministic non-random function called a trend.

2) Seasonal factors determine the tendency, which changes regularly during a certain period (a
day, week, month etc.). Since this function has to be periodic (with periods, proportiona to
“seasons’), its analytical expression involves the use of trigonometric functions.

3) Cyclic factors determine the longer periods of relative rise and fall. The cyclic component may
contain the cycles of economic, demographic or astrophysical nature, and varies in amplitude
and length. Asarule, the length of acyclical component exceeds one year.

4) Random (irregular) factors determine the stochastic nature of time series members. A random
component is formed as a result of superposition of many externa factors, which are not
involved in the formation of adeterministic component.

The deterministic components of network traffic can be classified as follows [19, p.42; 45,
p.44]:

1) 24-hour cycle. It has been known for a long time that sigmoidal models (logistic model,
Gompertz model, etc. [22; 23]) are optima for describing the traffic dynamics within aday [58,
p.202].

4) Weekly cycle is usually characterized by the decrease of traffic during weekends, and can be
described by means of a Fourier series.

5) Annual cycle. It is believed that the level of network traffic is higher a the beginning of a
month, after afestival season and at the beginning of each quarterly period.
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6) Linear trend. The overal traffic increases year by year due to the influence of technical
progress and socio-economic factors.

If we identify accurately a deterministic component, then the residuals of atime series will be
an irregular stochastic component. Its behavior cannot be fully predicted in advance. In other words,
every observation gives only one option among many possible. In order to describe and predict this
component of atime series, the methods and concepts of probability theory are invol ved.

Aspects of Forecasting Transmission Capacity of Packet Switched Networks

Transmission capacity is one of the most important parameters characterizing the quality of
networks. For the purposes of forecasting, the measurements made at the transport layer are usually
considered. These time series describe either the number of arriving packets or the level of traffic /
transmission rate measured in bytes over discrete time intervals.

The methods of network traffic forecasting are partially determined by ITU-T
Recommendations E.506 [16] and E.507 [18]. Even these recommendations have been developed for
ISDN networks, some of the forecasting methods described there can be still applied to modern
telecommunications networks. These methods are the autoregressive integrated moving average
models (ARIMA) [3] and exponential smoothing [12].

The traffic of packet switched IP networks is characterized by such statistical effects as self-
similarity and long-range dependence [20, p.150; 28; 37; 41, 56, p.53]. The stronger post-effects, the
longer is a forecasting horizon, for which reliable forecasts can be produced. However, it is also a
disadvantage, since the estimation and selection of an adequate model, which would take into account
all significant correlations between the members of a time series, becomes labor-intensive [40].

At the same time, there has been disseminated intensively the myth regarding impossibility of
applying traditional linear methods to predicting packet switched IP traffic and the necessity to use
more complicated non-linear methods such as neural networks.

Indeed, neural networks offer some additional opportunities in modelling non-linear processes
and recognizing chaotic behaviour. Owing to their great flexibility, these networks can recognize a
variety of structures. However, numerous practical studies dedicated to traffic forecasting usually miss
the fact that fractal properties of packet-switched traffic have a significant influence on a forecasting
process only in the case of measurements on a very large scale — over the aggregation periods varying
from milliseconds to some minutes. This fact has been confirmed by the author’s practical studies as
well as a number of other research papers[36, 39, 40].

Fig. 1 is the illustration of this idea, where the rea measurements of transmission rate are
shown against an aggregation period. A visual analysis of the traffic aggregated over 1 and 10 seconds
reveals stochastic self-similarity [37]. However, increasing the aggregation period up to one minute,
and then — up to five minutes, we can see that a traffic trace becomes more even, its variance
significantly decreases and the influence of deterministic components starts to play aleading role.

From the point of view of time series forecasting, a very fine sampling scale is unreasonable. In
this case, the selection of a relevant statistical model is complicated due to the strong influence of
autocorrelations between distant observations of times series as well as extraneous noises and
anomalous outliers, which unavoidably accompany the large-scae measurements. Besides, an
aggregation / sampling period also determines a forecasting horizon, for which reliable forecasts can
be produced. In other words, a potential forecasting horizon for time series, aggregated over, for
example, one-second periods is different from the one for time series aggregated over 24-hour
intervals.

At present, rea-time forecasting with neural networks is hard to implement in practice. Apart
from the necessity to select and evaluate many parameters, often — in empirical way, some substantial
time resources are necessary for training a neural network. Therefore, taking into account ITU-T
Recommendation E.492 [17], it is desirable to average measurements of network traffic over 15-
minute and / or one-hour read-out intervals. In doing so, the main factors determining the statistical
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structure of real network traffic are seasonal effects and monotonous trends, the main reasons of which
are human behaviour and technical progress (see Fig. 2).

It has been shown in the practical part of the thesis that statistical properties of such time series
become similar to statistical properties of traditional voice traffic. At an intuitive level, it gives us the
opportunity to assume that the methods of modelling and forecasting of these processes would be
similar aswell, if the appropriate length of aread-out period is selected.
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Fig. 2 Statistical effects of packet-switched traffic depending on atime scale [10, with author’ s amendments]

The main accent of this thesis has been put on the application of neura networks (i.e., a
multilayer perceptron) to forecasting the traffic of both a traditional telephone network and a packet-
switched IP network. Following the principle of Ockham’s razor — choose a parsimonious model, — it
makes sense to compare the accuracy of forecasts produced by means of non-linear models with those
produced by traditional linear models. To pursue this goal, the models of ARIMA and exponential
smoothing (as the methods recommended by the ITU-T) as well as “naive’” methods, have been
chosen. If there are no statistically significant differences between the forecasts produced by neural
networks and linear methods, then the application of such a complicated and time-consuming method
as neura networks becomes unnecessary.
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CHAPTER 2 METHODS OF NETWORK TRAFFIC FORECASTING

Chapter 2 gives an overview of the models and methods of network traffic forecasting applied in the
practical part of the thesis such as non-linear neural networks (multilayer perceptron), seasonal
autoregressive integrated moving average (SARIMA), seasonal exponential smoothing and “ naive”
forecasting methods.

Neural Networks

A neural network is a massively parallel distributed processor made up of simple processing
units, which has a natural propensity for storing experimental knowledge and making it available for
use [13, p.2]. The development of artificial neural networks started in the beginning of the 20" century
but only in the nineties, when some theoretical barriers were overcome and computing systems became
powerful enough, neura networks have gained wide recognition. Even though neura networks can be
implemented as fast hardware devices (and these realizations do exist in real life), most practical
studies are performed by applying software simulations on conventional PCs. Software simulations
provide low-cost flexible environment, which is sufficient for many real-life applications. Neural
networks are acquiring popularity in the field of telecommunications as well, where they help solving
various problems such as switching management, traffic management, routing, channel allocation in
mobile transmission systems, etc. [54, p. 60].

The incorporation of time into the operation of a neural network allows to follow statistical
variations in different processes described by time series, such as speech signals, radar signals,
fluctuations in stock market processes, teletraffic processes and many others. The discusson of the
role of timein neural processing can be found in fundamental paper [7].

The tempord structure of an analyzed sample is usually built into the operation of a neural
network inimplicit way. In this case, a static neura network (e.g. a multilayer perceptron) is provided
with dynamic properties [13, p.636]. For a neura network to be dynamic, it must be given memory
which may be divided into short-term and long-term memory [35]. Long-term memory is built into a
neura network through supervised learning, whereby the information content of the training data set is
stored in the synaptic weights of the network. Short-term memory is built into the structure of a
network through the use of time delays, which can be implemented at the synaptic level inside the
network or at the input layer of the network.

Two types of neural networks, a back-propagation network (multilayer perceptron) and aradial
basis function network, are considered to be suitable for temporal processing. Due to a number of
reasons, the latter has not gained acceptance’. At the same time, numerous practical studies have
proved that a multilayer perceptron solves successfully many various tasks such as pattern recognition,
regression, function approximation, time series forecasting, cluster analysis, etc. Therefore, further we
will focus on this class of neural networks.

A multilayer perceptron usually consists of multiple sensor elements (i.e., input nodes) forming
an input layer, one or several hidden layers containing computational nodes, and one output layer. It is
often trained according to the error back propagation algorithm. It is a supervised training agorithm,
which is based on the error correction training rule and requires two computational flows — a direct
one and a backward one — through all the layers of a network.

Temporal pattern recognition demands processing of patterns that evolve over time, with the
response at a particular instant of time depending not only on the present value of the input but aso on

! Both a radial-basis function (RBF) network and a multilayer perceptron (MPP) belong to the class of universa
approximations. Due to that, there always exists an RBF network capable of accurately mimicking a specified MLP, and
vice versa. An MLP develops global approximations to nonlinear input-output mapping. In turn, an RBF network
constructs local approxi mations using exponentially decaying localized nonlinearities (e.g., Gaussian functions). The | atter
is the reason of the popularity of MLPs — in order to approximate a nonlinear input-output mapping a the same degree of
accuracy, an MLP requires the smaller number of parameters to determine and consequently, less time for completing a
training cycle, in comparison with an RBF network [13, p. 293].
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its past values. Fig. 3 shows the diagram of a nonlinear filter built on a static neural network. Given a
specific input signal consisting of the current time series value x(t) and the W past values
{x(t-1,x(t- 2K,x(t- W)} stored in a delay line memory of order W, the free parameters are
adjusted to minimize the training error between the output of the network, y(t), and the desired
response, d(t) [13, p.645]. The structure shown in Fig. 3 can be implemented at the level of a single
neuron or a network of neurons.

/

Input x(9) Short-term |\ Static neural Output
network y(

memory ’

Error signal

d@®

Fig. 3 Tempora processing — nonlinear filter built on a static neural network [13, p.643]

Input Input layer | Hidden layer | Output layer
()

=, > >
Elﬂ

Output
y@®

Fig. 4 Time lagged feed-forward network? [13, p.644; 35]

The diagram of a time lagged feed-forward network is shown in Fig. 4. It is a powerful
nonlinear filter consisting of a tapped delay memory of order W and a multilayer perceptron. The
standard back propagation algorithm can be used to train this type of neura networks. At timet, the
temporal pattern applied to the input layer of the network is the signal vector:

X(t) ={x(t), x(t - 1), x(t - 2)K, x(t- W}"", (1)
where
N —the length of atime series or atraining subset.

Eq. (1) describes the state of the nonlinear filter at time t. One training epoch consists of a
sequence of patterns (states), the number of which is determined by the memory order W and the size
of atraining sample N™®. The output of a nonlinear filter, assuming that a multilayer perceptron has a
single hidden layer and one output neuron, is computed from:

2 The bias levels are omitted for convenience of representation.
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where
J , — activation function of a hidden layer;

j , — activation function of an output layer;

w; , —synaptic weight of input synapse z of hidden neuron j;
w; — synaptic weight of input synapse j of an output neuron;
bj,z and bj - biases;

m, - number of hidden neurons,

W- order of linear delay memory.

Autoregressive Integrated Moving Average Models

One of the most popular class of linear time series models refers to autoregressive moving
average models (ARMA), including purely autoregressive (AR) and purely moving-average (MA)
models as special cases. These models were initially introduced in the twenties of the last century but
have been using actively only since 1970, when the fundamental book of Box and Jenkins [3] was
published.

In real-life network traffic modelling and forecasting, it is necessary to put an accent on the
seasonal modifications of linear models, which are able to model and forecast the periodic time series.
The application of non-seasonal models to seasonal time series can lead to the erroneous conclusions
that linear models are not capable to model and make reliable forecasts of network traffic dynamics.

The seasonal autoregressive integrated moving average model, denoted as
SARIMA(p, d, g)(P, D, Q),, isgiven by [3, p.305]:

f o (B)F o (B )NNJx, =0,(B)Qq(B*)e,. €)
where
Ss—period of the seasonal component;
p — order of the non-seasonal autoregressive operator;
g —order of the non-seasonal moving average operator;
d —order of the non-seasonal differencing operator;
P — order of the seasonal autoregressive operator;
Q — order of the seasonal moving average operator;
D — order of the seasonal differencing operator;
N =N, =1- B —non-seasonal differencing operator;
N, =1- B® —seasond differencing operator;
f(B) u q(B) — polynomials in B of order p u q , respectively, which satisfy the conditions of
stationarity and invertibility;
F (B®),Q(B®) — polynomials in B® of order P u Q , respectively, which satisfy the conditions of
stationarity and invertibility;
e, ~WN(O, s *)— awhite noise process.

Let us assume that all the values of a time series x,,X,_,,K are known until time moment t.
Then, the minimal mean squared error forecast X (L),L31 at lead time L and origin t is the
conditional expectation of x,,, [3, p.306]:

% (L) =[] = BlX 19, Q0% % 1, K] (4)
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Box and Jenkins proved that a forecast of the minima mean sguared error can be calculated
directly from the model represented as a difference equation. For example, for the seasonal process of
period s =12, the forecast is given by [3, p.306]

X(L) =X ] =X ¥ Xu12 - X3 T€ua - d€u 1 - Q€ 1, +4 Q€ 45 (5)

After inserting the values of parameters q u Q into Eq. (5), we immediately obtain a minimal
mean squared error forecast at lead time L calculated at origint [3, p. 307]. The parameters of Eq. (5)
are assumed to be known precisely, and atime series x,, x,_,,K is assumed to extend into the remote

past.
Exponential Smoothing

The method of exponential smoothing allow to produce the description of a process, according
to which the lagt historical observations have the larger weights as compared to the earlier ones, and
the weights decrease exponentially.

