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Abstract – Nowadays, there are many frameworks for 

developing domain-specific tools. However, if we want to create a 

really sophisticated tool with specific functionality requirements, 

it is not always an easy task to do. Although tool-building 

platforms offer some means for extending the tool functionality 

and accessing it from external applications, it usually requires a 

deep understanding of various technical implementation details. 

In this paper we try to go one step closer to a really open 

graphical tool-building framework that would allow both to 

change the behavior of the tool and to access the tool from the 

outside easily. We start by defining a specialization of 

metamodels which is a great and powerful facility itself. Then we 

go on and show how this can be applied in the field of graphical 

domain-specific tool building. The approach is demonstrated on 

an example of a subset of UML activity diagrams. The benefits of 

the approach are also clearly indicated. These include a natural 

and intuitive definition of tools, a strict logic/presentation 

separation and the openness for extensions as well as for external 

applications. 
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I.   INTRODUCTION 

Nowadays we have a very wide range of different tools to 

choose from when searching for a tool for our specific needs. 

For example, if we need to create UML activity diagrams, we 

can use various UML tools like Enterprise Architect [1], IBM 

Rational Rose [2] or others. However, if we want to alter the 

editor a little bit (e.g., by adding some new elements or 

attributes), it is usually not easy to do. It can be done easily by 

members of the tool developers‟ team, but it can require a 

great knowledge of various specific details about the tool from 

the real tool user. In some cases we can get through by using 

stereotypes, but they can help only to a certain extent. It 

becomes even more difficult if we want to extend the tool 

functionality with some more specific features or to connect 

the tool to some external application. It usually requires a very 

deep understanding of the tool‟s architecture. If we turn to the 

world of domain-specific tools, the situation is a little better. 

Most of these tools usually offer quite a wide range of 

possibilities to alter the behavior of the tool. However, adding 

very specific features, which are not provided universally, 

again requires a deep understanding of various technical 

details. 

The main goal of this paper is therefore to propose a 

conceptually different approach for developing graphical 

domain-specific tools. Instead of maintaining two distinct 

metamodels (domain and presentation) and synchronizing 

their instances using model transformations, we make one 

metamodel as a submetamodel of the other, thus liberating 

ourselves from all the synchronization issues. The approach 

will be demonstrated on several small examples based on 

UML activity diagrams [3]. The task would be to create an 

editor for those diagrams. 

We want to look at the tool openness problem from two 

different points of view. The first kind of openness is the 

ability to alter the behavior of the tool. The tool builder must 

have a convenient and natural way of extending the tool 

functionality with a specific functionality. The other kind of 

openness is the ability to use the data from outer applications. 

There must be a way how we can access the tool repository 

from the outside and work with the data (change and process 

them, but, of course, only to some extent). 

The rest of the paper is organized as follows. Some related 

work in the field is inspected in Section 2. In Section 3 we 

start with explaining our ideas about the specialization of 

metamodels which is a powerful facility itself. We base 

ourselves on the features of UML, and then we extend those 

by adding some useful possibilities found in OWL 2 [4]. Then 

we go on and show how this can be applied in a graphical 

domain-specific tool building. The benefits of the approach 

are clearly pointed out in Section 4. 

II.   THE WORLD OF TOOL BUILDING 

As said in the introduction, there are many domain-specific 

graphical tool-building platforms nowadays, like 

Punamu/Marama [5, 6], ViatraDSM [7] and Tiger [8]. Of 

course, we must mention MetaEdit+ by MetaCase company 

[9] and Microsoft DSL Tools [10] which are both very widely 

used industrial products. There are also solutions based on 

Eclipse [11] modeling framework, such as Eclipse GMF [12] 

and METAclipse [13]. Let us see how the job is being done in 

some of those platforms! 

