Scientific Journal of Riga Technical University
Computer Science. Applied Computer Systems

2011
Volume 47

Role of UML Class Diagram in Object-Oriented
Software Development

Oksana Nikiforova®, Janis Sejansz, lAntons Cernickins

9, ®Riga Technical University

Abstract — UML is an industrial standard for object-oriented
software specification which offers a notation for class modeling
during object oriented software development. Since the UML
class diagram is a so-called “bridge” between software
specification at the user side and software realization at the
developer side, it requires strong guidelines for identification of
class objects from the problem domain and notational
conventions for modeling of the class diagram for its further
usage in system coding. This paper presents a discussion on
problematic stages and possible element transformations into
software components. Several conclusions are drawn on potential
usage of the class diagram in industry.

Keywords: code generation, MDA transformation, model-to-
model transformation, UML class diagram,

|. INTRODUCTION

The increasing role of modeling in software system
development promotes a methodology, mostly represented by
OMG solution for system abstraction, modeling, development,
and reuse—Model Driven Architecture (MDA) [1]. The key
component of system modeling, which underlies the principles
of MDA—Unified Modeling Language (UML)—is used to
define several kinds of diagrams, their elements and notation
[2]. In fact, UML diagrams should be considered as a way of
describing the system from various perspectives: whereas a
static diagram is used to represent the structure of the system,
dynamic diagrams describe its behavior.

The main goal of MDA is to provide the ability of
automated transformations from platform independent models
into platform-specific source code. However, due to problems
with the definition of system dynamic aspects, as well as their
translation into code components, this goal has not yet been
achieved [3]. Nevertheless, the description of static elements
alone would provide a good starting point for system
development and its further refinement with dynamic aspects.
This representation defined as a UML class diagram, as well
as the study on possible options for generation of software
components are the objects of the present research.

The class diagram, being the most common in modeling
object-oriented systems [2], is used to model the static design
view of a system. According to MDA [4], the automatic
transition from class diagram into platform-specific software
components is done by performing a model transformation,
where model elements and parameters are mapped to
corresponding elements and parameters in the software code.

Since published an article on a renovation of the idea of
model application during software development and automatic
code generation [5], the industry has still been waiting for

ways to apply these ideas in software projects. This would
increase productivity, while maintaining the appropriate level
of software quality. Nevertheless, previous forecasts, that
MDA will cover the whole area as a tsunami in next ten years
(proclaimed at the European Conference of MDA in 2006),
the actual impact of MDA on software development has not
changed.

The authors of this paper propose to investigate the central
component of model driven software development, which is
the UML class diagram. Two factors are established as
limitations of practical usage of the UML class diagram during
software development:

1) Software developers do not invest enough effort in a
formal definition of class diagram elements from the problem
domain, and a class diagram is developed based on hints,
human intuition and previous experience working with class
diagrams. In fact, some commercial industries find that too
much modeling is cumbersome and slows down productivity
[6]. “For such projects, it makes sense to use UML as a sketch
and have your model contain some architectural diagrams and
a few class and sequence diagrams to illustrate key points”
[71;

2) A survey of UML practitioners [8] shows that class
diagrams are not fully used for further software development,
either for code generation or documentation. The results of
this report show differences in several dimensions of UML
diagram usage in software development projects including the
purposes for which they were used and the roles of
clients/users in their creation and approval. Hence class
diagram has lost the role it could play in software
development — i.e. to serve as a bridge between system
specification at the user side and software components at the
developer side [9].

The goal of this paper is to investigate the level of class
diagram usability in software development and to try to
answer the following questions:

1) where is the lack of realization and application of model
driven ideas in software development projects;

2) why the software industry does not apply all the ideas of
MDA at high level of competence;

3) finally, why the industry is not “covered” with MDA
support tools.