The simple exponential smoothing model is defined as [12]:

S=S..tae (6)
where
S — smoothed level of the series computed after x, is observed,

a — smoothing parameter for the level of the time series;
e, —one-step-ahead forecast error; e, = x, - X_,(1);

X, —observed value of the time series at moment t;
%, (1) - one-step-ahead forecast fromorigin t - 1;

There exist different modifications of exponential smoothing aimed at the analysis of non-
stationary time series with linear and nonlinear trend components, as well as seasonal time series with
multiplicative and additive seasonality. Only the models with additive seasonality and / or a linear
trend will be considered further in this section as they are the most suitable for the analysis of
teletraffic processes. In exponential smoothing models, the additive seasonal component and linear
trend of atime series are calculated from [12]:

[, =1_,+d(@- a)e, (7)

Tt :Tt-1+aget (8)
where
I, — smoothed value of the seasonal component at the end of period t;

T, — smoothed value of the trend component at the end of period t;

d — smoothing parameter for the seasonal component;
g— smoothing parameter for the trend component.

The estimation of a time series incorporating seasonal and / or trend components, is based on
decomposition. The seasonal and trend components are estimated at each time moment independently
by using a simple exponential smoothing model with parametersd and g This method is known as the
Holt-Winters exponential smoothing and is based on three smoothing equations — one for the level,
one for trend and one for seasonality.

For the time series with additive seasonality and a linear trend, the forecast for horizon L is
given by [12]:
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% (L)=S + 1 g + LT, (9)
where
X, (L) — forecast produced for horizon L fromorigint.

The complete classification as well as the description of the methods of determining the
optimal parameters of exponential smoothing modelsis givenin[12].

Naive Forecasting

It is desirable to compare the results, produced by various forecasting models, with so called
naive forecasts. In practical analysis of time series, a naive forecast serves as the simplest benchmark
forecast and can be produced in several different ways, of which the following two were applied in the
thesis:

1) The naive forecast is the sample mean of an examined time series[33]:
%5 (L) = Bl % X% Ko x]=rfor L3 1 (10)

2) The seasonal naive forecast can be used with seasonal data and postulates that the forecast for one
period ahead is equal to the same value of the last historical period of atime series [44]:

(L) = E[Xuy X0 X0 0K, %] = %, for L2 1 (11)

If the comparison of forecasts produced by neura networks or statistical models with those
produced by naive methods does not reveal any statistically significant differences, then, perhaps, the
use of the models in further forecasting of this particular time series is not required.

CHAPTER 3 ALGORITHM FOR SOLVING A FORECASTING TASK WITH
NEURAL NETWORKS

Chapter 3 describes the author’ s developed algorithm aimed at solving a time series forecasting task
by means of neural networks. The innovative aspects of the algorithm are consdered in detail. The
chapter examines the methods of determining the parameters of multilayer perceptrons and provides
some recommendations on the practical use of the algorithm, e.g., the preparation and pre-processing
of input data, development of forecasts, estimation of the accuracy of forecasts, etc.

As mentioned above, unlike classic linear methods, the method of neural networks was not
initially aimed at modelling and forecasting time series. When applied to time series forecasting,
neura networks are often criticized for the necessity to set many different parameters through test-and-
trial procedures, complications with producing and replicating a stable solution, high probability of
over-learning, high demands for time resources and computational capacities. Besides, it is necessary
to keep in mind that neural networks are sensitive to the quality of input data [24, 27, 55].

In order to facilitate and automate the process of time series modelling and forecasting, and
compensate for the problems associated with instability of a produced solution, an advanced agorithm
has been developed in the thesis.
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m; — number of hidden neurons of a two-layer perceptron
K — maximum number of hidden neurons

V — total number of weight initialization cycles

IC — information criterion

LM — Lagrange multiplier type test

p(LM) — p-value (observed significance) of the LM-type test
o — significance level

Fig. 5 Advanced algorithm aimed at solving a forecasting task by means of neural networks
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The algorithm, the main block diagram of which is shown in Fig. 5, produces the operative /
short-term forecasts of traffic loads represented as univariate / multivariate time series. In contrast to
some classic algorithms for accomplishing a pre-defined task (see, for example, [9; 53, p.84])), the
proposed algorithm incorporates three procedures.

- implementation of multiple cycles of weight initialization of a neural network during atraining
process,

- method of selecting the intermediate forecasting models, taking into account the level of
residual autocorrelation and the estimates of information criteria;

- method of selecting the final forecasting model, taking into account the accuracy of ex ante
forecasts.

Let us consider the theoretical arguments in defence of the necessity of implementing these
procedures to identify a relevant forecasting model.

Implementation of multiple cycles of weight initialization of a neural network

It isrequired to set some initial valuesto al the weights and biases of a neural network before a
training process starts. The aim of initialization is, probably, to find the best approximation to an
optimal solution and, in this way, to decrease training time and facilitate the convergence of atraining
algorithm.

0,08

0,07 4

Training error

0,06 4

—— Chronological order

Ascending order

0,05 T T T T T T T T T
0O 10 20 30 40 50 60 70 80 90 100
Initialization cycle

(@ (b)

Fig. 6 lllustration of the necessity of implementing multiple initialization cycles: (a) asimplified example of two-
dimensional error surface where a vertical axis represents an error. This demonstrates akey problem — several local minima
can exist on thetraining error surface; (b) the training errors of aneurd network (without applying cross-validation)
produced as aresult of ahundred cycles of weight initiaization®

If the initial weights and biases are set to large values, then neurons usually approach the
saturation level very quickly. In this case, the local gradients, calculated according to the back-
propagation algorithm, take small values, which, in turn, would significantly increase training time. If
the initial values are set to small values, then the algorithm works very slowly about the origin of the
error surface. This is specificaly true in the case of anti-symmetric activation functions such as
hyperbolic tangent.

During the last two decades many heuristic methods of weight initialization have been
proposed, some of which are described in Chapter 3 of the thesis. Despite this, the optimal solution of

® The values of training errors are displayed in chronol ogical order of their evaluation at the end of each training epoch as
well as sorted in descending order to facilitate their comparison.
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this issue has not till been found. Due to its simplicity, the most common method is the random
initialization of weights and biases from a uniformly or normally distributed narrow range of small
values.

Regardless of the initialization method, starting values of weight coefficients influence the final
result of training. This is due to the properties of a training algorithm as well as the fact that several
local minima can exist on the error surface (see Fig. 6-a). Therefore, in order to find an actual global
minimum, it is necessary to train one and the same neura network multiple times under the same
conditions, changing only the initial values of weights and biases.

In spite of these problems, most researchers still do not pay a proper attention to this aspect. It
ispossible to find referencesto 5 [21], 10 [42], 25 [25], 50 [8; 46] and 100 [25] cycles of initialization.
However, most practica studies restrict the number of initialization cycles to one, and this can mislead
aresearcher regarding the adequacy of a produced solution.

The example shown in Fig. 6-b illustrates the uncertainty in producing afinal solution and its
dependence on the starting values of weights and biases. The training errors, shown here, are produced
as a result of training a neural network of the same architecture and applying the same training
parameters but changing the initial values of weights and biases. It is easy to notice that the difference
between the largest and smallest error comprises more than 25 per cent, which can significantly
influence the identification of arelevant forecasting model and the accuracy of produced forecasts.

The number of initialization cycles is usualy chosen mandatory, and depends on the complexity of
atask aswell as on time resources a researcher has on his/ her disposal.

Selection of the intermediate forecasting models, taking into account the residual
autocorrelation and estimates of information criteria

According to the developed agorithm, the selection of the intermediate forecasting model /
models among the trained networks, with a certain number of hidden neurons my, iscarried out taking
into account the level of residual autocorrelation and the value of an information criterion.

Some standard parameters, such as the correlation coefficient (R), mean squared error (MSE),
mean absolute error (MAE), are traditionally used to evaluate a general forecasting ability of a
statistical model. However, these parameters provide little information about the accuracy of a fitted
model, and are also useless in identifying the statically significant differences between the forecasts
produced by various methods [4, 6, 26].

The most accurate indicator of the adequacy of a forecasting model can be the absence of
autocorrelation in residuals. The residuals of a fitted model are defined as n differences given
bye, =x - X,t=12K,n, where x, isthe observed value and X, is a corresponding predicted value
produced by means of afitted statistical model [32, p. 94]. These differences cannot be explained by a
forecasting model. Therefore, we can consider residuals e, to be observed errors.

The acceptance of the hypothesis of no autocorrelation in residuals at a pre-defined significance
level means that the residuals are similar to white noise and further analysis will not discover any
statistically significant dependencies. In classic regression analysis, the Durbin-Watson criterion [50,
p.245] istraditionally used for testing the autocorrelation of residuals. However, thistest is not suitable
if the regressor is a lagged explanatory variable [51, p.256]. For the same reason, the Box-Pierce and
Ljung-Box [30] criteria cannot be applied to neural networks, although the last one is widely used and,
despite its theoretical inconsistence, is still included in most statistical and econometric software
packages.

At present, the most relevant estimate of the residual autocorrelation of neural networks (as
well as ARIMA models) is a powerful Lagrange Multiplier (LM) type test [34], which is also known as
Breusch—Godfrey test. The LM-type test belongs to classic asymptotic tests and is capable to identify
the autocorrelation of any order.

In turn, the use of information criteria is based on one of the main idea of time series
forecagting — “ chose a parsimonious model” (known as the Ockham's razor principle). It means that,
all other things being equal, one should prefer the model with the fewest free parameters.
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The mean squared residuals usually decrease once the model becomes more “complicated”
with addition of new free parameters. Increasing the number of free parameters of a neural network
(which is associated with the addition of new neurons / layers of neurons), one can fit a mode to
historical data with infinite accuracy. The universal approximation theorem [5; 15] explains this
property of neural networks. However, such a neural network may have a poor ability to make
generalizations due to over-training [13, p.206]. Besides, once a certain limit is reached, the gain in
accuracy of fitting with addition of new parameters tends to be insignificant. On the other hand, time
required for selecting the optimal values of free parameters can lead to a sharp decrease in the
performance of a network. Therefore, it is very important to look for the balance between the
preciseness of approximation and the complexity of a statistical model.

Information criteria have been found to be quite useful in solving this problem. The estimate of
the criterion consists from the penalty for poor fitting and the penalty for over-parameterization. The
most popular criteria of this type, applied in the practical part of the thesis, are the Akaike's
information criterion (AIC) and the Bayesian information criterion (BIC) given by [11, p.38; 38,
p.373]:

AIC() =N, InS2 +2l (12)

BIC(I) =Ny InsZ+2 +1In(Ny) (13)
where
Ny — number of effective observations, to which the model isfitted;

| —number of adjusted parameters;
W,
a e
S 2 — estimate of the residual variance, s 2 = TI

ef

Information criteria are evaluated separately for each analyzed specification (architecture) of
neura networks. The models that possess the lowest value of the criterion should be selected for
further analysis. It has been aso noticed that, in practice, the BIC “selects’ very parsimonious models
with only few parameters. Therefore, this criterion is often used for non-linear models, where
insignificant gain in fitting quality is directly related to the necessity of calculating a large number of
additional parameters.

In the practical part of the thesis the criteria given by Egs. (12) and (13) were applied.
However, some other modifications of information criteria have been proposed as well. The Schwarz' s
Bayesian criterion (SBC) [38, p.376] and the Hannan-Quinn criterion [32, p. 86] are anong them.

Selection of the final forecasting model, taking into account the accuracy of ex ante
forecasts

If the models, meeting the above specified conditions, are found, it is required to test their
generalization ability (i.e., the ability to produce reliable forecasts) for an independent test set, which is
not involved in training. The forecast developed for an independent test set we will call an ex ante
forecast or a pseudo-forecast. The necessity of ex ante forecasting hinges upon the fact that even if a
neura network provides a high accuracy of approximation and uncorrelated residuals, it would be still
over-trained on historical data.

The approach of splitting a time series into two independent subsets has gained wide
acceptance in the practical studies dedicated to time series forecasting (see, e.g., [31; 43]) but it is till
rarely used in the case of neural networks. The first, largest data subset, caled the basc or
retrospective sample, is used to select and verify a statistical model. The second, ex ante forecasting
sample is used to examine the quality of ex ante forecasts, comparing them against historical data. It
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provides the opportunity to evaluate independently the forecasting ability of the model fitted to the
basic sample.

The last historical values of an analyzed time series are traditionally used for developing the ex
ante forecasting sample. However, it is necessary to keep in mind, that these observations influence the
direction of the actual real-life forecast much more than the earlier ones. Therefore, the last historical
data are the most valuable for the process of selecting an appropriate forecasting model, and using
them as a testing sample is not always reasonable.

Basic sample Ex ante forecast Basic sample Real-life forecast

v

Fig. 7 Chronologica division of atime seriesinto the basic and ex ante forecasting samples

According the proposed algorithm, it is recommended to divide atime series into the basic and
ex ante samples in the way shown in Fig. 7. This original approach alows increasing the quality of
real, ex post forecasts as the last historical observations are used for fitting a statistical model rather
than testing.

The accuracy of ex ante forecasts is evaluated by one of the standard error parameters. In the
practical studies of the thesis, the mean absolute percentage error (MAPE) was applied. It is calculated
from[1, p. 347]:

X - X
X,
L

L
o

(14)

t=1

MAPE = ‘ x100%

where L —the size of an ex ante forecasting sample (i.e., forecasting horizon).

The MAPE is arelative, dimensionless measure of the accuracy of an approximation curve or a
forecad. It is helpful in comparing forecast performance across different data sets, or comparing the
performance of different statistical methods.

The model of the lowest MAPE is the final model assigned to further ex post forecasting. The
interpretation of MAPE introduced in [29] alows judging about the accuracy of aforecast: lessthan 10
per cent is a highly accurate forecast, 11 to 20 per cent is a good forecast, 21 to 50 per cent is a
reasonable forecast, and 51 per cent or more is an inaccurate forecast.

Thus, the choice of a final forecasting model is based on the results of multiple sequential
procedures and tests. The final mode is characterized by the lowest value of the information criterion,
uncorrelated residuals and the lowest error of an ex ante forecast.

CHAPTER 4 PRACTICAL STUDIES

Chapter 4 contains the description of practical research studies and the analysis of produced results.