MetaEdit+ is known for its ability to be able to create a new 

graphical domain-specific tool in a very short time – in an 

hour or even half an hour. The tool will, of course, have only 

some basic functionality, but this functionality will be fully 

operating, which is a very useful facility of the platform. The 

tool creator can then spend more time and efforts polishing the 

tool and adding other non-standard features. The technical 

details of MetaCase solution are hidden, so their metamodels 

are not fully accessible from external applications. This is, of 

course, a very natural situation since this is an industrial tool, 

not fully academic. One flaw that, however, emerges from this 

concealment is that the tool creator must confine him/herself 

to the graphical presentations built in the platform. It is not 

possible for one to create his/her own presentation format 
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(e.g., some new kind of project tree depiction) from the 

domain data located in the repository. 

In Microsoft DSL Tools, a tool creator is allowed to 

develop metamodels of the tool directly, which is a good 

feature. Also, the domain is clearly separated from the 

presentation, so the developer is very confident of what he/she 

is doing. A mapping between both metamodels (domain and 

presentation) can then be made by creating mapping lines in a 

visual editor. That, however, raises some issues. First of all, 

data redundancy is thus introduced which is never a good 

thing – partly the same information is stored in both 

metamodels. That makes it more difficult, for example, to 

navigate through instances if compared to the situation where 

classes of one metamodel would be subclasses of the other 

instead of being completely different ones. Besides, the 

mapping implementation forces both metamodels to be quite 

similar one to another in order to map them. 

In Eclipse GMF, three models have to be specified first. 

They are a domain model, a diagram definition model and a 

diagram mapping model. The latter model establishes 

mappings between the first two. Then, from these three 

models (which together may be viewed as a platform-

independent model, PIM, according to MDA principles [14]) 

are transformed to the Generator Model (which may be 

considered a platform-specific model, PSM). The generation 

parameters in the Generator Model may be adjusted, and then 

Java code is generated. The generated Java code can be 

manually edited to enhance the functionality of the generated 

DSL tool. This process requires a good knowledge of GMF. A 

toolsmith has to know how and when to use graphical wizards 

as well as when to generate certain artifacts. Since GMF 

focuses on GEF [15], it is not an easy task to add new 

graphical presentations for the developed tools. 

Something very similar to the approach explained in further 

sections comes from the world of object-oriented 

programming. The notion of subclasses is also explored here 

as well as the possibility to redefine methods of a superclass in 

its subclasses. However, a big flaw concerning the tool 

building area is the inability to change the body of methods 

dynamically (although it can be simulated through function-

typed attributes). Every method is attached to some class 

instead of being attached to some particular objects of that 

class. In tool building this feature turns out to be very critical 

in many situations where we want some objects of some class 

to behave differently in certain situations than other objects of 

the same class. 

We must also mention here our own previous experience 

within the field of graphical domain-specific tool building. 

Two of our previous solutions (GrTP [16] and METAclipse 

[13]) were based on a special type diagram (in some sense – a 

tool definition metamodel) whose instances would be different 

graphical tools (a universal transformation interpreted those 

instances at run-time) [17]. Here all the necessary information 

about the tool was to be included in this metamodel which 

could then be linked to every presentation metamodel (and 

also domain metamodel) when needed. 

This was a very elegant solution as far as we were 

developing quite simple tools whose behavior fit in well with 

universal behavioral patterns of the system. If some extra 

functionality was to be added, it could also be done by 

extending the universal tool-definition (metamodel-

interpreting) transformation with manually written 

transformations. However, this extension was inconvenient in 

some situations since transformations were attached to classes 

of the tool definition metamodel instead of being attached to 

those classes having real run-time instances (so called “this 

pointers” for those transformations). This has been considered 

when developing the next-generation tool-building platform 

described in this paper. 

III.   THE NEW IDEA – METAMODEL SPECIALIZATION 

In this section the ideas on the new method of building 

graphical domain-specific tools are explained. We start by 

discussing metamodel specialization and introducing the 

notion of a submetamodel. The UML generalization property 

is then supplemented by some extra facilities in order to 

achieve a very powerful metamodel specialization mechanism. 

