
Scientific Journal of Riga Technical University
Computer Science. Applied Computer Systems

2011

__ Volume 46

80

Towards Open Graphical Tool-Building Framework

Edgars Rencis, Janis Barzdins, Sergejs Kozlovics

Institute of Mathematics and Computer Science, University of Latvia, Riga, Latvia

Abstract – Nowadays, there are many frameworks for

developing domain-specific tools. However, if we want to create a

really sophisticated tool with specific functionality requirements,

it is not always an easy task to do. Although tool-building

platforms offer some means for extending the tool functionality

and accessing it from external applications, it usually requires a

deep understanding of various technical implementation details.

In this paper we try to go one step closer to a really open

graphical tool-building framework that would allow both to

change the behavior of the tool and to access the tool from the

outside easily. We start by defining a specialization of

metamodels which is a great and powerful facility itself. Then we

go on and show how this can be applied in the field of graphical

domain-specific tool building. The approach is demonstrated on

an example of a subset of UML activity diagrams. The benefits of

the approach are also clearly indicated. These include a natural

and intuitive definition of tools, a strict logic/presentation

separation and the openness for extensions as well as for external

applications.

Keywords – Metamodel specialization, open architecture,

submetamodel, supermetamodel, tool-building framework.

I. INTRODUCTION

Nowadays we have a very wide range of different tools to

choose from when searching for a tool for our specific needs.

For example, if we need to create UML activity diagrams, we

can use various UML tools like Enterprise Architect [1], IBM

Rational Rose [2] or others. However, if we want to alter the

editor a little bit (e.g., by adding some new elements or

attributes), it is usually not easy to do. It can be done easily by

members of the tool developers‟ team, but it can require a

great knowledge of various specific details about the tool from

the real tool user. In some cases we can get through by using

stereotypes, but they can help only to a certain extent. It

becomes even more difficult if we want to extend the tool

functionality with some more specific features or to connect

the tool to some external application. It usually requires a very

deep understanding of the tool‟s architecture. If we turn to the

world of domain-specific tools, the situation is a little better.

Most of these tools usually offer quite a wide range of

possibilities to alter the behavior of the tool. However, adding

very specific features, which are not provided universally,

again requires a deep understanding of various technical

details.

The main goal of this paper is therefore to propose a

conceptually different approach for developing graphical

domain-specific tools. Instead of maintaining two distinct

metamodels (domain and presentation) and synchronizing

their instances using model transformations, we make one

metamodel as a submetamodel of the other, thus liberating

ourselves from all the synchronization issues. The approach

will be demonstrated on several small examples based on

UML activity diagrams [3]. The task would be to create an

editor for those diagrams.

We want to look at the tool openness problem from two

different points of view. The first kind of openness is the

ability to alter the behavior of the tool. The tool builder must

have a convenient and natural way of extending the tool

functionality with a specific functionality. The other kind of

openness is the ability to use the data from outer applications.

There must be a way how we can access the tool repository

from the outside and work with the data (change and process

them, but, of course, only to some extent).

The rest of the paper is organized as follows. Some related

work in the field is inspected in Section 2. In Section 3 we

start with explaining our ideas about the specialization of

metamodels which is a powerful facility itself. We base

ourselves on the features of UML, and then we extend those

by adding some useful possibilities found in OWL 2 [4]. Then

we go on and show how this can be applied in a graphical

domain-specific tool building. The benefits of the approach

are clearly pointed out in Section 4.

II. THE WORLD OF TOOL BUILDING

As said in the introduction, there are many domain-specific

graphical tool-building platforms nowadays, like

Punamu/Marama [5, 6], ViatraDSM [7] and Tiger [8]. Of

course, we must mention MetaEdit+ by MetaCase company

[9] and Microsoft DSL Tools [10] which are both very widely

used industrial products. There are also solutions based on

Eclipse [11] modeling framework, such as Eclipse GMF [12]

and METAclipse [13]. Let us see how the job is being done in

some of those platforms!

MetaEdit+ is known for its ability to be able to create a new

graphical domain-specific tool in a very short time – in an

hour or even half an hour. The tool will, of course, have only

some basic functionality, but this functionality will be fully

operating, which is a very useful facility of the platform. The

tool creator can then spend more time and efforts polishing the

tool and adding other non-standard features. The technical

details of MetaCase solution are hidden, so their metamodels

are not fully accessible from external applications. This is, of

course, a very natural situation since this is an industrial tool,

not fully academic. One flaw that, however, emerges from this

concealment is that the tool creator must confine him/herself

to the graphical presentations built in the platform. It is not

possible for one to create his/her own presentation format

Scientific Journal of Riga Technical University
Computer Science. Applied Computer Systems

2011

__ Volume 46

81

(e.g., some new kind of project tree depiction) from the

domain data located in the repository.