The effectiveness of the developed a gorithm and the ability of different methods to accomplish a
traffic forecasting task were examined on real data sets represented as time series of different lengths
and aggregation rates. Two data samples, characterizing the intensity of total carried traffic of a
conventional telephone network and the transmission rate of outgoing international traffic, were
considered in the thesis. Following ITU-T Recommendation E.492 [17], the initial traffic
measurements were averaged over the periods equa to 15 minutes and one hour.
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Table 1 Genera description of examined time series

N?%Oerk Traffic Type Rzi(rji-oodm Label Basic sample Size of a basic sample fgirzeec;sft%esz?nnptﬁe
. 15 min A May 12 - Jul. 13, 2008 9 weeks (6048 obs.)
I mgrlrg%%'ggal B May 12 - Aug. 3, 2008 12 weeks (8064 obs.) 1-14
raffic o c May 12 - Jul. 13, 2008 9 weeks (1512 obs)) days
D May 12 - Aug. 3, 2008 12 weeks (2016 obs.)
E Jan. 8 — Mar. 11, 2007 9 weeks (6048 obs.)
15 min F Jan. 8 — Apr. 1, 2007 12 weeks (8064 obs.)
Tﬁ':tsvme Totalcarried G Jan. 8 - May 13, 2007 18 weeks (12096 obs.) 1-14
(POTS) traffic H Jan. 8 - Mar. 11, 2007 9 weeks (1512 obs.) days
1h | Jan. 8 — Apr. 1, 2007 12 weeks (2016 obs.)
J Jan. 8 — May 13, 2007 18 weeks (3024 obs.)

A secondary goal of the practical studies was to examine how both the size of a basic data
sample and the rate of aggregation influenced the accuracy of ex ante forecasts. The size of a basic
sample was equal to 9 and 12 weeks for the first analyzed variable, and to 9, 12 and 18 weeks — for the
second variable. Thus, the total number of time series considered was equal to ten.

The size of an ex ante forecasting sample, which determined a total forecasting horizon, varied
for each time series from one to 14 days, with the sampling step of one day.

The general description of the considered time series is given in Table 1. The fragments® of the
time series are displayed in Fig. 8.

Prior to determining an appropriate forecasting model and developing ex ante forecasts, the
main statistical parameters and properties of each time series were estimated. The corresponding
procedures included:

- assessment of the main sample parameters (mean, variance, median, etc.);

- testing for stationarity by means of the runstest and reverse arrangement test [24; 49, p.767];
- evaluation of the autocorrelation function;

- evaluation of the Hurst coefficient;

- testing for periodicity.

In the case of time series (E)-(J), characterizing telephone network traffic, the reverse
arrangement test accepted the null hypothesis of the stationarity of both the mean and the variance at
significance level a = 0.05. For time series (A)-(D), characterizing Internet network traffic, the
reverse arrangement test revealed the instability of the variance at significance level a = 0.05.
Nevertheless, the deviation of the number of reversals from the critical limits was dight. Already at
significance level a = 0.02, the hypothesis about the variance stationarity was accepted in most cases
considered. Therefore, it was decided not to apply further measures to stabilize the variance.

The analysis of the autocorrel ation function indicated the presence of periodic components. The
influence of strong autocorrelation dependencies was observed not only between the adjacent members
but also between the quite remote ones. It points at the “long history” of an underlying process, which
provides the opportunity to produce reliable forecasts into a rather distant future. The persistency of
the anal yzed time series was confirmed by the Hurst coefficient as well, which exceeded 0.5 for al the
time series andyzed. However, this estimate is often criticized and purely optional due to its
inaccuracy. Besides, it is worth noting that the value of the Hurst coefficient cannot be directly
incorporated into a forecasting model.

* Each fragment displays the observations over the first two weeks of a considered data sample
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The spectral analysis of the IP network traffic pointed at the periodical components of the
periods equa to 24 hours and 7 days. In the case of telephone traffic, the largest periods of the
seasonal component comprised 12 hours, 24 hoursand 7 days.
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Fig. 8 Fragments of examined time series

Description of Forecasting Technique

The main god of the practical studies was to examine the statistical properties of certain data
sets and to develop such a neura network, which was capable of modelling the underlying processes
and producing the reliable low-error forecasts for apre-defined forecasting horizon.

The selection of appropriate neural network models and the development of ex ante forecasts
were fulfilled according to the algorithm shown in Fig. 5. The diagram of the neura network, applied
in the empirical studies, is shown in Fig. 9 . The main parameters of the neural network, which stayed
unchanged for all the models during a training process, are summarized in Table 2.

The appropriate architecture of a neural network was determined as follows. According to the
universal approximation theorem [5, 15] the number of hidden layers in all the examined neural
networks was equal to one. The size of an input window was set according to the largest period of the
cyclic component identified by means of a Fourier analysis. The number of output neurons was equal
to one and implied one-step-ahead forecasting. The number of hidden neurons varied from one to ten.
The adaptive methods of network pruning [2, p.359] or growing [2, p. 357; 13, p. 250] were not
implemented. The procedures of verification and residual testing were applied to each of these models.
Although the process of verifying all the possible architectures is time-consuming, it provides an
opportunity to preserve the purity of experiments.
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Fig. 9 Diagram of the neura network (multilayer perceptron) applied in the empirical studies

The initial weights were randomly drawn from the diapason of uniformly distributed small

values. All the network architectures were reinitialized and retrained a hundred times.

Table 2 General specification of the developed neural network

Stage Parameter / Procedure Parameter Value / Procedure Description
Type of a network Fully connected time-lagged feed forward network
Selection of network | Number of hidden layers 1
type and topology Number of output neurons 1

Activation function

Hidden layer — hyperbolic tangent; output layer — linear function

Selection of training
parameters

Number of training epochs

600

Training algorithm

Back propagation & conjugate gradient descent

Error function

Mean squared error

Learning rate

0.1

Momentum term

0.3

Method of weight initialization

Randomized values from a uniform distribution

Number of times to randomize weights

100

Training optimization

Methods to prevent over-learning

Cross-validation [13, p.218] , weight regularization [47]

Size of training, validation and test subsets

Ataratio of 3:1:1

Stopping criterion

Invariable or increasing training error during 50 epochs

In-sample and
out-of-sample
evaluation

Parameters of in-sample evaluation

R, MAE, RMSE, MAPE, AIC, BIC

Diagnostic testing of residuals

LM- type test, c2- test

Parameters of out-of-sample evaluation

RMSE, MAE, MAPE, Diebold-Mariano criterion [6]

In order to avoid the effect of over-training, the cross-validation technique [13, p.218] was
implemented. The basic sample was divided into training, validation and test subsets at aratio 3:1:1. A
splitting scheme was random and changed for each training cycle. This approach does not alow
“getting stuck” in local minima and increases the stability of a system, since the process of searching a
global minimum is carried out in different directions and do not rely on a particular set of time series
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observations. Another measure to avoid over-training was weight regularization [47] applied without
subsequent deletion of synaptic connections and neurons. )

A training process was realized by means of the software package StatSoft STATISTICA® 7.0.
A two-stage training process was implemented. During the first stage a multilayer perceptron was
trained by the back propagation during one hundred epochs, with learning rate 0.1 and momentum 0.3.
It usualy gives the opportunity to locate the approximate position of a reasonable minimum. During
the second stage, a long period of conjugate gradient descent (500 epochs) was used, with a stopping
window of 50, to terminate training once convergence stopped or over-learning occurred. Once the
algorithm stopped, the best network from the training run was restored.

The input data of a neural network were corrected for obvious anomalous outliers, the reason of
which was temporal malfunction of network equipment, and for anomalous patterns, which took place
as a result of public holidays falling on the days of a workweek. The input data sets were also
transformed to the range [- 1, 1] by means of the linear transformation.

The final forecasts produced by neural networks were compared to those produced by the
models of seasonal ARIMA, seasonal exponential smoothing as well as “naive’ methods. In order to
evaluate statistically significant differences between the forecasts developed for various forecasting
horizons, the Diebold-Mariano [6] criterion was implemented. It is non-parametric and tolerant to
different deviations from the classic assumptions about the properties of forecast errors. In particular, it
can be applied even if forecast errors are non-Gaussian, serially correlated, contemporaneousy
correlated and have a non-zero mean.

Estimation of Practical Results

The results of fitting and verifying the satistical models and neural networks, the estimates of
their in-sample and ex ante accuracy are summarized in Volume 2 of the thesis. The following main
operations were conducted for each time series:

- appropriate models of multilayer perceptrons, SARIMA models and exponential smoothing
wereidentified and varified;

- ex anteforecasts were produced by means of different models and evaluated for the accuracy;,

- datigtically significant differences between the final ex ante forecasts developed for various
forecasting horizons were identified by means of the Diebold-Mariano test.

The accuracy of final forecasts was evaluated by means of such standard parameters as MAE
(mean absolute error), RM SE (root mean squared error) and MAPE (mean absolute percentage error),
the latter of which raises the greatest interest (see Fig. 10).

Accuracy of neural network forecasts evaluated by the mean absolute percentage error

For time series (A)-(D) describing IP network traffic, the MAPE estimates do not practically
change or slowly grow with the increase of a forecasting horizon from 24 hours to 14 days. It points at
the opportunity to increase a lead time, for which reliable forecasts can be produced.

For time series (E)-(G) characterizing telephone network traffic, the MAPE estimates grow fast
with a forecasting horizon, and already for the forecasts obtained two weeks ahead, exceed 30 per cent.
It means that a maximum forecasting horizon is achieved. In turn, for time series (H)-(J) aggregated
over one-hour intervals, the MAPE estimates do not practicaly change or dightly increase with a
forecagting horizon. It would allow to extend a forecasting horizon further.

For time series (A) and (B), the MAPE egtimates of neura networks and statistical models
comprise 20-25 per cent. Thisreveals a satisfactory accuracy of the produced forecasts. For time series
(C) and (D) the MAPE of satistical models and neura networks is around 10-15 per cent, which
demonstrates a good accuracy of produced forecasts.
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Fig. 10 Estimates of the accuracy of the final ex ante forecasts produced by neural networks
(&) against the length of a forecasting horizon; (b) at consecutive one-day sampling intervals®

For time series (E)-(G) the MAPE estimates of neura networks comprise 21-32 per cent, which
is the evidence of a satisfactory accuracy of the produced forecasts. For time series (H)-(J), the MAPE
of neural networksis around 14-21 per cent. It points at a good accuracy of the forecasts.

Statistically significant differences between the forecasts produced by different methods

The final forecasts produced by various methods (neura networks, SARIMA and seasonal
exponential smoothing) look very similar. Besides, it is not easy to select a forecasting model, taking
into account only the standard accuracy parameters. Therefore, the identification of Statistically
significant differences in accuracy of the forecasts, developed by different methods, raises a special
interest.

For these purposes, the Diebold-Mariano test was applied to the forecasts produced 24 hours, 7
days and 14 days ahead. The first group of forecasts can be considered as operative forecasts, while the
second and the third ones — as short-term forecasts. The results of testing a null hypothesis of the
absence of datistically significant differences between the forecasts, a significance level a = 0.05, are
summarized in Table 3.

For time series (A)-(D) characterizing IP network traffic, the forecasts produced by one or
another linear method (SARIMA or exponential smoothing) do not lose in accuracy to the forecasts of
neural networks, in all 12 analyzed cases. In two out of 12 cases, the forecasts produced by neural
networks are statistically equivalent to the seasonal naive forecasts as well.

For time series (E)-(J) characterizing telephone network traffic, the forecasts produced by
neura networks are statistically equivalent to the forecasts produced by one or another linear method
in 14 out of 18 analyzed cases. In the other four cases, a neura network outperforms in forecasting

® The MAPE estimates are calculated for the data moved aong the y-axis by the distance of 0.5 Erl. It is required as the
tel ephone traffic contains zero vaues. Even if this procedure distorts the actual values of absolute percentage errors of the
observations which are not zero, it gives the opportunity to evaluate the dynamic changes of MAPE over different
forecasting horizons.



28

accuracy both SARIMA and seasonal exponential smoothing. In 4 out of 18 anayzed cases,
statistically significant differences were not identified between the forecasts produced by neural
networks and seasonal naive methods.

Table 3 Fina neural network forecasts in comparison with the forecasts produced by other methods®

Time series/ A B C D
Forecasting method Forecastinghorizon | oy | 7 | 44 | 224 | 7 | 14 | 2 | 7 | 14| 2| 7 | 1
orecasting metho h | d d h | d | d | n d d h d d
SARIMA - = = - = = - = - = = =
Seasonal exponential smoothing = - - = - - = - - - - -
“Naive” forecast - - - - - - - - - - - -
Seasonal “naive” forecast - - - - - - = - = - - -
Time series/ E F G H : J
Forecasting
horizon | 24 7 14 | 24 7 14 | 24 7 14| 24 7 14 | 24 7 14 | 24 7 14
Forecasting method h d d h d d h d d h d d h d d. h d d
SARIMA = = = = - - = - - = = = = = = = = =
Seasonal exponential smoothing = = = = I = I = = = = = = = = =
“Naive” forecast B - - - - - - - - - - - - - - - - -
Seasonal “naive” forecast = N N - - - - - - = - - = - - = - -

Notes:

= theforecast, produced by the specified method, is statistically equivalent to the neural network forecast;
- the forecast, produced by the specified method, outperformsin accuracy the neural network forecad;

~ theforecast, produced by the specified method, losesin accuracy to the neural network forecast.

Impact of the length of a read-out period on forecasting accuracy

For al the analyzed time series, the increase of a read-out period alowed increasing the
accuracy of the produced ex ante forecasts. On average, the increase of a read-out period from 15
minutes to one hour decreased the MAPE values of a neural network for 10 per cent. Thisis primarily
due to the reduction of time series variance, which simplified the selection of an appropriate statistical
model as well.

Impact of the size of a basic sample on forecasting accuracy

For time series describing the traffic of both an IP network and a conventional telephone
network, the increase of the size of a basic fit sample (i.e., the increase of the number of training
patterns) did not lead to a substantial increase in accuracy of neura network forecadts.