This mechanism could perhaps be used in different areas of 

modeling and metamodeling. However, in this paper (in 

Section 3.3) we show how this mechanism can be applied in 

the field of graphical tool building. Instead of transforming 

instances of several metamodels, we use metamodel 

specialization, thus making the same instances belong to 

several metamodels simultaneously. 

The approach will be demonstrated on an example of UML 

activity diagrams. Only a small subset of the real activity 

diagrams will be used (see Figure 1) on which all the different 

facilities can be shown. 

A   Basic Ideas 

To understand the main idea correctly, let us first try to 

change the way we think about the UML generalization 

property. Traditionally, we perceive it as an assertion about a 

set of instances of some class being a subset of instances of 

some other class. However, we can also look at the 

generalization by changing it from an assertion into a 

command in a form “Make something as a special case of 

something else!”. Thus now we can have two arbitrary classes, 

and we wish to make one of them a subclass of the other. So, 

at the moment of creating the generalization between those 

two classes, a command is executed throwing instances of the 

subclass into a superclass. This throw-in is made only virtually 

though (no data are being duplicated) – if traversing instances 

of the superclass, also instances of the subclass are visible. 

Project

name: String

AD_seed

name: String

description: String

ActivityDiagram

name: String

Start
Flow

Performer

name: String

count: Integer

Action

name: String

isExternal: Boolean

aD_seed*

activityDiagram

1

1
*

act*

sStart

0..1

aStart

0..1

end

1

detalization

0..1

0..1

Fig. 1. The subset of UML activity diagrams used in further examples 
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Such kind of generalization is actually considered to be a 

mapping between two given metamodels. This kind of 

generalization can also be simulated using abstract classes. As 

for classes, the same applies to the generalization of other 

UML primitives – associations and attributes (this time the 

generalization is established between the sets of pairs of 

objects). Here and further we will use a word association 

when referring to what is actually an object property and a 

word attribute when referring to the data type property. Pairs 

of subassociation or subattribute are virtually thrown into the 

set of pairs of superassociation or superattribute. For both 

these properties this kind of generalization can be simulated 

using the concept of a derived union. Multiple inheritance is 

also allowed here. 

Having such a notion of generalization in mind, we can now 

define a new activity – specialization of the metamodel. The 

metamodel specialization is a process in which we define a 

relation between two given metamodels by exploiting the new 

kind of generalization relation between elements of one 

metamodel (called the submetamodel) and the other (called 

the supermetamodel). This process is described in detail in the 

next subsection. 

B   Supplementing the UML Generalization 

To make the metamodel specialization more powerful, we 

extend the metamodeling language by several new facilities 

that are not found in UML. We are actually looking towards 

OWL 2 and trying to borrow the most useful features from it. 

This subsection inspects all these add-ons, and therefore it can 

be considered the essence of this paper. 

Specification of values for attributes of inherited class 

Since creation of generalization is now considered to be a 

command, we can extend it with a “such that” part – “Make 

this class a subclass of that class such that the values for those 

attributes are as follows: …”. 

An example can be seen in Figure 2a. There is a class 

“Box” in the graph definition metamodel with such attributes 

as “shape”, “bkgColor”, “lineStyle” and, perhaps, others as 

well. Then we define its subclass “Action” (which comes from 

the UML Activity diagrams shown in Figure 1) saying that all 

instances of this class will be green (bkgColor VALUE 

clGreen) and will have a rectangular shape (shape VALUE 

shRectangle). In Figure 2b the same is depicted using a more 

compact syntax (similar to that of OWLGrEd, the OWL 

graphic notation editor [18]). 