In Microsoft DSL Tools, a tool creator is allowed to

develop metamodels of the tool directly, which is a good

feature. Also, the domain is clearly separated from the

presentation, so the developer is very confident of what he/she

is doing. A mapping between both metamodels (domain and

presentation) can then be made by creating mapping lines in a

visual editor. That, however, raises some issues. First of all,

data redundancy is thus introduced which is never a good

thing – partly the same information is stored in both

metamodels. That makes it more difficult, for example, to

navigate through instances if compared to the situation where

classes of one metamodel would be subclasses of the other

instead of being completely different ones. Besides, the

mapping implementation forces both metamodels to be quite

similar one to another in order to map them.

In Eclipse GMF, three models have to be specified first.

They are a domain model, a diagram definition model and a

diagram mapping model. The latter model establishes

mappings between the first two. Then, from these three

models (which together may be viewed as a platform-

independent model, PIM, according to MDA principles [14])

are transformed to the Generator Model (which may be

considered a platform-specific model, PSM). The generation

parameters in the Generator Model may be adjusted, and then

Java code is generated. The generated Java code can be

manually edited to enhance the functionality of the generated

DSL tool. This process requires a good knowledge of GMF. A

toolsmith has to know how and when to use graphical wizards

as well as when to generate certain artifacts. Since GMF

focuses on GEF [15], it is not an easy task to add new

graphical presentations for the developed tools.

Something very similar to the approach explained in further

sections comes from the world of object-oriented

programming. The notion of subclasses is also explored here

as well as the possibility to redefine methods of a superclass in

its subclasses. However, a big flaw concerning the tool

building area is the inability to change the body of methods

dynamically (although it can be simulated through function-

typed attributes). Every method is attached to some class

instead of being attached to some particular objects of that

class. In tool building this feature turns out to be very critical

in many situations where we want some objects of some class

to behave differently in certain situations than other objects of

the same class.

We must also mention here our own previous experience

within the field of graphical domain-specific tool building.

Two of our previous solutions (GrTP [16] and METAclipse

[13]) were based on a special type diagram (in some sense – a

tool definition metamodel) whose instances would be different

graphical tools (a universal transformation interpreted those

instances at run-time) [17]. Here all the necessary information

about the tool was to be included in this metamodel which

could then be linked to every presentation metamodel (and

also domain metamodel) when needed.

This was a very elegant solution as far as we were

developing quite simple tools whose behavior fit in well with

universal behavioral patterns of the system. If some extra

functionality was to be added, it could also be done by

extending the universal tool-definition (metamodel-

interpreting) transformation with manually written

transformations. However, this extension was inconvenient in

some situations since transformations were attached to classes

of the tool definition metamodel instead of being attached to

those classes having real run-time instances (so called “this

pointers” for those transformations). This has been considered

when developing the next-generation tool-building platform

described in this paper.

III. THE NEW IDEA – METAMODEL SPECIALIZATION

In this section the ideas on the new method of building

graphical domain-specific tools are explained. We start by

discussing metamodel specialization and introducing the

notion of a submetamodel. The UML generalization property

is then supplemented by some extra facilities in order to

achieve a very powerful metamodel specialization mechanism.

This mechanism could perhaps be used in different areas of

modeling and metamodeling. However, in this paper (in

Section 3.3) we show how this mechanism can be applied in

the field of graphical tool building. Instead of transforming

instances of several metamodels, we use metamodel

specialization, thus making the same instances belong to

several metamodels simultaneously.

The approach will be demonstrated on an example of UML

activity diagrams. Only a small subset of the real activity

diagrams will be used (see Figure 1) on which all the different

facilities can be shown.

A Basic Ideas

To understand the main idea correctly, let us first try to

change the way we think about the UML generalization

property. Traditionally, we perceive it as an assertion about a

set of instances of some class being a subset of instances of

some other class. However, we can also look at the

generalization by changing it from an assertion into a

command in a form “Make something as a special case of

something else!”. Thus now we can have two arbitrary classes,

and we wish to make one of them a subclass of the other. So,

at the moment of creating the generalization between those

two classes, a command is executed throwing instances of the

subclass into a superclass. This throw-in is made only virtually

though (no data are being duplicated) – if traversing instances

of the superclass, also instances of the subclass are visible.