In the case of IP network traffic, the MAPE estimate is slightly lower for time series (D) than
for time series (C), although these differences are insignificant. For telephone network traffic, the
MAPE estimates are a bit lower for time series (G) than for time series (E) and (F) but these
differences are a'so insignificant.

In the case of telephone traffic aggregated over one-hour intervals, the increase of a basic
sample from 12 to 18 weeks, in contrast, resulted in a slight increase in the level of forecasting errors.

® The identification of statistically significant differences in forecasting accuracy was conducted by the Diebold-Mariano
test at significance level a=0.05.
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MAIN CONCLUSIONSAND RECOMMENDATIONS

The main aim of the research — to address and solve the problems, raised by the production of
short-term traffic forecasts by means of neura networks, has been achieved. Taking into account the
results of practical and theoretical studies conducted in the thesis, the following main conclusons and
recommendations, regarding the application of forecasting models in network traffic forecasting, have
been specified.

The proposed algorithm, aimed at short-term traffic forecasting by means of neural
networks, allow automating the identification of a neural network solution with minimal
involvement and influence of expert assessment and human factors.

Neural networks traditionally involve expert assessment at all the stages of application. The
algorithm, developed in the thesis, alows minimizing the influence of a human factor and helps
finding the solutions resulting in reliable forecasts with a minimum level of errors. The MAPE
estimates of examined ex ante forecasts vary from 10 per cent (in the case of averaging over one-hour
intervals) to 30 per cent (in the case of averaging over 15-minute intervals). This confirms the
possibility of applying these modelsin real-life conditions. The criteria for selecting a final forecasting
model proposed in the thesis — the lowest estimate of the information criterion and statistically
insignificant residual autocorrelation can be successfully applied to linear statistical methods as well.

The properties of self-amilarity and long-range dependence of packet-switched network
traffic are only observable in the case of aggregation in a very large scale — usually, over the
intervals from a few milliseconds to a few minutes.

From the point of view of analysis and forecasting, an excessively large scale of time seriesis
not useful. The process of fitting a forecasting model to an examined time series will be complicated
due to correlations between remote observations as well as strong influence of extraneous noises and
anomalous outliers, which inevitably accompany the large-scale measurements. It is also necessary to
understand that the longer the period of sampling / aggregation, the longer is the horizon, for which
reliable forecasts can be produced. Therefore, taking into account ITU-T Recommendation E.492 [17],
it is advised to average the initial measurements of network traffic over 15-minute and / or one-hour
intervals. In this case, the factors determining the statistical structure of areal traffic process refer to
seasonal effects and monotonous trends, which are primarily associated with the behaviour of
subscribers/ users and the influence of technologica progress.

Reliable operative and short-term forecasts of traffic dynamics can be produced by means of
linear statistical models, if the aggregation / sampling period of time series is set in
compliance with I TU-T Recommendation E.492.

The real time series analyzed in the thesis are typical for these types of loads and incorporate
both daily and weekly cycles. It means that for many other time series with similar read-out periods,
statistical properties and autocorrelation structure, the production of reliable operative and short-term
forecasts can be conducted by applying linear statisticd models and methods. The process of
forecasting by means of neural networks requires substantial time resources for training, apart from an
intensive test-and-trial estimation of many parameters. The time required for series modelling and
forecagting by means of neura networks exceeds the time required for producing a forecast by means
of linear methods by several orders of magnitude. Therefore, this conclusion is important for
successful forecasting in real operating conditions.
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A neural network is capable of modelling and predicting seasonal time seriesin a direct way,
without prior deseasonalization.

In developing a seasonal neura network, the most important aspect to consider is the
appropriate size of an input window, which has to be set according to the largest period of a seasonal
component.

In order to produce reliable forecasts of network traffic represented as periodic time series, it
is necessary to focus on the seasonal modifications of such linear models as ARIMA and
exponential smoothing.

In contrast to the series, synthesized by such formal models as fractal Brownian motion, real
time series often incorporate seasonal and / or cyclic components and require the application of
seasonal modifications of classic linear models. Just as in the case of neural networks, correct
identification of the periods of a seasonal component is of great importance.

Potential Directionsfor Further Research

The method of neural networks is, certainly, one of the most perspective tools in traffic
forecagting. Further study directions has to be aimed at developing the a gorithms and methods of real-
time forecasting that currently raise some difficulties due to insufficient capacity of computing
equipment and intensive involvement of human expertise.

Another interesting research direction is to develop fast and reliable methods of constructing
the confidence intervals for the forecasts produced by neural networks. This problem has not been
solved yet due to the necessity of estimating a very large number of free parameters, each of which
contributes a share of uncertainty.
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GENERAL DESCRIPTION OF THESIS

Topicality of Subject Matter

The subject of the promotion thesis is short-term network traffic forecasting by means of neural
networks. Forecasting is a special research study aimed at the evaluation of future development of
objects or phenomena. Forecasts have to precede strategic planning, assess the potentia directions of
development, and take into account the consequences of fulfilment or failure of plans.

There are three main parameters, the prediction of which plays an important role in design,
optimization and performance of modern telecommunications networks. They are:

1) Traffic loads produced by users or subscribers,
2) Number of users/ subscribers or telephone lines, and
3) Demand of inhabitants for telecommunications services.

These parameters are closely interrelated and their reliable forests are determined not only by
accurate computing methods but also by financial capabilities of an operator. However, from both a
theoretical and practical point of view, forecasts of traffic dynamics raise the most interest. It is also
one of the strategic engineering tasks specified by ITU-T.

The topicality of the problem of forecasting lies in the fact that knowledge of network
performance facilitates network management, in particular — helps to develop the algorithm of
preventing an overload of transmission channels. Accurate and reliable forecasts allow planning the
capacity of a network on time and sustain the required level of quality of service. Besides, the
properties of network traffic directly influence both capital costs of equipment and expected income of
an operator.

The emergence of packet-switched Internet networks as well as transformation of traditional
telephone networks into multi-service systems provides new opportunities to a user in the sphere of
hig/ her activities. It has changed not only the architecture of a network but also satistical nature of
teletraffic, which is now characterized by the effects of self-similarity and strong long-range
dependence. Therefore, new approaches to the analysis and forecasting of states and parameters of
packet-switched networks are strongly required. A non-linear neural network is one of these methods,
which israpidly gaining recognition in time series forecasting.

We can often hear that neural networks are more art than science. This is primarily due to the
lack of a functional algorithm for applying neural networks to time series forecasting. Because of that,
the active expert assessment is still necessary at all the stages of implementation, which prevents the
automation of a forecasting process. It is also important to understand that, in contrast to some linear
time series methods, neural networks have not originaly been developed to meet the challenges of
forecagting.

The attempts to predict the traffic loads of both a conventional telephone network and a packet-
switched Internet network by means of neural networks have been made many times in the past.
However, most of these research papers solve atrivial task of time series approximation, with more or
less success, without taking into account a general theory of neura networks and time series
forecagting. Thus, the main problems of applying neural networks to network traffic forecasting are:

- the absence of a consistent and efficient algorithm for gpplying the method of neural networks
in time series forecasting;

- the absence of efficient and comprehensive criteria for selecting the final forecasting model and
evaluating its quality.



Objectsof Research

The objects of this research are the time series of different lengths and aggregation rates, which
describe:
- traffic of aconventional circuit-switched telephone networks (i.e. POTS);
- traffic of apacket-switched IP network.

The real measurements of IP network traffic were taken at the transport layer. All the
measurements were brought to a form suitable for further satistical analysis and forecasting.

Main Goal and Tasks

The main goal of the promotion thesis is to address and solve the problems related to the use of
neura networks in time series forecasting, and, after real data testing and comparing the produced
results, give practical recommendations on the effective application of neura networks and statistical
models to network traffic forecasting.

The main tasks of the thesis are formulated as follows:

1) Develop a functional algorithm for implementing neural networks to solve a short-term
forecagting task, which would provide a maximum automation of the process of selecting an
optimal modd and guarantees an appropriate quality of forecasts.

2) Give practical recommendationson

- selecting the models and methods to produce the operative forecasts (for 24 hours ahead) and
short-term forecasts (for up to two weeks ahead);

- verifying aforecasting model;

- producing operative and short-term forecasts (or ex ante forecasts);

- assessing the accuracy of forecasts (or ex ante forecasts).

3) Produce the empirical operative and short-term forecads of traffic of conventional telephone
networks and packet switched IP networks by applying the method of neura networks,
evaluate the accuracy of forecasts and compare them with the forecasts produced by traditional
linear models and “naive” methods. The topicality of this problem is mainly related to the fact
that complexity of neura networks has provoked strong opinion about their advantages over
simpler linear methods in solving a forecasting task. However, none of the scientific papers or
books, known to the author, has accomplished a comprehensive comparison of the results
produced by non-linear neural networks and traditional linear methods.

Hypothesisto Defend
The author advances the hypothesi s that:

the proposed algorithm of solving a forecasting task with neural networks allows automating
the identification of neura network solutions, which are capable of producing reliable
forecasts,

reliable operative and short-term forecasts can be produced by using not only non-linear neural
networks, but also simpler linear models such as ARIMA and exponential smoothing, if an
aggregation / sampling period of packet-switched network traffic is properly selected (usudly
over some minutes);

neura networks outperform linear methods in the case of predicting traffic of real telephone
networks, if the observations are taken over relatively small read-out periods (e.g., over 15-
minute periods following ITU-T Recommendation E.492).



Main M ethods of Research
In order to fulfil the indicated tasks, the following main methods were applied:

1) Neural networks — the method of artificial intelligence and universal approximator, which
allows revealing non-linear dependencies of stochastic processes.

2) Autoregressive integrated moving average models (ARIMA) and exponential smoothing — the
classic linear methods of time series forecasting, which are useful for modelling and
forecasting short-range dependent processes.

3) Spectral analysis helps to identify the periodic and quasi-periodic components of time series. It
is also useful in evaluating the Hurst exponent.

4) Correlation analysis allows identifying the statistical dependencies between members of atime
series taken with a time shift (autocorrelation) or statistical bonds between two processes
(cross-correlation).

5) Regression analysisis helpful inidentifying the reliable model for atrend component, if any.

6) The methods of non-parametric statistics are useful in testing the hypothesis of stationarity or
normality of time series in the absence of clear knowledge about the probability distribution of
aprocess.

Structure

The thesis consists of two volumes. The first volume contains four main chapters:

- Chapter 1 examines the main aspects and prerequisites of network traffic forecasting.

- Chapter 2 describes in detail the methods applied in the practical studies, such as non-linear
neural networks, ARIMA models, exponential smoothing models and “naive” methods.

- Chapter 3 highlights the main contribution of the author to the theory of time series
forecagting. The description of the proposed advanced agorithm and the main aspects of its
practical realization are given in detail.

- Chapter 4 analyzesthe results of practical studies.

The first volume consists of 174 pages and contains 25 figures and 11 tables. The list of cited
literature and other sources includes 207 bibliographic names. The second volume includes 96 annexes
and consists of 116 pages.

Novety
The novelty of the thesisis attributed to the following original results:

Based on the methods of mathematical statistics and theory of neural networks, there has
been developed an advanced algorithm aimed at solving the task of short-term traffic forecasting by
meansof neural networks.

In comparison to most classic schemes of setting a neural network to fulfil a certain task (see,
for example, [9; 53, p. 84]), the proposed algorithm focuses on the estimation of forecasting abilities
rather than approximation accuracy, allows automating the process of determining an optimal solution
and includes three procedures, which are:

- the use of multiple cycles of weight initialization of aneural network during atraining process;
- the procedure of selecting the intermediate forecasting model, taking into account the residual
autocorrelation and the estimates of information criteria;
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- the procedure of selecting the final forecasting model, taking into account the accuracy of ex
ante forecasts.

The incorporation of these procedures into a classic algorithm allows identifying neural
network solutions in a more effective way and significantly improves the accuracy and reliability of
produced forecasts.

Neura networks belong to heuristic methods. It implies that the identification of optimal
parameters of architecture and learning should involve intensive test-and-trial procedures, since these
parameters do not comply with strict mathematical rules. The algorithm, proposed in the thesis, is also
based on the experience of the author and represents the results of years of the practical studies of real
time series. However, the motivation of including these procedures into the algorithm arises from the
theory of neural networks and time series forecasting.

For the first time, there has been conducted a profound statistical analysis of real network
traffic forecasts, produced by non-linear neural networks, classc linear methods and “naive’
methods.

Statistically significant differences in accuracy have not been identified between the forecasts
produced by neural networks and classic linear models in most cases tested by the Diebold-Mariano
criterion [6]. The analyzed time series are typical for these categories of traffic loads. It means that
linear statistical methods would produce reliable and accurate operative / short-term forecasts for many
other time series with similar statistical properties as well.

Practical Significance

The proposed algorithm and practical recommendations can be applied to produce operative
and short-term forecasts of telephone network traffic as well as packet-switched Internet traffic
generated at the transport and application layers. In turn, the produced forecasts can be useful in
planning the capacity of transmission channels, thereby providing the required level of quality of
service (QoS).

The algorithms and recommendations developed by the author can be applied to other time
series with similar statistical properties — for example, in producing predictions of power consumption
or road traffic.

Approbation

The proposed algorithm and recommendations were successfully applied to produce the
forecadts of several time series describing the traffic of real telecommunications networks. Operative
and short-term traffic forecasts have been obtained for:

- the circuit switched telephone network of Augstceltne S A, which specializes in maintenance of
corporate customers,

- the packet switched IP network of INBOKSS S A, which specializes in providing free e-mail
services.

Theresults of the thesis were declared and discussed at the following scientific conferences:

1) The 9" International Conference Reliability and Statistics in Transportation and Communication
(RelStat’09), Riga, Oct. 21-24, 2009. Topic of presentation — Forecasting Network Traffic: A
Comparison of Neural Networks and Linear Models.