Association concatenation 

The second facility by which we extend the UML 

generalization is a concatenation of associations. This feature 

is also present in OWL 2. Having some association A in the 

supermetamodel, we can have several corresponding 

associations in the submetamodel, the sequence of which is 

then considered to make a virtual subassociation of association 

A. A good example of this feature is a definition of a project 

tree (see Figure 3). The activity diagram metamodel here is 

supplemented with two new virtual associations (depicted in 

points) whose physical representation is in each case a 

sequence of two real associations. Here, we use the OWL 2 

Manchester syntax again to represent the concatenation as a 

small circle. For example, the virtual association between 

classes “Project” and “ActivityDiagram” is actually a 

concatenation of associations “aD_seed” and 

“activityDiagram” starting in the class “Project” (aD_seed o 

activityDiagram). This concatenation is then considered to be 

a subassociation of the association “root” starting in the class 

“Tree” which is a superclass of the class “Project” (therefore 

the syntax “{<root}”; from here on we will use the symbol 

“<” to denote the UML relations subclassOf (for classes) and 

subsets (for attributes and associations)). In such a way, we 

can skip technical objects in the navigation chains (e.g., the 

objects of the class “AD_seed” in the example of Figure 3). In 

OWLGrEd version the syntax would be a little different – an 

expression “{>aD_seed o activityDiagram}” would be 

attached to the superassociation “root” from the class “Tree”. 

In Figure 3 we can also see the attribute inheritance. 

Attribute “name” of the class “Project” is declared to be a 

subattribute of the attribute “tname” of the class “Tree”. Also, 

the attribute “name” of the class “ActivityDiagram” is a 

subattribute. There is, of course, no request for the names of 

sub- and superattributes being different (e.g., “name” and 

“tname”). It is used here for a better understanding only. 

Also, a predefined value for the attribute “picture” of the 

subclass “ActivityDiagram” is used in the example in Figure 

3. 

Synthesis and analysis of a superattribute 

As we mentioned in the previous subsection, we use the 

OWLGrEd version of OWL 2 syntax to describe the fact that 

some attribute is a subattribute of some other attribute. That 

means those two attributes have some kind of connection that 

has to be taken into account when getting or setting the value 

of one of them. In the simplest case the subattribute can 

a) b)

Tree

tname: String

Node

nname: String

picture: TPicture

Project

{<Tree}

name: String {<tname}

AD_seed
ActivityDiagram

{<Node}

name: String {<nname}

picture VALUE pic1

Action

root *

parent

0..1

child *
aD_seed o activityDiagram

* {<root} 

act o detalization

*

{<child} 

a) b)

GraphDiagram

name: String

bkgColor: TColor

Box

shape: TShape

bkgColor: TColor

lineStyle: TLineStyle

Line

dashLength: Integer

BoxCompartment

text: String

prefix: String

suffix: String

font: TFontStyle

alignment: TAlignment

Action

name: String

isExternal: Boolean

shape VALUE shRectangle

bkgColor VALUE clGreen

LineCompartment

text: String

prefix: String

suffix: String

font: TFontStyle

position: TLineCompPos

Action

{<Box}

name: String

isExternal: Boolean

shape VALUE shRectangle

bkgColor VALUE clGreen

box * line *

*

{ordered} 

*

{ordered} 

Fig. 2. Specifying values for attributes of inherited class “Action”; a) UML-

style generalization notation; b) OWL-style generalization notation 
Fig. 3. Association concatenation; a) the project tree metamodel; b) 
association concatenation in the submetamodel 



Scientific Journal of Riga Technical University 
Computer Science. Applied Computer Systems 

2011  

______________________________________________________________________________________________ Volume 46 

 

83 
 

simply inherit the value from the superattribute. However, this 

connection cannot always be so straightforward and simple. In 

a general case we need to have a getter and a setter for every 

subattribute like in the classical object-oriented world. We 

introduce getters and setters as special attributes (written in a 

special syntax – see Figure 4) whose values are names of 

transformation programs implementing the particular getter or 

setter. In Figure 4 we can see one getter and one setter for the 

attribute “value” of the class “ActionName”. This attribute is a 

subattribute of the attribute “text” of the class “Bookmark” 

which can be considered as the action name having some 

adornments. 