Project

name: String

AD_seed

name: String

description: String

ActivityDiagram

name: String

Start
Flow

Performer

name: String

count: Integer

Action

name: String

isExternal: Boolean

aD_seed*

activityDiagram

1

1
*

act*

sStart

0..1

aStart

0..1

end

1

detalization

0..1

0..1

Fig. 1. The subset of UML activity diagrams used in further examples

Scientific Journal of Riga Technical University
Computer Science. Applied Computer Systems

2011

__ Volume 46

82

Such kind of generalization is actually considered to be a

mapping between two given metamodels. This kind of

generalization can also be simulated using abstract classes. As

for classes, the same applies to the generalization of other

UML primitives – associations and attributes (this time the

generalization is established between the sets of pairs of

objects). Here and further we will use a word association

when referring to what is actually an object property and a

word attribute when referring to the data type property. Pairs

of subassociation or subattribute are virtually thrown into the

set of pairs of superassociation or superattribute. For both

these properties this kind of generalization can be simulated

using the concept of a derived union. Multiple inheritance is

also allowed here.

Having such a notion of generalization in mind, we can now

define a new activity – specialization of the metamodel. The

metamodel specialization is a process in which we define a

relation between two given metamodels by exploiting the new

kind of generalization relation between elements of one

metamodel (called the submetamodel) and the other (called

the supermetamodel). This process is described in detail in the

next subsection.

B Supplementing the UML Generalization

To make the metamodel specialization more powerful, we

extend the metamodeling language by several new facilities

that are not found in UML. We are actually looking towards

OWL 2 and trying to borrow the most useful features from it.

This subsection inspects all these add-ons, and therefore it can

be considered the essence of this paper.

Specification of values for attributes of inherited class

Since creation of generalization is now considered to be a

command, we can extend it with a “such that” part – “Make

this class a subclass of that class such that the values for those

attributes are as follows: …”.

An example can be seen in Figure 2a. There is a class

“Box” in the graph definition metamodel with such attributes

as “shape”, “bkgColor”, “lineStyle” and, perhaps, others as

well. Then we define its subclass “Action” (which comes from

the UML Activity diagrams shown in Figure 1) saying that all

instances of this class will be green (bkgColor VALUE

clGreen) and will have a rectangular shape (shape VALUE

shRectangle). In Figure 2b the same is depicted using a more

compact syntax (similar to that of OWLGrEd, the OWL

graphic notation editor [18]).

Association concatenation

The second facility by which we extend the UML

generalization is a concatenation of associations. This feature

is also present in OWL 2. Having some association A in the

supermetamodel, we can have several corresponding

associations in the submetamodel, the sequence of which is

then considered to make a virtual subassociation of association

A. A good example of this feature is a definition of a project

tree (see Figure 3). The activity diagram metamodel here is

supplemented with two new virtual associations (depicted in

points) whose physical representation is in each case a

sequence of two real associations. Here, we use the OWL 2

Manchester syntax again to represent the concatenation as a

small circle. For example, the virtual association between

classes “Project” and “ActivityDiagram” is actually a

concatenation of associations “aD_seed” and

“activityDiagram” starting in the class “Project” (aD_seed o

activityDiagram). This concatenation is then considered to be

a subassociation of the association “root” starting in the class

“Tree” which is a superclass of the class “Project” (therefore

the syntax “{<root}”; from here on we will use the symbol

“<” to denote the UML relations subclassOf (for classes) and

subsets (for attributes and associations)). In such a way, we

can skip technical objects in the navigation chains (e.g., the

objects of the class “AD_seed” in the example of Figure 3). In

OWLGrEd version the syntax would be a little different – an

expression “{>aD_seed o activityDiagram}” would be

attached to the superassociation “root” from the class “Tree”.

In Figure 3 we can also see the attribute inheritance.

Attribute “name” of the class “Project” is declared to be a

subattribute of the attribute “tname” of the class “Tree”. Also,

the attribute “name” of the class “ActivityDiagram” is a

subattribute. There is, of course, no request for the names of

sub- and superattributes being different (e.g., “name” and

“tname”). It is used here for a better understanding only.

Also, a predefined value for the attribute “picture” of the

subclass “ActivityDiagram” is used in the example in Figure

3.