The paper is structured as follows. Results of the authors’
research on UML class diagram usage in software
development projects are discussed in Section 2. To advance
practical usage of the class diagram during software
development, we need a clear set of elements of the class
diagram and solutions for their derivation from the problem

65

Scientific Journal of Riga Technical University
Computer Science. Applied Computer Systems

2011
Volume 47

domain. Thus, Section 3 gives a brief review of several
techniques and solutions for development of the class diagram
in a more or less formal manner. Software components
required at the software implementation level and several
theoretical assumptions of code generation abilities are
described in Section 4. Section 5 demonstrates an example of
code generation from a class diagram using the Eclipse
platform. In conclusion the authors refer to problems stated in
the introduction and discuss questions which have been dealt
with and are still open for discussion.

I11.SEVERAL ISSUES ON UML CLASS DIAGRAM USAGE IN
OBJECT-ORIENTED SOFTWARE DEVELOPMENT

Regardless of what software life cycle is used, there are
three main activities in software development: analysis (in
conjunction with the requirement definition), design and
implementation (with testing). In each of these activities,
UML class diagrams are used differently.

During the analysis, while collecting information on the
problem domain, the class diagram is viewed from the
conceptual perspective, thus it is called a “conceptual class
diagram”. The diagram is used as a problem domain
dictionary (potential classes) and it contains least specific
notation. The reason is to facilitate communication with the
customer, who is not familiar with the UML notation [10].

In the design process class diagrams are supplemented with
technical details, thus more precision and more notation is
used. Classes are populated with attributes and methods, as
well as different kinds of relations “structural class
diagrams”, which represent overall system structure
(architecture). Depending on the software development
process, a UML class diagram may contain a sufficiently
detailed design — blueprint, while in an iterative process it can
still be a general system structure — sketch.

Finally, in the implementation process, class diagrams can
be used to generate system basic structure (skeleton) code.

Given that the class diagram represents the structure of the
system, the notation does not provide behavior of the method,
however by assigning a state chart or activity diagram from a
behavioral diagram group, it is possible to provide information
about a body of the method, which shows system dynamics.
Similarly, class diagrams can be wused for system
documentation. It is not necessary to reflect the whole system
structure, but for example, only an individual part of the
system [10]. One way or another class diagrams represent the
static structure of the system. They capture domain units,
resources with which the system operates, but not the
operation of the system dynamics [11]. They are also
abstractions from any particular system implementation -
programming language syntax.

A UML class diagram serves as a primary artifact during
object oriented software development. During the evolution of
programming technologies and software development process
in general, the current idea of basing software development on
models is becoming more and more popular. According to the
idea of Model Driven Architecture [1], the class diagram is a
central component for representation of a solution domain in a
platform independent manner and serves as a basis for
generation of platform specific details that are required for
further generation of a software code.

A class diagram describes the static structure of classes in
the system and relationships between those entities. This way,
a class diagram represents the structure of the system, as the
summarized essence, the base for system operation, but not the
system dynamics itself.

The key element in the class diagram is “class”. The other
elements are different types of relationships between classes,
such as aggregation, composition or dependency. To find the
usability of class diagram elements, the authors conducted a
study on the UML class diagram usage in industry (in 2007)
[12]. The results are summarized in Table 1.

TABLE |
ELEMENT USAGE BASED ON RESPONDENTS’ EXPERIENCE

Usable (often) Irregular use

Used in context Unused (rare)

Class stereotype Attribute stereotype

Method stereotype

Stereotype icon

Attribute and method type Method visibility

Attribute visibility

Default value for attribute and method

Tagged value

Method parameter direction

Multiplicity for attribute and method parameter

Class element

Abstract method Static method Static attribute
Derived attribute
Constraint on attribute and method
Generalization Generalization constraint Generalization discriminator and set name
& |Composition and aggregation Inner and outer attribute Composite structure (composite and aggregate
= attribute)
,5 Association with defined and | Association name, roles, Bi-directional, one-way navigation and non-
;3 undefined navigability read direction, constraints _[navigable association
~ |Multiplicity Dependency relationship Dependency relationship stereotype