When specifying subattributes we must depict them as 

classes in order to be able to attach getters and setters to them. 

In run-time, however, we can also refer to them as normal 

attributes. This feature is provided by the kernel we use in the 

Transformation-Driven Architecture (TDA, [19]). The kernel 

also gives the transformation writers a possibility to know 

nothing about the getters and setters at all. We can use some 

attribute as usually, and the kernel will call the getter or setter 

for that attribute if needed to retrieve its value for us, or to set 

it. For example, in Figure 4 we can simply write something 

like “s = obj.getAttrValue(value)” in our transformation 

program to get the value of the attribute “value” of the class 

“ActionName”. The TDA kernel now intercepts that request 

and scans the class “ActionName” for the getter of the 

attribute “value”. If it finds the getter, it is called and the 

return value is calculated (perhaps from the value of the 

attribute “name” of the class “Bookmark”). Similarly in the 

other way – we can write something like 

“obj.setAttrValue(„value‟,‟myValue‟)” to set the name of the 

attribute. Now the kernel scans for a setter which is then called 

to set also the value of the attribute ”name” of the class 

“Bookmark” if needed. 

The overall schema of the Transformation-Driven 

Architecture is seen in Figure 5. It is, however, out of the 

scope of this paper to go into a greater detail about the TDA 

here. A more detailed description of the architecture can be 

found in [19]. 

Getters and setters are optional. If we turn to some attribute 

not having a getter and want to get its value, the kernel 

recognizes the situation and returns the direct value of its 

superattribute or the value of the same attribute if it is not 

inherited. 

C   Application of Our Ideas in the Field of Tool Building 

The metamodel specialization ideas explained in the 

previous subsection can be used in several areas. The intention 

of this paper is to apply these ideas to the field of domain-

specific graphical tool building. It is a common practice in 

tool-building platforms to maintain two metamodels – the 

domain metamodel representing the particular domain (its 

abstract syntax) and the presentation metamodel representing 

the way the user sees the domain (its concrete syntax). Then 

there is usually some kind of mapping between those two 

metamodels, and the data are always synchronized somehow. 

This schema requires a lot of work to be done in case a new 

tool is needed. The domain metamodel needs to be designed, 

then the mappings must be constructed, and the data 

synchronization algorithm must be provided. Regardless of 

whether some of these tasks can be automated in most cases or 

not, the whole structure of the tool turns out to be quite 

complicated. 

The idea here is to specialize the presentation metamodel so 

far till we get the desired domain metamodel. So the domain 

metamodel would be a submetamodel of the presentation 

metamodel which sets us free from the need to have some 

extra mappings and/or sophisticated data synchronization 

facilities. We can see here a similarity to a sculptor sitting and 

watching a stone block until he finally sees a sculpture in it 

(and then carves it out). In the same manner a tool developer 

looks at the particular presentation metamodel and sees how it 

can be specialized so to get the particular domain metamodel 

out of it. Since we allow also multiple inheritance of classes, 

associations and attributes, multiple presentation metamodels 

can exist simultaneously, and multiple specializations can thus 

lead to the same domain metamodel. 

Some examples of such a specialization can be seen in the 

previous figures. In Figure 2 we can see a presentation 

metamodel being a graph diagram visualization metamodel. 

This presentation metamodel can now be specialized to get the 

metamodel for our specific domain – UML activity diagrams. 