Synthesis and analysis of a superattribute

As we mentioned in the previous subsection, we use the

OWLGrEd version of OWL 2 syntax to describe the fact that

some attribute is a subattribute of some other attribute. That

means those two attributes have some kind of connection that

has to be taken into account when getting or setting the value

of one of them. In the simplest case the subattribute can

a) b)

Tree

tname: String

Node

nname: String

picture: TPicture

Project

{<Tree}

name: String {<tname}

AD_seed
ActivityDiagram

{<Node}

name: String {<nname}

picture VALUE pic1

Action

root *

parent

0..1

child *
aD_seed o activityDiagram

* {<root}

act o detalization

*

{<child}

a) b)

GraphDiagram

name: String

bkgColor: TColor

Box

shape: TShape

bkgColor: TColor

lineStyle: TLineStyle

Line

dashLength: Integer

BoxCompartment

text: String

prefix: String

suffix: String

font: TFontStyle

alignment: TAlignment

Action

name: String

isExternal: Boolean

shape VALUE shRectangle

bkgColor VALUE clGreen

LineCompartment

text: String

prefix: String

suffix: String

font: TFontStyle

position: TLineCompPos

Action

{<Box}

name: String

isExternal: Boolean

shape VALUE shRectangle

bkgColor VALUE clGreen

box * line *

*

{ordered}

*

{ordered}

Fig. 2. Specifying values for attributes of inherited class “Action”; a) UML-

style generalization notation; b) OWL-style generalization notation
Fig. 3. Association concatenation; a) the project tree metamodel; b)
association concatenation in the submetamodel

Scientific Journal of Riga Technical University
Computer Science. Applied Computer Systems

2011

__ Volume 46

83

simply inherit the value from the superattribute. However, this

connection cannot always be so straightforward and simple. In

a general case we need to have a getter and a setter for every

subattribute like in the classical object-oriented world. We

introduce getters and setters as special attributes (written in a

special syntax – see Figure 4) whose values are names of

transformation programs implementing the particular getter or

setter. In Figure 4 we can see one getter and one setter for the

attribute “value” of the class “ActionName”. This attribute is a

subattribute of the attribute “text” of the class “Bookmark”

which can be considered as the action name having some

adornments.

When specifying subattributes we must depict them as

classes in order to be able to attach getters and setters to them.

In run-time, however, we can also refer to them as normal

attributes. This feature is provided by the kernel we use in the

Transformation-Driven Architecture (TDA, [19]). The kernel

also gives the transformation writers a possibility to know

nothing about the getters and setters at all. We can use some

attribute as usually, and the kernel will call the getter or setter

for that attribute if needed to retrieve its value for us, or to set

it. For example, in Figure 4 we can simply write something

like “s = obj.getAttrValue(value)” in our transformation

program to get the value of the attribute “value” of the class

“ActionName”. The TDA kernel now intercepts that request

and scans the class “ActionName” for the getter of the

attribute “value”. If it finds the getter, it is called and the

return value is calculated (perhaps from the value of the

attribute “name” of the class “Bookmark”). Similarly in the

other way – we can write something like

“obj.setAttrValue(„value‟,‟myValue‟)” to set the name of the

attribute. Now the kernel scans for a setter which is then called

to set also the value of the attribute ”name” of the class

“Bookmark” if needed.

The overall schema of the Transformation-Driven

Architecture is seen in Figure 5. It is, however, out of the

scope of this paper to go into a greater detail about the TDA

here. A more detailed description of the architecture can be

found in [19].

Getters and setters are optional. If we turn to some attribute

not having a getter and want to get its value, the kernel

recognizes the situation and returns the direct value of its

superattribute or the value of the same attribute if it is not

inherited.

C Application of Our Ideas in the Field of Tool Building

The metamodel specialization ideas explained in the

previous subsection can be used in several areas. The intention

of this paper is to apply these ideas to the field of domain-

specific graphical tool building. It is a common practice in

tool-building platforms to maintain two metamodels – the

domain metamodel representing the particular domain (its

abstract syntax) and the presentation metamodel representing

the way the user sees the domain (its concrete syntax). Then

there is usually some kind of mapping between those two

metamodels, and the data are always synchronized somehow.

This schema requires a lot of work to be done in case a new

tool is needed. The domain metamodel needs to be designed,

then the mappings must be constructed, and the data

synchronization algorithm must be provided. Regardless of

whether some of these tasks can be automated in most cases or

not, the whole structure of the tool turns out to be quite

complicated.

The idea here is to specialize the presentation metamodel so

far till we get the desired domain metamodel. So the domain

metamodel would be a submetamodel of the presentation

metamodel which sets us free from the need to have some

extra mappings and/or sophisticated data synchronization

facilities. We can see here a similarity to a sculptor sitting and

watching a stone block until he finally sees a sculpture in it

(and then carves it out). In the same manner a tool developer

looks at the particular presentation metamodel and sees how it

can be specialized so to get the particular domain metamodel

out of it. Since we allow also multiple inheritance of classes,

associations and attributes, multiple presentation metamodels

can exist simultaneously, and multiple specializations can thus

lead to the same domain metamodel.