2) The50™ International Scientific Conference of Riga Technical University, Riga, Oct.14-16, 2009.
Topic of presentation— An Advanced Algorithm for Forecasting Traffic Loads by Neural Networks.
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The 28" Annual International Symposium on Forecasting, Nice (France), June 22-25, 2008. Topic
of presentation — Preprocessing of Input Data of Neural Networks: The Case of Predicting
Telecommunication Network Traffic.

The other reports at scientific conferences associated with the subject of the thesis:

4)

5)

6)

7

8)

The 18" European Regional Conference of the International Telecommunications Society, |stanbul
(Turkey), Sep. 4-6, 2007. Topic of presentation — Perspective Evaluation of the Electronic
Communications Market in Latvia.

The 6™ International Conference Reliability and Statistics in Transportation and Comrmunication
(RelStat’ 06), Riga (Latvia), Oct. 25-28, 2006. The theme of presentation — Forecasting Methods
and Long-term Evaluation of the Electronic Communications Market in Latvia.

The 17" European Regional Conference of the International Telecommunications Society.
Amsterdam (Netherlands), Aug. 22-24, 2006. The theme of presentation — New Technologies and
their Influence on the Universal Service Policy.

The 16" European Regional Conference of the International Telecommunications Society (ITS
Europe 2005), Porto (Portugd), Sep. 4-6, 2005. The theme of presentation — The Necessity of
Including Mobile Telephony in a Minimum Set of Universal Service.

International Conference Reliability and Statistics in Trangportation and Communication
(RelStat’04), Riga (Latvia), Oct.14-15, 2004. The theme of presentation — Financial Risk of
Providing the Universal Telecommunications Service in Latvia.

The papersin peer-reviewed scientific journals:

1)

2)

3)

Klevecka, |. “Forecasting Traffic Loads: Neural Networks vs. Linear Models.” Computer
Modelling and New Technologies 14.2. (2010): 20-28. [ISSN 1407-5806; Thomson Reuters
Researcher I1D]

Klevecka, 1. “An Advanced Algorithm for Forecasting Traffic Loads by Neura Networks’.

Scientific Journal of Riga Technical University (Series "Telecommunications and Electronics') 9

(2009): 48-55. [ISSN 1407-8880; EBSCO Hogt, ProQuest, VINITI]

Klevecka, 1., and J. Lelis. “Pre-Processing of Input Data of Neural Networks: The Case of

Forecasting Telecommunication Network  Traffic.” Spec. issue of  Telektronikk:

Telecommunications Forecasting (in co-operation with International Institute of Forecasters)

104.3/4 (2008): 168-178. [ISSN 0085-7130; Thomson Reuters Researcher 1D, ACM Digital

Library]

Cited in:

- Nikolov, V., and V. Bogdanov. “ Integration of Neural Networks and Expert Systems for Time
Series Prediction.” Proceedings of the 11" International Conference on Computer Systems and
Technologies (CompSysTech’10). New York: ACM Press, 2010. 534-539. [ACM Digital
Library]

- Chulaka Gunasekara, R., et. d. , Prophetia: Artificia Intelligence for TravelBox® Technology.”
Advances in Computational Intelligence. Eds. Wen Yu and Edgar N. Sanchez. Berlin:
Springer-Verlag, 2009. 21-34. [Springer Link]

The abstractsin the proceedings of international scientific conferences:

4)

5)

Klevecka, |. “Forecasting Network Traffic: A Comparison of Neural Networks and Linear
Models.” Abstracts of the 9" International Conference “ Reliability and Statistics in Transportation
and Communication” (RelSat'09). Oct. 2009, Riga, Latvia Riga Transport and
Telecommunication Institute, 2009. 36. [ISBN 978-9984-818-22-1; Thomson Reuters Researcher
ID]

Klevecka, 1., and J. Lelis. ,Preprocessng of Input Data of Neural Networks. The Case of
Predicting Telecommunication Network Traffic.” Program and Abstracts of the 28" Annual
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International Symposium on Forecasting. June 2008, Nice, France. France: International Institute
of Forecasters, 2008. 29. [ISSN 1997-4116; Thomson Reuters Researcher 1D]

The other papersin peer-reviewed scientific journals associated with the subject of the thesis:

6) Klevecka, I., and J. Lelis. “Application of Extrapolation Methods to the Technology Diffusion
Forecasting.” Scientific Proceedings of Riga Technical University (Series "Telecommunications
and Electronics') 7 (2007): 52-59. [ISSN 1407-8880; ProQuest, VINITY]

7) Klevecka, I. and J. Lelis. “Financial Risk of Providing the Universal Telecommunications Service
in Latvia” Transport and Telecommunication 6.1 (2005):139-144. [ISSN 1407-6160; Thomson
Reuters Researcher|D].

The papersin the proceedings of scientific conferences associated with the subject of the thesis:

8) Klevecka, 1., and J. Lelis. “Perspective Evaluation of the Electronic Communications Market in
Latvia.” Proceedings of the 18" European Regional ITS Conference. Sep. 2007, Istanbul, Turkey.
Berlin: International Telecommunications Society, 2007. 1-37. CD-ROM. [Thomson Reuters
Researcher|D].

9) Klevecka, I., and J. Lelis. “Forecasting Methods and Long-term Evaluation of the Electronic
Communications Market in Latvia” Proceedings of the 6™ International Conference “ Reliability
and Satistics in Trangportation and Communication” . Oct. 2006, Riga, Latvia Riga: Transport
and Telecommunication Institute, 2006. 37-45. [ISBN 9984-9865-9-4; Thomson Reuters
Researcher ID].

10) Klevecka, 1., J. Lelis, and J. Ulmanis. “The Necessity of Including Mobile Telephony in a
Minimum Set of Universal Service.” Papers of the 16™ European Regional TS Conference. Sep.
2005, Porto, Portugal. Berlin: International Telecommunications Society, 2005. 1-13. CD-ROM.
[Thomson Reuters Researcher ID].

The other abstracts in proceedings of international scientific conferences associated with the subject
of the thesis:

11) Klevecka, I., and J. Lelis. “Perspective Evaluation of the Electronic Communications Market in
Latvia” Abstracts of the 18" European Regional ITS Conference. Sep. 2007, Istanbul, Turkey.
Berlin: International Telecommunications Society, 2007. 118-119. [Thomson Reuters Researcher
ID]

12) Klevecka, 1., J. Lelis, R. Bergmanis, and G. Macs. “New Technologies and their Influence on the
Universal Service Policy.” Abstract Booklet of the 17" European Regional ITS Conference. Aug.
2006, Amsterdam, Netherlands. Berlin: International Telecommunications Society, 2006. 59-60.
[ISBN 90-8559-205-4, Thomson Reuters Researcher D]

13) Klevecka, 1., J. Lelis, and J. Ulmanis. “The Necessity of Including Mobile Telephony in a
Minimum Set of Universal Service.” Abstracts of the 16" ITS European Regional Conference. Sep.
2005, Porto, Portugal. Berlin: International Telecommunications Society, 2005. 16-17. [Thomson
Reuters Researcher 1D]

14) Klevecka, I., and J. Ldlis. “Financial Risk of Providing the Universal Telecommunications Service
in Latvia” Programme and Abstracts of the International Conference RelStat’04.” Oct. 2004,
Riga, Latvia. Riga: Transport and Telecommunication Ingtitute, 2004. 54. [ISBN 9984-668-76-2;
Thomson Reuters Researcher 1D].
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SYNOPSIS OF THESIS

CHAPTER 1 MAIN ASPECTSOF NETWORK TRAFFIC FORECASTING

Chapter 1 examines the agpects of applying the models and methods of time series theory to network
traffic forecasting. Main statistical properties and genesis of time series are discussed. The chapter
also contains a review of scientific papers dedicated to traffic forecasting carried out by means of
neural networks.

Concept of Time Series

In modeling and forecasting we usually assume that network traffic is represented as time
series. A time series is a time-ordered sequence of observation values of a physical variable, usualy
made at equally spaced time intervals Dt, represented as a set of discrete values x(t,), X(t,),Kx(t ) .

In statistical analysis, this sequence of N observations is often considered as a sample taken from a
longer general sequence of random numbers. The observations or elements of time series are typicaly
labeled in accordance with a time moment they refer to (eg., x;, X,, X;). Thus, the order of the

elements of atime seriesis of great importance.

It is necessary to keep in mind that, unlike the observations of random variables, the elements
of time series are not statistically independent [49, p.780]. Some rules and properties of the statistical
analysis of random samples cannot be gpplied to time series, and this requires the implementattion of
specific methods and approaches. On the other hand, the correlations between time series observations
set up a specific base for predicting an analyzed variable, i.e. for producing the estimate X(N + L) of an

unknown value x(N+L) taking into account the historical values x(t,), x(t,),Kx(t, ), where N is the

length of an analyzed time series and L is a forecasting horizon.

The genesis of observations is the structure and classification of the main factors, under the
influence of which the values of time series are formed. There are four types of such factors and
components of time series [49, p.781; 52, p.242; 57, p.354]:

1) Long-term factors form the general dynamic tendency of an analyzed parameter x(t). This
tendency is usually described by a deterministic non-random function called a trend.

2) Seasonal factors determine the tendency, which changes regularly during a certain period (a
day, week, month etc.). Since this function has to be periodic (with periods, proportiona to
“seasons’), its analytical expression involves the use of trigonometric functions.

3) Cyclic factors determine the longer periods of relative rise and fall. The cyclic component may
contain the cycles of economic, demographic or astrophysical nature, and varies in amplitude
and length. Asarule, the length of acyclical component exceeds one year.

4) Random (irregular) factors determine the stochastic nature of time series members. A random
component is formed as a result of superposition of many externa factors, which are not
involved in the formation of adeterministic component.

The deterministic components of network traffic can be classified as follows [19, p.42; 45,
p.44]:

1) 24-hour cycle. It has been known for a long time that sigmoidal models (logistic model,
Gompertz model, etc. [22; 23]) are optima for describing the traffic dynamics within aday [58,
p.202].

4) Weekly cycle is usually characterized by the decrease of traffic during weekends, and can be
described by means of a Fourier series.

5) Annual cycle. It is believed that the level of network traffic is higher a the beginning of a
month, after afestival season and at the beginning of each quarterly period.
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6) Linear trend. The overal traffic increases year by year due to the influence of technical
progress and socio-economic factors.

If we identify accurately a deterministic component, then the residuals of atime series will be
an irregular stochastic component. Its behavior cannot be fully predicted in advance. In other words,
every observation gives only one option among many possible. In order to describe and predict this
component of atime series, the methods and concepts of probability theory are invol ved.

Aspects of Forecasting Transmission Capacity of Packet Switched Networks

Transmission capacity is one of the most important parameters characterizing the quality of
networks. For the purposes of forecasting, the measurements made at the transport layer are usually
considered. These time series describe either the number of arriving packets or the level of traffic /
transmission rate measured in bytes over discrete time intervals.

The methods of network traffic forecasting are partially determined by ITU-T
Recommendations E.506 [16] and E.507 [18]. Even these recommendations have been developed for
ISDN networks, some of the forecasting methods described there can be still applied to modern
telecommunications networks. These methods are the autoregressive integrated moving average
models (ARIMA) [3] and exponential smoothing [12].

The traffic of packet switched IP networks is characterized by such statistical effects as self-
similarity and long-range dependence [20, p.150; 28; 37; 41, 56, p.53]. The stronger post-effects, the
longer is a forecasting horizon, for which reliable forecasts can be produced. However, it is also a
disadvantage, since the estimation and selection of an adequate model, which would take into account
all significant correlations between the members of a time series, becomes labor-intensive [40].

At the same time, there has been disseminated intensively the myth regarding impossibility of
applying traditional linear methods to predicting packet switched IP traffic and the necessity to use
more complicated non-linear methods such as neural networks.

Indeed, neural networks offer some additional opportunities in modelling non-linear processes
and recognizing chaotic behaviour. Owing to their great flexibility, these networks can recognize a
variety of structures. However, numerous practical studies dedicated to traffic forecasting usually miss
the fact that fractal properties of packet-switched traffic have a significant influence on a forecasting
process only in the case of measurements on a very large scale — over the aggregation periods varying
from milliseconds to some minutes. This fact has been confirmed by the author’s practical studies as
well as a number of other research papers[36, 39, 40].

Fig. 1 is the illustration of this idea, where the rea measurements of transmission rate are
shown against an aggregation period. A visual analysis of the traffic aggregated over 1 and 10 seconds
reveals stochastic self-similarity [37]. However, increasing the aggregation period up to one minute,
and then — up to five minutes, we can see that a traffic trace becomes more even, its variance
significantly decreases and the influence of deterministic components starts to play aleading role.

From the point of view of time series forecasting, a very fine sampling scale is unreasonable. In
this case, the selection of a relevant statistical model is complicated due to the strong influence of
autocorrelations between distant observations of times series as well as extraneous noises and
anomalous outliers, which unavoidably accompany the large-scae measurements. Besides, an
aggregation / sampling period also determines a forecasting horizon, for which reliable forecasts can
be produced. In other words, a potential forecasting horizon for time series, aggregated over, for
example, one-second periods is different from the one for time series aggregated over 24-hour
intervals.

At present, rea-time forecasting with neural networks is hard to implement in practice. Apart
from the necessity to select and evaluate many parameters, often — in empirical way, some substantial
time resources are necessary for training a neural network. Therefore, taking into account ITU-T
Recommendation E.492 [17], it is desirable to average measurements of network traffic over 15-
minute and / or one-hour read-out intervals. In doing so, the main factors determining the statistical
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structure of real network traffic are seasonal effects and monotonous trends, the main reasons of which
are human behaviour and technical progress (see Fig. 2).