So, for instance, the class “Action” would be made as a 

subclass of class “Box” as shown in Figure 2. Other classes of 

the activity diagram metamodel would also be made 

subclasses of some of these five classes of the graph diagram 

metamodel. Of course, other classes, not being subclasses of 

WordDocument Bookmark

name: String

text: String

Action ActionName

value: String {<text}

#value: Transformation

$value: Transformation

Fig. 4. Part of the UML activity diagram metamodel as a submetamodel of 

the Word document bookmark metamodel. The value of action name has a 
getter (#value) and a setter ($value) attributes whose names are names of 

transformation programs implementing them. 

Engine 2 Engine 3

Engine NEngine 1

A

i:Integer

D

B

Repository

Model transformations

Kernel

Fig. 5. The Transformation-Driven Architecture 
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Action

{<Box}

{<WordDocument}

afterCreate: Transformation

beforeDelete: Transformation

onClick: Transformation

onDoubleClick: Transformation

onLClick: Transformation

onCopy: Transformation

onCut: Transformation

onPaste: Transformation

ActionName

{<Bookmark}

{<BoxCompartment}

afterCreate: Transformation

onChange: Transformation

onClick: Transformation

onFocusLost: Transformation

any presentation metamodel class, are as well allowed in the 

domain metamodel. 

In Figure 3 the presentation metamodel is a project tree 

metamodel consisting of two classes – “Tree” and “Node” (see 

Figure 3a). This metamodel is now again specialized to get the 

same domain metamodel of UML activity diagrams. Since 

multiple inheritance is allowed, both presentation metamodels 

– the graph diagram visualization metamodel and the tree 

metamodel – can exist simultaneously. Each presentation 

engine (in terms of Transformation-Driven Architecture [19]) 

“sees” only its own presentation metamodel and is able to 

interpret it as needed. Other parts of the platform responsible 

for the semantics of data (e.g., transformations) can operate 

with the domain metamodel and be not much concerned about 

the presentations or any mappings. 

A good tool building platform must be intuitive in its usage 

allowing defining tools in a natural way. This is now provided 

through the new perception of UML generalization relation. 

The tool is to be built by just creating the domain metamodel 

as a specialization of some presentation metamodels. There is 

no need to have any mapping between them. However, it is 

clear that only quite simple tools can be made this way. In 

order to meet the two openness requirements mentioned in the 

introduction, we must allow the tool developer to extend the 

tool functionality by some specific facilities by providing a 

way to append his/her own model transformation programs. 

This is done by creating so called extension points and adding 

them to classes of the domain metamodel. 

Technically, each extension point is an attribute whose 

value is the name of the transformation program to be called at 

a specific moment. At this point, such type of attributes is 

nothing new – getters and setters mentioned in Section 3.2.3 

were the same type of attributes. This type of attributes could 

resemble the methods of classes in the object-oriented world – 

the transformation programs (whose names are values of those 

attributes) can also use something like “this” pointer pointing 

to the object of the given class for which the transformation is 

called. However, unlike methods, we allow a dynamic change 

of those transformation programs (which is being done by 

changing the value of such attribute). In OOP dynamic change 

of a method body is not possible, but it can be simulated using 

function-typed attributes. 

Some examples of extension points can be seen in Figure 6. 

For instance, in the class “Action”, there is an extension point 

“afterCreate” which is called immediately after a new action is 

created. So, here one can insert his/her own transformation 

program and change the default behavior of the action-

creating process. If we do not want to change anything in this 

process, we can also set the value of the attribute “afterCreate” 

to an empty string which means no transformation will be 

called at that specific moment. 

Having this powerful extension mechanism, it must be clear 

that we can extend the tool with all the extra functionality 

needed by simply coding it in a model transformation 

language. 

The third requirement for the platform – the accessibility 

from external applications – is achieved by fully providing the 

domain metamodel and some API functions for working with 

it. Again, when some external application makes an API 

function call, it is intercepted by the TDA kernel as explained 

before which can then decide what to do (either to pass the 

call further to the repository or to perform some extra actions 

as in the case with attribute getters and setters). Since the 

domain metamodel is a submetamodel of every presentation 

metamodel, external applications do not need to know 

anything about all those presentations or any mappings – all 

the information of the domain is as if automatically 

synchronized with the presentations. 