Some examples of such a specialization can be seen in the

previous figures. In Figure 2 we can see a presentation

metamodel being a graph diagram visualization metamodel.

This presentation metamodel can now be specialized to get the

metamodel for our specific domain – UML activity diagrams.

So, for instance, the class “Action” would be made as a

subclass of class “Box” as shown in Figure 2. Other classes of

the activity diagram metamodel would also be made

subclasses of some of these five classes of the graph diagram

metamodel. Of course, other classes, not being subclasses of

WordDocument Bookmark

name: String

text: String

Action ActionName

value: String {<text}

#value: Transformation

$value: Transformation

Fig. 4. Part of the UML activity diagram metamodel as a submetamodel of

the Word document bookmark metamodel. The value of action name has a
getter (#value) and a setter ($value) attributes whose names are names of

transformation programs implementing them.

Engine 2 Engine 3

Engine NEngine 1

A

i:Integer

D

B

Repository

Model transformations

Kernel

Fig. 5. The Transformation-Driven Architecture

Scientific Journal of Riga Technical University
Computer Science. Applied Computer Systems

2011

__ Volume 46

84

Action

{<Box}

{<WordDocument}

afterCreate: Transformation

beforeDelete: Transformation

onClick: Transformation

onDoubleClick: Transformation

onLClick: Transformation

onCopy: Transformation

onCut: Transformation

onPaste: Transformation

ActionName

{<Bookmark}

{<BoxCompartment}

afterCreate: Transformation

onChange: Transformation

onClick: Transformation

onFocusLost: Transformation

any presentation metamodel class, are as well allowed in the

domain metamodel.

In Figure 3 the presentation metamodel is a project tree

metamodel consisting of two classes – “Tree” and “Node” (see

Figure 3a). This metamodel is now again specialized to get the

same domain metamodel of UML activity diagrams. Since

multiple inheritance is allowed, both presentation metamodels

– the graph diagram visualization metamodel and the tree

metamodel – can exist simultaneously. Each presentation

engine (in terms of Transformation-Driven Architecture [19])

“sees” only its own presentation metamodel and is able to

interpret it as needed. Other parts of the platform responsible

for the semantics of data (e.g., transformations) can operate

with the domain metamodel and be not much concerned about

the presentations or any mappings.

A good tool building platform must be intuitive in its usage

allowing defining tools in a natural way. This is now provided

through the new perception of UML generalization relation.

The tool is to be built by just creating the domain metamodel

as a specialization of some presentation metamodels. There is

no need to have any mapping between them. However, it is

clear that only quite simple tools can be made this way. In

order to meet the two openness requirements mentioned in the

introduction, we must allow the tool developer to extend the

tool functionality by some specific facilities by providing a

way to append his/her own model transformation programs.

This is done by creating so called extension points and adding

them to classes of the domain metamodel.

Technically, each extension point is an attribute whose

value is the name of the transformation program to be called at

a specific moment. At this point, such type of attributes is

nothing new – getters and setters mentioned in Section 3.2.3

were the same type of attributes. This type of attributes could

resemble the methods of classes in the object-oriented world –

the transformation programs (whose names are values of those

attributes) can also use something like “this” pointer pointing

to the object of the given class for which the transformation is

called. However, unlike methods, we allow a dynamic change

of those transformation programs (which is being done by

changing the value of such attribute). In OOP dynamic change

of a method body is not possible, but it can be simulated using

function-typed attributes.

Some examples of extension points can be seen in Figure 6.

For instance, in the class “Action”, there is an extension point

“afterCreate” which is called immediately after a new action is

created. So, here one can insert his/her own transformation

program and change the default behavior of the action-

creating process. If we do not want to change anything in this

process, we can also set the value of the attribute “afterCreate”

to an empty string which means no transformation will be

called at that specific moment.

Having this powerful extension mechanism, it must be clear

that we can extend the tool with all the extra functionality

needed by simply coding it in a model transformation

language.

The third requirement for the platform – the accessibility

from external applications – is achieved by fully providing the

domain metamodel and some API functions for working with

it. Again, when some external application makes an API

function call, it is intercepted by the TDA kernel as explained

before which can then decide what to do (either to pass the

call further to the repository or to perform some extra actions

as in the case with attribute getters and setters). Since the

domain metamodel is a submetamodel of every presentation

metamodel, external applications do not need to know

anything about all those presentations or any mappings – all

the information of the domain is as if automatically

synchronized with the presentations.

IV. BENEFITS OF OUR APPROACH

Now when we have described our approach in domain-

specific graphical tool building, a question may arise what are

the benefits of this approach over other tool definition

methods. Some benefits were already mentioned in the

previous sections. In this section the main benefits are clearly

summarized.