Realization relationship

Abstract class Active class

Association class and N-ary association

Class with qualifier

Template class

Interface class
Ports

Provided and required interface

Internal class structure

Specific class

XOR constraint

Powertype generalization

Note for additional information

User-defined compartment

66

Package visibility (~) for attribute and method

Scientific Journal of Riga Technical University
Computer Science. Applied Computer Systems

2011
Volume 47

The survey was sent to a number of existing software
development companies in Latvia, with an aim to clarify what
UML class diagram elements they were typically using in the
projects. The survey showed a subsequent failure: not all
companies used UML tools which could allow the diagram
creator to use the wide range of notation included in the
survey. This means that UML tools, as such, limit the usability
of UML notation. For example, MS Visio does not provide the
required interface, internal class structure (parts, ports). At the
same time, there are UML tools, which can handle all notation
used in the survey, like Visual Paradigm for UML.

Main elements of the class diagram marked with most
common use, are: generalization, aggregation, composition
and association (with defined and undefined navigability). In
addition, multiplicity is marked as an important part of all
these relationships. Association roles, name, direction of
reading and constraint are used irregularly. In the class
element, the usable parts are: type for attribute and method,
method parameter direction and class stereotype, which in fact
is very important for code generation.

For many elements respondents gave completely opposite
assessments, thus the same element was assessed both with 10
and 0. This fact suggests difference in the level of detail used
in diagrams, as well as possibly different contexts (e.g.
programming in C++, Java or creating object databases) and
the diagram main purpose. These elements include: template
class, provided/required interface, visibility for method and
attribute, default value, association class, stereotyped
realization and dependency relationship, bi-directional
navigation and generalization constraints. Rarely used
elements are: class with internal structure, powertype notation,
package visibility, stereotyped attribute and method, despite
the fact, that the latter one is important for code generation.

Usually developers start modeling a class diagram directly
before writing an application code, but still they construct the
initial architecture defined in terms of the class diagram
manually by reading the requirement specification.

Our conclusion about the usage is that first of all UML class
diagram mainly is used only on a high abstraction level or as a
sketch model, if it is used at all. Some respondents replied “we
are not using UML at all”. Secondly there are no cases with
real code generation from the class diagram. We can also
conclude this from the pure usage of UML 2.0 element
notation invention which is straightforward for code
generation, like the template class, stereotyped relationships,
attributes and methods as well as tagged values and
constraints. Of course there are two different views on the
class diagram, i.e. visible and detailed, which are diverse in
terms of the model information level.

The problem presented with two different kinds of models —
a user oriented model and a developer oriented model, can be
solved by generation of the class diagram from the initial
knowledge about business and its complete usage for
generation of software components.

In order to properly implement the usage of a class diagram,
we need knowledge about:

1. Retrieving the information from the problem domain
description and deriving a class diagram for further use. This
information should be simultaneously complete and
consistent, see current research in Chapter 3.

2. How and what software components we can get from a
class diagram via transformation into code. Based on this
knowledge we can define transformation rules as well as have
the possibility of reengineering, see current research in
Chapter 4.

Only having both components defined gives the possibility
to build a bridge between user oriented models and developer
oriented models of a system. In this way a class diagram helps
to implement software similar to the initial description of
system processes [13].

I11. DEFINING A CLASS DIAGRAM FROM THE
PROBLEM DOMAIN

The conceptual idea of a class diagram has been in use for a
long time. Several software development methodologies and
techniques used to identify classes in problem area or in initial
models have been proposed since then. In fact, the approach
proposed by James Rumbaugh in 1991 for Object Modeling
Technique [14] still is considered one of the best approaches
for identification of classes at the system domain level, with
real-world operations on the domain objects and state
diagrams showing the life stories of domain objects.