It has been shown in the practical part of the thesis that statistical properties of such time series
become similar to statistical properties of traditional voice traffic. At an intuitive level, it gives us the
opportunity to assume that the methods of modelling and forecasting of these processes would be
similar aswell, if the appropriate length of aread-out period is selected.
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Fig. 1 Real packet-switched traffic recorded over different aggregation periods

Multifractals: Fractals:
Influence of transport Seasonal effects,
Long-range dependance
protocols monotonous trends etc.

< DK DK >
\ | | | | | | | 3 |

; ; 1 4
\ | | | | | | | | |

1ms 10 100 | 1s 10 100 1000 § 10 000 t

Fig. 2 Statistical effects of packet-switched traffic depending on atime scale [10, with author’ s amendments]

The main accent of this thesis has been put on the application of neura networks (i.e., a
multilayer perceptron) to forecasting the traffic of both a traditional telephone network and a packet-
switched IP network. Following the principle of Ockham’s razor — choose a parsimonious model, — it
makes sense to compare the accuracy of forecasts produced by means of non-linear models with those
produced by traditional linear models. To pursue this goal, the models of ARIMA and exponential
smoothing (as the methods recommended by the ITU-T) as well as “naive’” methods, have been
chosen. If there are no statistically significant differences between the forecasts produced by neural
networks and linear methods, then the application of such a complicated and time-consuming method
as neura networks becomes unnecessary.
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CHAPTER 2 METHODS OF NETWORK TRAFFIC FORECASTING

Chapter 2 gives an overview of the models and methods of network traffic forecasting applied in the
practical part of the thesis such as non-linear neural networks (multilayer perceptron), seasonal
autoregressive integrated moving average (SARIMA), seasonal exponential smoothing and “ naive”
forecasting methods.

Neural Networks

A neural network is a massively parallel distributed processor made up of simple processing
units, which has a natural propensity for storing experimental knowledge and making it available for
use [13, p.2]. The development of artificial neural networks started in the beginning of the 20" century
but only in the nineties, when some theoretical barriers were overcome and computing systems became
powerful enough, neura networks have gained wide recognition. Even though neura networks can be
implemented as fast hardware devices (and these realizations do exist in real life), most practical
studies are performed by applying software simulations on conventional PCs. Software simulations
provide low-cost flexible environment, which is sufficient for many real-life applications. Neural
networks are acquiring popularity in the field of telecommunications as well, where they help solving
various problems such as switching management, traffic management, routing, channel allocation in
mobile transmission systems, etc. [54, p. 60].

The incorporation of time into the operation of a neural network allows to follow statistical
variations in different processes described by time series, such as speech signals, radar signals,
fluctuations in stock market processes, teletraffic processes and many others. The discusson of the
role of timein neural processing can be found in fundamental paper [7].

The tempord structure of an analyzed sample is usually built into the operation of a neural
network inimplicit way. In this case, a static neura network (e.g. a multilayer perceptron) is provided
with dynamic properties [13, p.636]. For a neura network to be dynamic, it must be given memory
which may be divided into short-term and long-term memory [35]. Long-term memory is built into a
neura network through supervised learning, whereby the information content of the training data set is
stored in the synaptic weights of the network. Short-term memory is built into the structure of a
network through the use of time delays, which can be implemented at the synaptic level inside the
network or at the input layer of the network.

Two types of neural networks, a back-propagation network (multilayer perceptron) and aradial
basis function network, are considered to be suitable for temporal processing. Due to a number of
reasons, the latter has not gained acceptance’. At the same time, numerous practical studies have
proved that a multilayer perceptron solves successfully many various tasks such as pattern recognition,
regression, function approximation, time series forecasting, cluster analysis, etc. Therefore, further we
will focus on this class of neural networks.

A multilayer perceptron usually consists of multiple sensor elements (i.e., input nodes) forming
an input layer, one or several hidden layers containing computational nodes, and one output layer. It is
often trained according to the error back propagation algorithm. It is a supervised training agorithm,
which is based on the error correction training rule and requires two computational flows — a direct
one and a backward one — through all the layers of a network.

Temporal pattern recognition demands processing of patterns that evolve over time, with the
response at a particular instant of time depending not only on the present value of the input but aso on

! Both a radial-basis function (RBF) network and a multilayer perceptron (MPP) belong to the class of universa
approximations. Due to that, there always exists an RBF network capable of accurately mimicking a specified MLP, and
vice versa. An MLP develops global approximations to nonlinear input-output mapping. In turn, an RBF network
constructs local approxi mations using exponentially decaying localized nonlinearities (e.g., Gaussian functions). The | atter
is the reason of the popularity of MLPs — in order to approximate a nonlinear input-output mapping a the same degree of
accuracy, an MLP requires the smaller number of parameters to determine and consequently, less time for completing a
training cycle, in comparison with an RBF network [13, p. 293].
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its past values. Fig. 3 shows the diagram of a nonlinear filter built on a static neural network. Given a
specific input signal consisting of the current time series value x(t) and the W past values
{x(t-1,x(t- 2K,x(t- W)} stored in a delay line memory of order W, the free parameters are
adjusted to minimize the training error between the output of the network, y(t), and the desired
response, d(t) [13, p.645]. The structure shown in Fig. 3 can be implemented at the level of a single
neuron or a network of neurons.
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Fig. 3 Tempora processing — nonlinear filter built on a static neural network [13, p.643]
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Fig. 4 Time lagged feed-forward network? [13, p.644; 35]

The diagram of a time lagged feed-forward network is shown in Fig. 4. It is a powerful
nonlinear filter consisting of a tapped delay memory of order W and a multilayer perceptron. The
standard back propagation algorithm can be used to train this type of neura networks. At timet, the
temporal pattern applied to the input layer of the network is the signal vector:

X(t) ={x(t), x(t - 1), x(t - 2)K, x(t- W}"", (1)
where
N —the length of atime series or atraining subset.

Eq. (1) describes the state of the nonlinear filter at time t. One training epoch consists of a
sequence of patterns (states), the number of which is determined by the memory order W and the size
of atraining sample N™®. The output of a nonlinear filter, assuming that a multilayer perceptron has a
single hidden layer and one output neuron, is computed from:

2 The bias levels are omitted for convenience of representation.
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where
J , — activation function of a hidden layer;

j , — activation function of an output layer;

w; , —synaptic weight of input synapse z of hidden neuron j;
w; — synaptic weight of input synapse j of an output neuron;
bj,z and bj - biases;

m, - number of hidden neurons,

W- order of linear delay memory.

Autoregressive Integrated Moving Average Models

One of the most popular class of linear time series models refers to autoregressive moving
average models (ARMA), including purely autoregressive (AR) and purely moving-average (MA)
models as special cases. These models were initially introduced in the twenties of the last century but
have been using actively only since 1970, when the fundamental book of Box and Jenkins [3] was
published.

In real-life network traffic modelling and forecasting, it is necessary to put an accent on the
seasonal modifications of linear models, which are able to model and forecast the periodic time series.
The application of non-seasonal models to seasonal time series can lead to the erroneous conclusions
that linear models are not capable to model and make reliable forecasts of network traffic dynamics.

The seasonal autoregressive integrated moving average model, denoted as
SARIMA(p, d, g)(P, D, Q),, isgiven by [3, p.305]:

f o (B)F o (B )NNJx, =0,(B)Qq(B*)e,. €)
where
Ss—period of the seasonal component;
p — order of the non-seasonal autoregressive operator;
g —order of the non-seasonal moving average operator;
d —order of the non-seasonal differencing operator;
P — order of the seasonal autoregressive operator;
Q — order of the seasonal moving average operator;
D — order of the seasonal differencing operator;
N =N, =1- B —non-seasonal differencing operator;
N, =1- B® —seasond differencing operator;
f(B) u q(B) — polynomials in B of order p u q , respectively, which satisfy the conditions of
stationarity and invertibility;
F (B®),Q(B®) — polynomials in B® of order P u Q , respectively, which satisfy the conditions of
stationarity and invertibility;
e, ~WN(O, s *)— awhite noise process.

Let us assume that all the values of a time series x,,X,_,,K are known until time moment t.
Then, the minimal mean squared error forecast X (L),L31 at lead time L and origin t is the
conditional expectation of x,,, [3, p.306]:

% (L) =[] = BlX 19, Q0% % 1, K] (4)
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Box and Jenkins proved that a forecast of the minima mean sguared error can be calculated
directly from the model represented as a difference equation. For example, for the seasonal process of
period s =12, the forecast is given by [3, p.306]

X(L) =X ] =X ¥ Xu12 - X3 T€ua - d€u 1 - Q€ 1, +4 Q€ 45 (5)

After inserting the values of parameters q u Q into Eq. (5), we immediately obtain a minimal
mean squared error forecast at lead time L calculated at origint [3, p. 307]. The parameters of Eq. (5)
are assumed to be known precisely, and atime series x,, x,_,,K is assumed to extend into the remote

past.
Exponential Smoothing

The method of exponential smoothing allow to produce the description of a process, according
to which the lagt historical observations have the larger weights as compared to the earlier ones, and
the weights decrease exponentially.

The simple exponential smoothing model is defined as [12]:

S=S..tae (6)
where
S — smoothed level of the series computed after x, is observed,

a — smoothing parameter for the level of the time series;
e, —one-step-ahead forecast error; e, = x, - X_,(1);

X, —observed value of the time series at moment t;
%, (1) - one-step-ahead forecast fromorigin t - 1;

There exist different modifications of exponential smoothing aimed at the analysis of non-
stationary time series with linear and nonlinear trend components, as well as seasonal time series with
multiplicative and additive seasonality. Only the models with additive seasonality and / or a linear
trend will be considered further in this section as they are the most suitable for the analysis of
teletraffic processes. In exponential smoothing models, the additive seasonal component and linear
trend of atime series are calculated from [12]:

[, =1_,+d(@- a)e, (7)

Tt :Tt-1+aget (8)
where
I, — smoothed value of the seasonal component at the end of period t;

T, — smoothed value of the trend component at the end of period t;

d — smoothing parameter for the seasonal component;
g— smoothing parameter for the trend component.

The estimation of a time series incorporating seasonal and / or trend components, is based on
decomposition. The seasonal and trend components are estimated at each time moment independently
by using a simple exponential smoothing model with parametersd and g This method is known as the
Holt-Winters exponential smoothing and is based on three smoothing equations — one for the level,
one for trend and one for seasonality.

For the time series with additive seasonality and a linear trend, the forecast for horizon L is
given by [12]:
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% (L)=S + 1 g + LT, (9)
where
X, (L) — forecast produced for horizon L fromorigint.

The complete classification as well as the description of the methods of determining the
optimal parameters of exponential smoothing modelsis givenin[12].

Naive Forecasting

It is desirable to compare the results, produced by various forecasting models, with so called
naive forecasts. In practical analysis of time series, a naive forecast serves as the simplest benchmark
forecast and can be produced in several different ways, of which the following two were applied in the
thesis:

1) The naive forecast is the sample mean of an examined time series[33]:
%5 (L) = Bl % X% Ko x]=rfor L3 1 (10)

2) The seasonal naive forecast can be used with seasonal data and postulates that the forecast for one
period ahead is equal to the same value of the last historical period of atime series [44]:

(L) = E[Xuy X0 X0 0K, %] = %, for L2 1 (11)

If the comparison of forecasts produced by neura networks or statistical models with those
produced by naive methods does not reveal any statistically significant differences, then, perhaps, the
use of the models in further forecasting of this particular time series is not required.

CHAPTER 3 ALGORITHM FOR SOLVING A FORECASTING TASK WITH
NEURAL NETWORKS

Chapter 3 describes the author’ s developed algorithm aimed at solving a time series forecasting task
by means of neural networks. The innovative aspects of the algorithm are consdered in detail. The
chapter examines the methods of determining the parameters of multilayer perceptrons and provides
some recommendations on the practical use of the algorithm, e.g., the preparation and pre-processing
of input data, development of forecasts, estimation of the accuracy of forecasts, etc.

As mentioned above, unlike classic linear methods, the method of neural networks was not
initially aimed at modelling and forecasting time series. When applied to time series forecasting,
neura networks are often criticized for the necessity to set many different parameters through test-and-
trial procedures, complications with producing and replicating a stable solution, high probability of
over-learning, high demands for time resources and computational capacities. Besides, it is necessary
to keep in mind that neural networks are sensitive to the quality of input data [24, 27, 55].

In order to facilitate and automate the process of time series modelling and forecasting, and
compensate for the problems associated with instability of a produced solution, an advanced agorithm
has been developed in the thesis.
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m; — number of hidden neurons of a two-layer perceptron
K — maximum number of hidden neurons

V — total number of weight initialization cycles

IC — information criterion

LM — Lagrange multiplier type test

p(LM) — p-value (observed significance) of the LM-type test
o — significance level

Fig. 5 Advanced algorithm aimed at solving a forecasting task by means of neural networks
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The algorithm, the main block diagram of which is shown in Fig. 5, produces the operative /
short-term forecasts of traffic loads represented as univariate / multivariate time series. In contrast to
some classic algorithms for accomplishing a pre-defined task (see, for example, [9; 53, p.84])), the
proposed algorithm incorporates three procedures.

- implementation of multiple cycles of weight initialization of a neural network during atraining
process,

- method of selecting the intermediate forecasting models, taking into account the level of
residual autocorrelation and the estimates of information criteria;

- method of selecting the final forecasting model, taking into account the accuracy of ex ante
forecasts.

Let us consider the theoretical arguments in defence of the necessity of implementing these
procedures to identify a relevant forecasting model.

Implementation of multiple cycles of weight initialization of a neural network

It isrequired to set some initial valuesto al the weights and biases of a neural network before a
training process starts. The aim of initialization is, probably, to find the best approximation to an
optimal solution and, in this way, to decrease training time and facilitate the convergence of atraining
algorithm.