A Naturalness of the Tool Building Process

This feature of the tool building process was already

mentioned in Section 3.3. The only thing we have to do when

creating a new tool is to develop the domain metamodel as a

specialization of our existing presentation metamodels. We do

not set any restriction to the domain metamodel in terms of

what must be depicted as classes and what – as lines. For

instance, if we want some domain association to be depicted

as a box in the presentation (or vice versa), it can also be done

by combining the facilities described in Section 3.2. We can

see such an example in Figure 7.

In Figure 7a a situation is depicted when we want to hide

some technical domain class T from the presentation. The

association concatenation does the job here and, when reading

the presentation association pa, the domain association

concatenation a o b is actually read.

In Figure 7b our intention is to depict the domain

association as a box in the presentation. A technical class T is

introduced, and the given association is made as a

concatenation of associations a and b. Now, if we want to

create a new box in the presentation concerning this

association, a new object of class T will also be created. Here,

Fig. 6. Some of possible extension points attached to domain classes. Here

we can specify if and which transformation programs need to be called at
specific moments.

Scientific Journal of Riga Technical University
Computer Science. Applied Computer Systems

2011

__ Volume 46

85

the concatenated association is dotted as before, and the

dashed line denotes the UML syntax for creating the

association class.

The tool building process is not always so natural in other

tool building platforms. Therefore more constraints to the

domain metamodel have to be considered. For instance, in

MetaEdit+ the domain classes can only be depicted as boxes

in the presentation, and the domain associations can only be

depicted as lines. In Microsoft DSL, however, the visual

representation of a domain association can be specified.

B Strictly Separated Logic and Presentation

The logic and the presentation of the tool in the creation are

strictly separated in this approach. Be it the graph

visualization, the tree, the dialog windows or some other

presentation, its engine is operating only with its metamodel.

It does not have to deal with other presentations or the logic

part – submetamodels of its metamodel (see Figure 8).

On the other hand, model transformations interpreting the

domain metamodel and thus incorporating the logic part into

the tool does not have to deal with all the presentations built

upon that metamodel. Meanwhile, external applications can

work only with the domain. Such a strict division makes it

easier for more advanced users to write their own

transformations and add them as extension points. It is also less

error-prone. The same applies to external applications – they can

perform well knowing only the domain part of the tool.

Separation of domain and presentation metamodels is a

common practice in many tool building platforms. However, it

is usually done at the physical level making two real

metamodels and then trying to map them somehow. As a

result data redundancy can occur, as well as all the problems

connected with the mapping and data synchronization issues.

C Openness for External Applications

An interface in the Transformation-Driven Architecture

[19] is a pair of an engine and a metamodel that the engine

understands.

As mentioned before there can be interfaces like graph

visualization interface, tree interface and dialog window

interface. These and other interfaces are built-in interfaces in

TDA. However, advanced users can also add their own

interfaces easily. To add an interface (e.g., an external

application), we first have to develop the interface metamodel

(called the presentation metamodel in the previous sections)

and the interface engine. Then, we have to add this couple to

the platform by means of TDA. Now new domain metamodels

can be made as specialization of this interface metamodel.

Besides, they can be specializations of some other interface

metamodels as well. There is even no need to alter the

universal interpreter interpreting user events at run-time – all

the semantics of this new interface metamodel can be put into

extension points of the domain metamodel. The external

application can then work with the domain metamodel and its

models.

Figure 9 illustrates this situation. The approach does not

depend on how many different presentations there are in the

platform. One can also add new presentations easily. In other

platforms (like in all major ones – MetaEdit+, Microsoft DSL

Tools and Eclipse GMF) there are some built-in presentations.

In order to add some new presentation we would have to

predefine the C# or Java code to make the presentation

capable to map with the domain. This can be quite difficult in

many situations.

D Openness to Extensions

Extension points are technically coded as attributes whose

values are names of transformation programs to be called at

specific moments. Regardless of quite intuitive extension

point names, these calling times are precisely specified so that

every transformation writer knows exactly when his/her

transformation will be executed at run-time. The

transformation writer knows the class whose objects will be

pointed to by “this” pointer – that will be the same class for

which the extension point is defined.

a) b)

A B

A BT A B

T

Boxpa

a b

a o b

a o b

a

b

Fig. 7. Different usages of association concatenation; a) avoiding some

domain technical class; b) introducing some domain technical class as an

association class

Fig. 8. The domain-presentation division allowing each part of the platform

to operate only with metamodels relevant to them

Fig. 9. Domain metamodel as a specialization of presentation metamodels.
When adding a new presentation, only the specialization relations must be

specified

Scientific Journal of Riga Technical University
Computer Science. Applied Computer Systems

2011

__ Volume 46

86

For example, an extension point “afterCreate” can be

defined for the presentation class “Box” (see Figure 10). In

submetamodels of that presentation metamodel, the value of

this attribute can now be fixed differently for every subclass of

“Box” in the specialization process. Here different

transformations will be called after creating objects of the

class “Action” and objects of the class “Start”. This facility is

almost the same as virtual methods in object-oriented

programming.