IV.   BENEFITS OF OUR APPROACH 

Now when we have described our approach in domain-

specific graphical tool building, a question may arise what are 

the benefits of this approach over other tool definition 

methods. Some benefits were already mentioned in the 

previous sections. In this section the main benefits are clearly 

summarized. 

A   Naturalness of the Tool Building Process 

This feature of the tool building process was already 

mentioned in Section 3.3. The only thing we have to do when 

creating a new tool is to develop the domain metamodel as a 

specialization of our existing presentation metamodels. We do 

not set any restriction to the domain metamodel in terms of 

what must be depicted as classes and what – as lines. For 

instance, if we want some domain association to be depicted 

as a box in the presentation (or vice versa), it can also be done 

by combining the facilities described in Section 3.2. We can 

see such an example in Figure 7. 

In Figure 7a a situation is depicted when we want to hide 

some technical domain class T from the presentation. The 

association concatenation does the job here and, when reading 

the presentation association pa, the domain association 

concatenation a o b is actually read. 

In Figure 7b our intention is to depict the domain 

association as a box in the presentation. A technical class T is 

introduced, and the given association is made as a 

concatenation of associations a and b. Now, if we want to 

create a new box in the presentation concerning this 

association, a new object of class T will also be created. Here, 

Fig. 6. Some of possible extension points attached to domain classes. Here 

we can specify if and which transformation programs need to be called at 
specific moments. 
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the concatenated association is dotted as before, and the 

dashed line denotes the UML syntax for creating the 

association class. 

The tool building process is not always so natural in other 

tool building platforms. Therefore more constraints to the 

domain metamodel have to be considered. For instance, in 

MetaEdit+ the domain classes can only be depicted as boxes 

in the presentation, and the domain associations can only be 

depicted as lines. In Microsoft DSL, however, the visual 

representation of a domain association can be specified. 

B   Strictly Separated Logic and Presentation 

The logic and the presentation of the tool in the creation are 

strictly separated in this approach. Be it the graph 

visualization, the tree, the dialog windows or some other 

presentation, its engine is operating only with its metamodel. 

It does not have to deal with other presentations or the logic 

part – submetamodels of its metamodel (see Figure 8). 

On the other hand, model transformations interpreting the 

domain metamodel and thus incorporating the logic part into 

the tool does not have to deal with all the presentations built 

upon that metamodel. Meanwhile, external applications can 

work only with the domain. Such a strict division makes it 

easier for more advanced users to write their own 

transformations and add them as extension points. It is also less 

error-prone. The same applies to external applications – they can 

perform well knowing only the domain part of the tool. 

Separation of domain and presentation metamodels is a 

common practice in many tool building platforms. However, it 

is usually done at the physical level making two real 

metamodels and then trying to map them somehow. As a 

result data redundancy can occur, as well as all the problems 

connected with the mapping and data synchronization issues. 

C   Openness for External Applications 

An interface in the Transformation-Driven Architecture 

[19] is a pair of an engine and a metamodel that the engine 

understands. 

As mentioned before there can be interfaces like graph 

visualization interface, tree interface and dialog window 

interface. These and other interfaces are built-in interfaces in 

TDA. However, advanced users can also add their own 

interfaces easily. To add an interface (e.g., an external 

application), we first have to develop the interface metamodel 

(called the presentation metamodel in the previous sections) 

and the interface engine. Then, we have to add this couple to 

the platform by means of TDA. Now new domain metamodels 

can be made as specialization of this interface metamodel. 

Besides, they can be specializations of some other interface 

metamodels as well. There is even no need to alter the 

universal interpreter interpreting user events at run-time – all 

the semantics of this new interface metamodel can be put into 

extension points of the domain metamodel. The external 

application can then work with the domain metamodel and its 

models. 