0,08

0,07 4

Training error

0,06 4

—— Chronological order

Ascending order

0,05 T T T T T T T T T
0O 10 20 30 40 50 60 70 80 90 100
Initialization cycle

(@ (b)

Fig. 6 lllustration of the necessity of implementing multiple initialization cycles: (a) asimplified example of two-
dimensional error surface where a vertical axis represents an error. This demonstrates akey problem — several local minima
can exist on thetraining error surface; (b) the training errors of aneurd network (without applying cross-validation)
produced as aresult of ahundred cycles of weight initiaization®

If the initial weights and biases are set to large values, then neurons usually approach the
saturation level very quickly. In this case, the local gradients, calculated according to the back-
propagation algorithm, take small values, which, in turn, would significantly increase training time. If
the initial values are set to small values, then the algorithm works very slowly about the origin of the
error surface. This is specificaly true in the case of anti-symmetric activation functions such as
hyperbolic tangent.

During the last two decades many heuristic methods of weight initialization have been
proposed, some of which are described in Chapter 3 of the thesis. Despite this, the optimal solution of

® The values of training errors are displayed in chronol ogical order of their evaluation at the end of each training epoch as
well as sorted in descending order to facilitate their comparison.



20

this issue has not till been found. Due to its simplicity, the most common method is the random
initialization of weights and biases from a uniformly or normally distributed narrow range of small
values.

Regardless of the initialization method, starting values of weight coefficients influence the final
result of training. This is due to the properties of a training algorithm as well as the fact that several
local minima can exist on the error surface (see Fig. 6-a). Therefore, in order to find an actual global
minimum, it is necessary to train one and the same neura network multiple times under the same
conditions, changing only the initial values of weights and biases.

In spite of these problems, most researchers still do not pay a proper attention to this aspect. It
ispossible to find referencesto 5 [21], 10 [42], 25 [25], 50 [8; 46] and 100 [25] cycles of initialization.
However, most practica studies restrict the number of initialization cycles to one, and this can mislead
aresearcher regarding the adequacy of a produced solution.

The example shown in Fig. 6-b illustrates the uncertainty in producing afinal solution and its
dependence on the starting values of weights and biases. The training errors, shown here, are produced
as a result of training a neural network of the same architecture and applying the same training
parameters but changing the initial values of weights and biases. It is easy to notice that the difference
between the largest and smallest error comprises more than 25 per cent, which can significantly
influence the identification of arelevant forecasting model and the accuracy of produced forecasts.

The number of initialization cycles is usualy chosen mandatory, and depends on the complexity of
atask aswell as on time resources a researcher has on his/ her disposal.

Selection of the intermediate forecasting models, taking into account the residual
autocorrelation and estimates of information criteria

According to the developed agorithm, the selection of the intermediate forecasting model /
models among the trained networks, with a certain number of hidden neurons my, iscarried out taking
into account the level of residual autocorrelation and the value of an information criterion.

Some standard parameters, such as the correlation coefficient (R), mean squared error (MSE),
mean absolute error (MAE), are traditionally used to evaluate a general forecasting ability of a
statistical model. However, these parameters provide little information about the accuracy of a fitted
model, and are also useless in identifying the statically significant differences between the forecasts
produced by various methods [4, 6, 26].

The most accurate indicator of the adequacy of a forecasting model can be the absence of
autocorrelation in residuals. The residuals of a fitted model are defined as n differences given
bye, =x - X,t=12K,n, where x, isthe observed value and X, is a corresponding predicted value
produced by means of afitted statistical model [32, p. 94]. These differences cannot be explained by a
forecasting model. Therefore, we can consider residuals e, to be observed errors.

The acceptance of the hypothesis of no autocorrelation in residuals at a pre-defined significance
level means that the residuals are similar to white noise and further analysis will not discover any
statistically significant dependencies. In classic regression analysis, the Durbin-Watson criterion [50,
p.245] istraditionally used for testing the autocorrelation of residuals. However, thistest is not suitable
if the regressor is a lagged explanatory variable [51, p.256]. For the same reason, the Box-Pierce and
Ljung-Box [30] criteria cannot be applied to neural networks, although the last one is widely used and,
despite its theoretical inconsistence, is still included in most statistical and econometric software
packages.

At present, the most relevant estimate of the residual autocorrelation of neural networks (as
well as ARIMA models) is a powerful Lagrange Multiplier (LM) type test [34], which is also known as
Breusch—Godfrey test. The LM-type test belongs to classic asymptotic tests and is capable to identify
the autocorrelation of any order.

In turn, the use of information criteria is based on one of the main idea of time series
forecagting — “ chose a parsimonious model” (known as the Ockham's razor principle). It means that,
all other things being equal, one should prefer the model with the fewest free parameters.
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The mean squared residuals usually decrease once the model becomes more “complicated”
with addition of new free parameters. Increasing the number of free parameters of a neural network
(which is associated with the addition of new neurons / layers of neurons), one can fit a mode to
historical data with infinite accuracy. The universal approximation theorem [5; 15] explains this
property of neural networks. However, such a neural network may have a poor ability to make
generalizations due to over-training [13, p.206]. Besides, once a certain limit is reached, the gain in
accuracy of fitting with addition of new parameters tends to be insignificant. On the other hand, time
required for selecting the optimal values of free parameters can lead to a sharp decrease in the
performance of a network. Therefore, it is very important to look for the balance between the
preciseness of approximation and the complexity of a statistical model.

Information criteria have been found to be quite useful in solving this problem. The estimate of
the criterion consists from the penalty for poor fitting and the penalty for over-parameterization. The
most popular criteria of this type, applied in the practical part of the thesis, are the Akaike's
information criterion (AIC) and the Bayesian information criterion (BIC) given by [11, p.38; 38,
p.373]:

AIC() =N, InS2 +2l (12)

BIC(I) =Ny InsZ+2 +1In(Ny) (13)
where
Ny — number of effective observations, to which the model isfitted;

| —number of adjusted parameters;
W,
a e
S 2 — estimate of the residual variance, s 2 = TI

ef

Information criteria are evaluated separately for each analyzed specification (architecture) of
neura networks. The models that possess the lowest value of the criterion should be selected for
further analysis. It has been aso noticed that, in practice, the BIC “selects’ very parsimonious models
with only few parameters. Therefore, this criterion is often used for non-linear models, where
insignificant gain in fitting quality is directly related to the necessity of calculating a large number of
additional parameters.

In the practical part of the thesis the criteria given by Egs. (12) and (13) were applied.
However, some other modifications of information criteria have been proposed as well. The Schwarz' s
Bayesian criterion (SBC) [38, p.376] and the Hannan-Quinn criterion [32, p. 86] are anong them.

Selection of the final forecasting model, taking into account the accuracy of ex ante
forecasts

If the models, meeting the above specified conditions, are found, it is required to test their
generalization ability (i.e., the ability to produce reliable forecasts) for an independent test set, which is
not involved in training. The forecast developed for an independent test set we will call an ex ante
forecast or a pseudo-forecast. The necessity of ex ante forecasting hinges upon the fact that even if a
neura network provides a high accuracy of approximation and uncorrelated residuals, it would be still
over-trained on historical data.

The approach of splitting a time series into two independent subsets has gained wide
acceptance in the practical studies dedicated to time series forecasting (see, e.g., [31; 43]) but it is till
rarely used in the case of neural networks. The first, largest data subset, caled the basc or
retrospective sample, is used to select and verify a statistical model. The second, ex ante forecasting
sample is used to examine the quality of ex ante forecasts, comparing them against historical data. It
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provides the opportunity to evaluate independently the forecasting ability of the model fitted to the
basic sample.

The last historical values of an analyzed time series are traditionally used for developing the ex
ante forecasting sample. However, it is necessary to keep in mind, that these observations influence the
direction of the actual real-life forecast much more than the earlier ones. Therefore, the last historical
data are the most valuable for the process of selecting an appropriate forecasting model, and using
them as a testing sample is not always reasonable.

Basic sample Ex ante forecast Basic sample Real-life forecast

v

Fig. 7 Chronologica division of atime seriesinto the basic and ex ante forecasting samples

According the proposed algorithm, it is recommended to divide atime series into the basic and
ex ante samples in the way shown in Fig. 7. This original approach alows increasing the quality of
real, ex post forecasts as the last historical observations are used for fitting a statistical model rather
than testing.

The accuracy of ex ante forecasts is evaluated by one of the standard error parameters. In the
practical studies of the thesis, the mean absolute percentage error (MAPE) was applied. It is calculated
from[1, p. 347]:

X - X
X,
L

L
o

(14)

t=1

MAPE = ‘ x100%

where L —the size of an ex ante forecasting sample (i.e., forecasting horizon).

The MAPE is arelative, dimensionless measure of the accuracy of an approximation curve or a
forecad. It is helpful in comparing forecast performance across different data sets, or comparing the
performance of different statistical methods.

The model of the lowest MAPE is the final model assigned to further ex post forecasting. The
interpretation of MAPE introduced in [29] alows judging about the accuracy of aforecast: lessthan 10
per cent is a highly accurate forecast, 11 to 20 per cent is a good forecast, 21 to 50 per cent is a
reasonable forecast, and 51 per cent or more is an inaccurate forecast.

Thus, the choice of a final forecasting model is based on the results of multiple sequential
procedures and tests. The final mode is characterized by the lowest value of the information criterion,
uncorrelated residuals and the lowest error of an ex ante forecast.

CHAPTER 4 PRACTICAL STUDIES

Chapter 4 contains the description of practical research studies and the analysis of produced results.

The effectiveness of the developed a gorithm and the ability of different methods to accomplish a
traffic forecasting task were examined on real data sets represented as time series of different lengths
and aggregation rates. Two data samples, characterizing the intensity of total carried traffic of a
conventional telephone network and the transmission rate of outgoing international traffic, were
considered in the thesis. Following ITU-T Recommendation E.492 [17], the initial traffic
measurements were averaged over the periods equa to 15 minutes and one hour.
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Table 1 Genera description of examined time series

N?%Oerk Traffic Type Rzi(rji-oodm Label Basic sample Size of a basic sample fgirzeec;sft%esz?nnptﬁe
. 15 min A May 12 - Jul. 13, 2008 9 weeks (6048 obs.)
I mgrlrg%%'ggal B May 12 - Aug. 3, 2008 12 weeks (8064 obs.) 1-14
raffic o c May 12 - Jul. 13, 2008 9 weeks (1512 obs)) days
D May 12 - Aug. 3, 2008 12 weeks (2016 obs.)
E Jan. 8 — Mar. 11, 2007 9 weeks (6048 obs.)
15 min F Jan. 8 — Apr. 1, 2007 12 weeks (8064 obs.)
Tﬁ':tsvme Totalcarried G Jan. 8 - May 13, 2007 18 weeks (12096 obs.) 1-14
(POTS) traffic H Jan. 8 - Mar. 11, 2007 9 weeks (1512 obs.) days
1h | Jan. 8 — Apr. 1, 2007 12 weeks (2016 obs.)
J Jan. 8 — May 13, 2007 18 weeks (3024 obs.)

A secondary goal of the practical studies was to examine how both the size of a basic data
sample and the rate of aggregation influenced the accuracy of ex ante forecasts. The size of a basic
sample was equal to 9 and 12 weeks for the first analyzed variable, and to 9, 12 and 18 weeks — for the
second variable. Thus, the total number of time series considered was equal to ten.

The size of an ex ante forecasting sample, which determined a total forecasting horizon, varied
for each time series from one to 14 days, with the sampling step of one day.

The general description of the considered time series is given in Table 1. The fragments® of the
time series are displayed in Fig. 8.

Prior to determining an appropriate forecasting model and developing ex ante forecasts, the
main statistical parameters and properties of each time series were estimated. The corresponding
procedures included:

- assessment of the main sample parameters (mean, variance, median, etc.);

- testing for stationarity by means of the runstest and reverse arrangement test [24; 49, p.767];
- evaluation of the autocorrelation function;

- evaluation of the Hurst coefficient;

- testing for periodicity.

In the case of time series (E)-(J), characterizing telephone network traffic, the reverse
arrangement test accepted the null hypothesis of the stationarity of both the mean and the variance at
significance level a = 0.05. For time series (A)-(D), characterizing Internet network traffic, the
reverse arrangement test revealed the instability of the variance at significance level a = 0.05.
Nevertheless, the deviation of the number of reversals from the critical limits was dight. Already at
significance level a = 0.02, the hypothesis about the variance stationarity was accepted in most cases
considered. Therefore, it was decided not to apply further measures to stabilize the variance.

The analysis of the autocorrel ation function indicated the presence of periodic components. The
influence of strong autocorrelation dependencies was observed not only between the adjacent members
but also between the quite remote ones. It points at the “long history” of an underlying process, which
provides the opportunity to produce reliable forecasts into a rather distant future. The persistency of
the anal yzed time series was confirmed by the Hurst coefficient as well, which exceeded 0.5 for al the
time series andyzed. However, this estimate is often criticized and purely optional due to its
inaccuracy. Besides, it is worth noting that the value of the Hurst coefficient cannot be directly
incorporated into a forecasting model.

* Each fragment displays the observations over the first two weeks of a considered data sample



24

The spectral analysis of the IP network traffic pointed at the periodical components of the
periods equa to 24 hours and 7 days. In the case of telephone traffic, the largest periods of the
seasonal component comprised 12 hours, 24 hoursand 7 days.
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Fig. 8 Fragments of examined time series

Description of Forecasting Technique

The main god of the practical studies was to examine the statistical properties of certain data
sets and to develop such a neura network, which was capable of modelling the underlying processes
and producing the reliable low-error forecasts for apre-defined forecasting horizon.

The selection of appropriate neural network models and the development of ex ante forecasts
were fulfilled according to the algorithm shown in Fig. 5. The diagram of the neura network, applied
in the empirical studies, is shown in Fig. 9 . The main parameters of the neural network, which stayed
unchanged for all the models during a training process, are summarized in Table 2.