This part of transformation writing is made very clear in the

presented approach. In our previous approaches (GrTP [16]

and GRAF [20]) the chaos with the extension point

attachments was the biggest flaw – they were attached to other

classes than those whose objects they were called on.

V. CONCLUSIONS

In this paper a novel approach to graphical domain-specific

tool building has been presented. To develop a new graphical

tool, we must specify its domain metamodel and provide

specialization relations between its elements and the elements

of one or more existing presentation metamodels. In this

specialization process several facilities can be used to make

the tool more powerful – the specification of values for

attributes in inherited classes, the association concatenation

and the superattribute synthesizing and analyzing features.

Additionally, we allow extending the tool with manually-

written function calls in the form of extension points attached

to domain classes.

Having such a specialization facility, we obtain several

benefits which have been described in detail in this paper. The

tool creation process is very natural, the presentation and the

domain are strictly separated without introducing various

synchronization problems and data redundancy. So the

platform is open for external applications as well as for

manual extensions. We believe that the metamodel

specialization is quite a powerful feature itself to have also

several other use-cases outside the field of domain-specific

tool building which are not covered in this paper.

A very important feature in domain-specific tools for

business usage is its openness for external applications which

was mentioned before. A typical situation is to build a

domain-specific tool for editing business processes (e.g., a tool

for project assessment processes that we have built as a case

study within the framework of our study [21]). We can then

create various business process diagrams with the tool. Such a

diagram is usually sufficient for an employee whose task is to

understand the business process. However, for the person

submitting the process (in case of project assessment diagram

tool [21]) the plain diagram could not be enough – one could

wish to see how far the project has gone in the assessment

process. Therefore the platform can be easily extended (and

actually is extended) with the possibility to export data to the

Scalable Vector Graphics format (SVG [22]). This is coded in

the form of a domain metamodel which has to be understood

by the outer application (in this case – the base information

system developer). The SVG data can now be visualized, for

example, in a web browser, and a path of the current project in

the assessment process can be drawn. This can be considered a

good example of the openness feature possessed by the

platform.

ACKNOWLEDGMENTS

This work has been supported by the European Social Fund

within the framework of the project “Support for Doctoral

Studies at University of Latvia”.

REFERENCES

1. Enterprise Architect, http://www.sparxsystems.com.au

2. IBM Rational Rose,

http://www-01.ibm.com/software/awdtools/developer/rose
3. OMG modeling specifications, UML 2.1.1 Superstructure and

Infrastructure, http://www.omg.org/docs/formal/07-02-05.pdf

4. Web Ontology Language (OWL), http://www.w3.org/2004/OWL
5. Nianping Zhu, John Grundy, and John Hosking. Pounamu: a meta-tool

for multi-view visual language environment construction. 2004 IEEE

Symposium on Visual Languages and Human Centric Computing
(VLHCC‟04), 2004, pp. 254-256.

6. John Grundy, John Hosking, Jun Huh, Karen Na-Liu Li. Marama: an

Eclipse Meta-toolset for Generating Multi-view Environments. ICSE‟08,
Leipzig, Germany, 2008.

7. I. Rath, D. Varro. Challenges for advanced domain-specific modeling

frameworks. Proc. of Workshop on Domain-Specific Program
Development (DSPD), ECOOP 2006, France.

8. C. Ermel, K. Ehrig, G. Taentzer, E. Weiss. Object Oriented and Rule-

based Design of Visual Languages using Tiger. Proceedings of
GraBaTs'06, 2006, pp. 12.

9. MetaEdit+ Workbench User‟s Guide, Version 4.5,

http://www.metacase.com/support/45/manuals/mwb/Mw.html, 2008.
10. S. Cook, G. Jones, S. Kent, A. C. Wills. Domain-Specific Development

with Visual Studio DSL Tools. Addison-Wesley, 2007.