Figure 9 illustrates this situation. The approach does not 

depend on how many different presentations there are in the 

platform. One can also add new presentations easily. In other 

platforms (like in all major ones – MetaEdit+, Microsoft DSL 

Tools and Eclipse GMF) there are some built-in presentations. 

In order to add some new presentation we would have to 

predefine the C# or Java code to make the presentation 

capable to map with the domain. This can be quite difficult in 

many situations. 

D   Openness to Extensions 

Extension points are technically coded as attributes whose 

values are names of transformation programs to be called at 

specific moments. Regardless of quite intuitive extension 

point names, these calling times are precisely specified so that 

every transformation writer knows exactly when his/her 

transformation will be executed at run-time.  The 

transformation writer knows the class whose objects will be 

pointed to by “this” pointer – that will be the same class for 

which the extension point is defined. 

a) b)

A B

A BT A B

T

Boxpa

a b

a o b

a o b

a

b

Fig. 7. Different usages of association concatenation; a) avoiding some 

domain technical class; b) introducing some domain technical class as an 

association class 

Fig. 8. The domain-presentation division allowing each part of the platform 

to operate only with metamodels relevant to them 

Fig. 9. Domain metamodel as a specialization of presentation metamodels. 
When adding a new presentation, only the specialization relations must be 

specified 
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For example, an extension point “afterCreate” can be 

defined for the presentation class “Box” (see Figure 10). In 

submetamodels of that presentation metamodel, the value of 

this attribute can now be fixed differently for every subclass of 

“Box” in the specialization process. Here different 

transformations will be called after creating objects of the 

class “Action” and objects of the class “Start”. This facility is 

almost the same as virtual methods in object-oriented 

programming. 

This part of transformation writing is made very clear in the 

presented approach. In our previous approaches (GrTP [16] 

and GRAF [20]) the chaos with the extension point 

attachments was the biggest flaw – they were attached to other 

classes than those whose objects they were called on. 

V.   CONCLUSIONS 

In this paper a novel approach to graphical domain-specific 

tool building has been presented. To develop a new graphical 

tool, we must specify its domain metamodel and provide 

specialization relations between its elements and the elements 

of one or more existing presentation metamodels. In this 

specialization process several facilities can be used to make 

the tool more powerful – the specification of values for 

attributes in inherited classes, the association concatenation 

and the superattribute synthesizing and analyzing features. 

Additionally, we allow extending the tool with manually-

written function calls in the form of extension points attached 

to domain classes. 

Having such a specialization facility, we obtain several 

benefits which have been described in detail in this paper. The 

tool creation process is very natural, the presentation and the 

domain are strictly separated without introducing various 

synchronization problems and data redundancy. So the 

platform is open for external applications as well as for 

manual extensions. We believe that the metamodel 

specialization is quite a powerful feature itself to have also 

several other use-cases outside the field of domain-specific 

tool building which are not covered in this paper. 

A very important feature in domain-specific tools for 

business usage is its openness for external applications which 

was mentioned before. A typical situation is to build a 

domain-specific tool for editing business processes (e.g., a tool 

for project assessment processes that we have built as a case 

study within the framework of our study [21]). We can then 

create various business process diagrams with the tool. Such a 

diagram is usually sufficient for an employee whose task is to 

understand the business process. However, for the person 

submitting the process (in case of project assessment diagram 

tool [21]) the plain diagram could not be enough – one could 

wish to see how far the project has gone in the assessment 

process. Therefore the platform can be easily extended (and 

actually is extended) with the possibility to export data to the 

Scalable Vector Graphics format (SVG [22]). This is coded in 

the form of a domain metamodel which has to be understood 

by the outer application (in this case – the base information 

system developer). The SVG data can now be visualized, for 

example, in a web browser, and a path of the current project in 

the assessment process can be drawn. This can be considered a 

good example of the openness feature possessed by the 

platform. 
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