The appropriate architecture of a neural network was determined as follows. According to the
universal approximation theorem [5, 15] the number of hidden layers in all the examined neural
networks was equal to one. The size of an input window was set according to the largest period of the
cyclic component identified by means of a Fourier analysis. The number of output neurons was equal
to one and implied one-step-ahead forecasting. The number of hidden neurons varied from one to ten.
The adaptive methods of network pruning [2, p.359] or growing [2, p. 357; 13, p. 250] were not
implemented. The procedures of verification and residual testing were applied to each of these models.
Although the process of verifying all the possible architectures is time-consuming, it provides an
opportunity to preserve the purity of experiments.
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Fig. 9 Diagram of the neura network (multilayer perceptron) applied in the empirical studies

The initial weights were randomly drawn from the diapason of uniformly distributed small

values. All the network architectures were reinitialized and retrained a hundred times.

Table 2 General specification of the developed neural network

Stage Parameter / Procedure Parameter Value / Procedure Description
Type of a network Fully connected time-lagged feed forward network
Selection of network | Number of hidden layers 1
type and topology Number of output neurons 1

Activation function

Hidden layer — hyperbolic tangent; output layer — linear function

Selection of training
parameters

Number of training epochs

600

Training algorithm

Back propagation & conjugate gradient descent

Error function

Mean squared error

Learning rate

0.1

Momentum term

0.3

Method of weight initialization

Randomized values from a uniform distribution

Number of times to randomize weights

100

Training optimization

Methods to prevent over-learning

Cross-validation [13, p.218] , weight regularization [47]

Size of training, validation and test subsets

Ataratio of 3:1:1

Stopping criterion

Invariable or increasing training error during 50 epochs

In-sample and
out-of-sample
evaluation

Parameters of in-sample evaluation

R, MAE, RMSE, MAPE, AIC, BIC

Diagnostic testing of residuals

LM- type test, c2- test

Parameters of out-of-sample evaluation

RMSE, MAE, MAPE, Diebold-Mariano criterion [6]

In order to avoid the effect of over-training, the cross-validation technique [13, p.218] was
implemented. The basic sample was divided into training, validation and test subsets at aratio 3:1:1. A
splitting scheme was random and changed for each training cycle. This approach does not alow
“getting stuck” in local minima and increases the stability of a system, since the process of searching a
global minimum is carried out in different directions and do not rely on a particular set of time series
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observations. Another measure to avoid over-training was weight regularization [47] applied without
subsequent deletion of synaptic connections and neurons. )

A training process was realized by means of the software package StatSoft STATISTICA® 7.0.
A two-stage training process was implemented. During the first stage a multilayer perceptron was
trained by the back propagation during one hundred epochs, with learning rate 0.1 and momentum 0.3.
It usualy gives the opportunity to locate the approximate position of a reasonable minimum. During
the second stage, a long period of conjugate gradient descent (500 epochs) was used, with a stopping
window of 50, to terminate training once convergence stopped or over-learning occurred. Once the
algorithm stopped, the best network from the training run was restored.

The input data of a neural network were corrected for obvious anomalous outliers, the reason of
which was temporal malfunction of network equipment, and for anomalous patterns, which took place
as a result of public holidays falling on the days of a workweek. The input data sets were also
transformed to the range [- 1, 1] by means of the linear transformation.

The final forecasts produced by neural networks were compared to those produced by the
models of seasonal ARIMA, seasonal exponential smoothing as well as “naive’ methods. In order to
evaluate statistically significant differences between the forecasts developed for various forecasting
horizons, the Diebold-Mariano [6] criterion was implemented. It is non-parametric and tolerant to
different deviations from the classic assumptions about the properties of forecast errors. In particular, it
can be applied even if forecast errors are non-Gaussian, serially correlated, contemporaneousy
correlated and have a non-zero mean.

Estimation of Practical Results

The results of fitting and verifying the satistical models and neural networks, the estimates of
their in-sample and ex ante accuracy are summarized in Volume 2 of the thesis. The following main
operations were conducted for each time series:

- appropriate models of multilayer perceptrons, SARIMA models and exponential smoothing
wereidentified and varified;

- ex anteforecasts were produced by means of different models and evaluated for the accuracy;,

- datigtically significant differences between the final ex ante forecasts developed for various
forecasting horizons were identified by means of the Diebold-Mariano test.

The accuracy of final forecasts was evaluated by means of such standard parameters as MAE
(mean absolute error), RM SE (root mean squared error) and MAPE (mean absolute percentage error),
the latter of which raises the greatest interest (see Fig. 10).

Accuracy of neural network forecasts evaluated by the mean absolute percentage error

For time series (A)-(D) describing IP network traffic, the MAPE estimates do not practically
change or slowly grow with the increase of a forecasting horizon from 24 hours to 14 days. It points at
the opportunity to increase a lead time, for which reliable forecasts can be produced.

For time series (E)-(G) characterizing telephone network traffic, the MAPE estimates grow fast
with a forecasting horizon, and already for the forecasts obtained two weeks ahead, exceed 30 per cent.
It means that a maximum forecasting horizon is achieved. In turn, for time series (H)-(J) aggregated
over one-hour intervals, the MAPE estimates do not practicaly change or dightly increase with a
forecagting horizon. It would allow to extend a forecasting horizon further.

For time series (A) and (B), the MAPE egtimates of neura networks and statistical models
comprise 20-25 per cent. Thisreveals a satisfactory accuracy of the produced forecasts. For time series
(C) and (D) the MAPE of satistical models and neura networks is around 10-15 per cent, which
demonstrates a good accuracy of produced forecasts.
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Fig. 10 Estimates of the accuracy of the final ex ante forecasts produced by neural networks
(&) against the length of a forecasting horizon; (b) at consecutive one-day sampling intervals®

For time series (E)-(G) the MAPE estimates of neura networks comprise 21-32 per cent, which
is the evidence of a satisfactory accuracy of the produced forecasts. For time series (H)-(J), the MAPE
of neural networksis around 14-21 per cent. It points at a good accuracy of the forecasts.

Statistically significant differences between the forecasts produced by different methods

The final forecasts produced by various methods (neura networks, SARIMA and seasonal
exponential smoothing) look very similar. Besides, it is not easy to select a forecasting model, taking
into account only the standard accuracy parameters. Therefore, the identification of Statistically
significant differences in accuracy of the forecasts, developed by different methods, raises a special
interest.

For these purposes, the Diebold-Mariano test was applied to the forecasts produced 24 hours, 7
days and 14 days ahead. The first group of forecasts can be considered as operative forecasts, while the
second and the third ones — as short-term forecasts. The results of testing a null hypothesis of the
absence of datistically significant differences between the forecasts, a significance level a = 0.05, are
summarized in Table 3.

For time series (A)-(D) characterizing IP network traffic, the forecasts produced by one or
another linear method (SARIMA or exponential smoothing) do not lose in accuracy to the forecasts of
neural networks, in all 12 analyzed cases. In two out of 12 cases, the forecasts produced by neural
networks are statistically equivalent to the seasonal naive forecasts as well.

For time series (E)-(J) characterizing telephone network traffic, the forecasts produced by
neura networks are statistically equivalent to the forecasts produced by one or another linear method
in 14 out of 18 analyzed cases. In the other four cases, a neura network outperforms in forecasting

® The MAPE estimates are calculated for the data moved aong the y-axis by the distance of 0.5 Erl. It is required as the
tel ephone traffic contains zero vaues. Even if this procedure distorts the actual values of absolute percentage errors of the
observations which are not zero, it gives the opportunity to evaluate the dynamic changes of MAPE over different
forecasting horizons.
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accuracy both SARIMA and seasonal exponential smoothing. In 4 out of 18 anayzed cases,
statistically significant differences were not identified between the forecasts produced by neural
networks and seasonal naive methods.

Table 3 Fina neural network forecasts in comparison with the forecasts produced by other methods®

Time series/ A B C D
Forecasting method Forecastinghorizon | oy | 7 | 44 | 224 | 7 | 14 | 2 | 7 | 14| 2| 7 | 1
orecasting metho h | d d h | d | d | n d d h d d
SARIMA - = = - = = - = - = = =
Seasonal exponential smoothing = - - = - - = - - - - -
“Naive” forecast - - - - - - - - - - - -
Seasonal “naive” forecast - - - - - - = - = - - -
Time series/ E F G H : J
Forecasting
horizon | 24 7 14 | 24 7 14 | 24 7 14| 24 7 14 | 24 7 14 | 24 7 14
Forecasting method h d d h d d h d d h d d h d d. h d d
SARIMA = = = = - - = - - = = = = = = = = =
Seasonal exponential smoothing = = = = I = I = = = = = = = = =
“Naive” forecast B - - - - - - - - - - - - - - - - -
Seasonal “naive” forecast = N N - - - - - - = - - = - - = - -

Notes:

= theforecast, produced by the specified method, is statistically equivalent to the neural network forecast;
- the forecast, produced by the specified method, outperformsin accuracy the neural network forecad;

~ theforecast, produced by the specified method, losesin accuracy to the neural network forecast.

Impact of the length of a read-out period on forecasting accuracy

For al the analyzed time series, the increase of a read-out period alowed increasing the
accuracy of the produced ex ante forecasts. On average, the increase of a read-out period from 15
minutes to one hour decreased the MAPE values of a neural network for 10 per cent. Thisis primarily
due to the reduction of time series variance, which simplified the selection of an appropriate statistical
model as well.

Impact of the size of a basic sample on forecasting accuracy

For time series describing the traffic of both an IP network and a conventional telephone
network, the increase of the size of a basic fit sample (i.e., the increase of the number of training
patterns) did not lead to a substantial increase in accuracy of neura network forecadts.

In the case of IP network traffic, the MAPE estimate is slightly lower for time series (D) than
for time series (C), although these differences are insignificant. For telephone network traffic, the
MAPE estimates are a bit lower for time series (G) than for time series (E) and (F) but these
differences are a'so insignificant.

In the case of telephone traffic aggregated over one-hour intervals, the increase of a basic
sample from 12 to 18 weeks, in contrast, resulted in a slight increase in the level of forecasting errors.

® The identification of statistically significant differences in forecasting accuracy was conducted by the Diebold-Mariano
test at significance level a=0.05.
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MAIN CONCLUSIONSAND RECOMMENDATIONS

The main aim of the research — to address and solve the problems, raised by the production of
short-term traffic forecasts by means of neura networks, has been achieved. Taking into account the
results of practical and theoretical studies conducted in the thesis, the following main conclusons and
recommendations, regarding the application of forecasting models in network traffic forecasting, have
been specified.

The proposed algorithm, aimed at short-term traffic forecasting by means of neural
networks, allow automating the identification of a neural network solution with minimal
involvement and influence of expert assessment and human factors.

Neural networks traditionally involve expert assessment at all the stages of application. The
algorithm, developed in the thesis, alows minimizing the influence of a human factor and helps
finding the solutions resulting in reliable forecasts with a minimum level of errors. The MAPE
estimates of examined ex ante forecasts vary from 10 per cent (in the case of averaging over one-hour
intervals) to 30 per cent (in the case of averaging over 15-minute intervals). This confirms the
possibility of applying these modelsin real-life conditions. The criteria for selecting a final forecasting
model proposed in the thesis — the lowest estimate of the information criterion and statistically
insignificant residual autocorrelation can be successfully applied to linear statistical methods as well.

The properties of self-amilarity and long-range dependence of packet-switched network
traffic are only observable in the case of aggregation in a very large scale — usually, over the
intervals from a few milliseconds to a few minutes.

From the point of view of analysis and forecasting, an excessively large scale of time seriesis
not useful. The process of fitting a forecasting model to an examined time series will be complicated
due to correlations between remote observations as well as strong influence of extraneous noises and
anomalous outliers, which inevitably accompany the large-scale measurements. It is also necessary to
understand that the longer the period of sampling / aggregation, the longer is the horizon, for which
reliable forecasts can be produced. Therefore, taking into account ITU-T Recommendation E.492 [17],
it is advised to average the initial measurements of network traffic over 15-minute and / or one-hour
intervals. In this case, the factors determining the statistical structure of areal traffic process refer to
seasonal effects and monotonous trends, which are primarily associated with the behaviour of
subscribers/ users and the influence of technologica progress.

Reliable operative and short-term forecasts of traffic dynamics can be produced by means of
linear statistical models, if the aggregation / sampling period of time series is set in
compliance with I TU-T Recommendation E.492.

The real time series analyzed in the thesis are typical for these types of loads and incorporate
both daily and weekly cycles. It means that for many other time series with similar read-out periods,
statistical properties and autocorrelation structure, the production of reliable operative and short-term
forecasts can be conducted by applying linear statisticd models and methods. The process of
forecasting by means of neural networks requires substantial time resources for training, apart from an
intensive test-and-trial estimation of many parameters. The time required for series modelling and
forecagting by means of neura networks exceeds the time required for producing a forecast by means
of linear methods by several orders of magnitude. Therefore, this conclusion is important for
successful forecasting in real operating conditions.
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A neural network is capable of modelling and predicting seasonal time seriesin a direct way,
without prior deseasonalization.

In developing a seasonal neura network, the most important aspect to consider is the
appropriate size of an input window, which has to be set according to the largest period of a seasonal
component.

In order to produce reliable forecasts of network traffic represented as periodic time series, it
is necessary to focus on the seasonal modifications of such linear models as ARIMA and
exponential smoothing.

In contrast to the series, synthesized by such formal models as fractal Brownian motion, real
time series often incorporate seasonal and / or cyclic components and require the application of
seasonal modifications of classic linear models. Just as in the case of neural networks, correct
identification of the periods of a seasonal component is of great importance.

Potential Directionsfor Further Research

The method of neural networks is, certainly, one of the most perspective tools in traffic
forecagting. Further study directions has to be aimed at developing the a gorithms and methods of real-
time forecasting that currently raise some difficulties due to insufficient capacity of computing
equipment and intensive involvement of human expertise.

Another interesting research direction is to develop fast and reliable methods of constructing
the confidence intervals for the forecasts produced by neural networks. This problem has not been
solved yet due to the necessity of estimating a very large number of free parameters, each of which
contributes a share of uncertainty.
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