11. Eclipse. http://www.eclipse.org
12. Graphical Modeling Framework (GMF, Eclipse Modeling subproject),

 http://www.eclipse.org/gmf

13. A. Kalnins, O. Vilitis, E. Celms, E. Kalnina, A. Sostaks, J. Barzdins.
Building Tools by Model Transformations in Eclipse. Proceedings of

DSM‟07 workshop of OOPSLA 2007, Montreal, Canada, Jyvaskyla

University Printing House, 2007, pp. 194-207.
14. MDA Guide Version 1.0.1. OMG, http://www.omg.org/docs/omg/03-

06-01.pdf
15. Graphical Editing Framework (GEF, Eclipse Modeling subproject),

http://www.eclipse.org/gef

16. J. Barzdins, A. Zarins, K. Cerans, A. Kalnins, E. Rencis, L. Lace, R.
Liepins, A. Sprogis. GrTP: Transformation Based Graphical Tool

Building Platform. MODELS 2007, Workshop on Model Driven

Development of Advanced User Interfaces, 2007.
17. J. Barzdins, K. Cerans, S. Kozlovics, L. Lace, R. Liepins, E. Rencis, A.

Sprogis, A. Zarins. MDE-based Graphical Tool Building Framework.

Scientific Papers, University of Latvia, “Computer Science and

Information Technologies”, Vol. 756, 2010, pp. 121-138.

18. J. Bārzdiņš, G. Bārzdiņš, K. Čerāns, R. Liepiņš, A. Sproģis. OWLGrEd:

a UML Style Graphical Notation and Editor for OWL 2. OWLED 2010,

Start

afterCreate VALUE transf2

Action

afterCreate VALUE transf1

Box

afterCreate: Transformation

Fig. 10. Introducing extension points into a superclass and specifying them

in subclasses

Scientific Journal of Riga Technical University
Computer Science. Applied Computer Systems

2011

__ Volume 46

87

OWL: Experiences and Directions, Seventh International Workshop,

2010.
19. J. Barzdins, S. Kozlovics, E. Rencis. The Transformation-Driven

Architecture. Proceedings of DSM‟08 Workshop of OOPSLA 2008,

Nashville, USA, 2008, pp. 60-63.
20. A. Sproģis, R. Liepiņš, J. Bārzdiņš, K. Čerāns, S. Kozlovičs, L. Lāce, E.

Rencis, A. Zariņš. GRAF: a Graphical Tool Building Framework.

Proceedings of the Tools and Consultancy Track. European Conference
on Model-Driven Architecture Foundations and Applications, Paris,

France, 2010, pp. 18-21.

21. J. Barzdins, K. Cerans, A. Kalnins, M. Grasmanis, S. Kozlovics, L.
Lace, R. Liepins, E. Rencis, A. Sprogis, A. Zarins. Domain Specific

Languages for Business Process Management: a Case Study.
Proceedings of DSM‟09 Workshop of OOPSLA 2009, Orlando, Florida,

USA, 2009, pp. 34 – 40.

22. Scalable Vector Graphics (SVG) 1.1, http://www.w3.org/TR/SVG

Edgars Rencis, Mg. Sc. Comp., has received the

Master's Degree in Computer Science at the
University of Latvia, 2007. In 2010, he finished

the doctoral program and is yet to defend his

PhD thesis. His major field of study is the
development of graphical tool-building

platforms. He is now working at the Institute of

Mathematics and Computer Science, University
of Latvia as a RESEARCHER. Before that he

worked as a PROGRAMMING ENGINEER at

the same institute. Concurrently he is working as
a LECTURER at the University of Latvia and at

Vidzeme University. His current and previous

research interests include tool-building platforms and model transformation

languages.
Janis Barzdins is full PROFESSOR in

Computer Science at the University of Latvia.

From 1997 to 2006, he was also DIRECTOR of
the Institute of Mathematics and Computer

Science, University of Latvia. He received his

Doctor of Science degree (Mathematics) in 1976
from the Institute of Mathematics (Novosibirsk),

Academy of Sciences of the USSR. He has also

worked in industry on developing system
modeling tools. His current research interests

include system modeling languages and tools, as

well as system engineering methods based on
metamodeling and model transformations. Since

1992, he is also full member of the Latvian Academy of Sciences.

Sergejs Kozlovics, Mg. Sc. Comp., has received

the Master's Degree in Computer Science at the

University of Latvia, 2008. He is now about to
finish the doctoral program at the same

university. His major field of study is the

development of graphical tool-building platforms
and their architecture. He is now working at the

Institute of Mathematics and Computer Science,

University of Latvia as a RESEARCHER.
Before that he worked as a PROGRAMMING

ENGINEER and ASSISTENT at the same

institute. Concurrently he is working as a
LECTURER at the University of Latvia.