A. Use-Case Based Class Definition

Ivar Jacobson [15] together with Grady Booch and James
Rumbaugh offered to use the definition of use-cases as a basis
for software development [16]. Several other investigations
also have been initiated in this direction [17], [18], [19]. A
general schema of definition of a class diagram in the use-case
driven approach is shown in Fig. 1 [20].

The use-case oriented approach is based on an effort to
define use-cases and users of the system, as well as to describe
the usage of the system with detailed scenarios that provide a
basis for object interaction and sharing of responsibilities
among domain classes (Fig. 1). A more comprehensive
analysis of object communication results is found in the
definition of class stereotypes.

However, software developers often ignore the “use-case
driven”, making limited or even no use of either use-case
diagrams or textual use-case descriptions [8]. In fact,
organizations use different tools for business process analysis
and, therefore, have complete and consistent models of their
organizational structure, responsibilities of the employers,
business processes and the structure of documentation
workflows—in other words, well-structured initial business
knowledge [21].

Therefore, the class diagram may be based on the initial
business knowledge (if it is formal enough).

67

Scientific Journal of Riga Technical University
Computer Science. Applied Computer Systems

2011
Volume 47

%@ -
A
step1 | step2
step 3
A2

tep4 [Seps

) Problem domain classes
Use-case diagram
{} % Communication diagram (UC1+UC2)
Sequence diagram (UC1) P
% E ——SSSage;
AL (&] melh0d30T $e1h0d20
b 1 :“ > melhgdAO
AL
stdp2 o ==
method2(c1, c2)i A2 message 3 N
method5() &
method3(5
&
message 1 i :
u ek | {}
% Seguence diagram (UC2) % ?mmnica;rhbnl O _- P
- i iagram with class B
A2 AL ST
| Imethodd(yh e ! T Sfereafypesme‘hodm? method1():E . _/{;71
Mﬂwﬂ | methodd0 | [V method2 £y
! — &
message2 | . &
1 > A e
] message 32
methodsQ ethod7 U methods(y,
l< 1 U E
T T § ! i ﬂeﬂﬁodeo
N D {} J
<<houncdary>> <<control>> <<control>> <<boundary>>
c B
%\ g 1
A2 MNg2 L7 bl S==ls
= 3 method2(c1, c2) method1() \
SsendMessage3(method4() method3() sendMessagel() | %\
udateReturn() method8() p urn() \
v <<control>>
5 i <<boundary>>
System classes in «E"E;‘Y» E T I
5 = AL
Class diagram T o l_Jm |7
d2 3 h2
GEl method6() sendMessage2()
method5() method7() updateReturn()

Fig. 1. Class diagram development, based on definition of use-cases [20]

So far, another group of software developers prefers to use
business process modeling on the initial stages of system
analysis [22], [23]. Process-oriented developers may also
prefer to use use-cases, however, in this case identification of
use-cases is performed in a much more formal way.

B. Data-driven System Modeling

Although only two main concepts are considered during the
analysis of the problem domain—the process and data—
several data-oriented approaches can be applied (e.g., such as
[24]). Entity-relationship modeling (ERM) is a semiformal
data-oriented technique for specifying software systems. It has
been widely used for over 30 years for specifying databases
[25]. Here, the developers work in correspondence with the
definition of data structure since operations with data are of
less importance. Of course, operations are needed to access the
data, as well as the database itself which should be organized
so as to minimize access time. Nevertheless, the operations
performed on the data are less significant. Moreover, the
manner the software is being developed is not object-oriented,
also, the role of the class diagram here is secondary.

C. Two-Hemisphere Model-Driven Class Definition

In general, the concatenation of data (concept) model with the
process diagram can be used to identify classes, their
attributes, relationships with other classes and even more—the
operations of classes. The idea of common consideration of
both models is known; however, this usage in an object-
oriented approach was not widely discussed. [26] proposes the
way the classes and their object operations can be defined

68

based on a two-hemisphere model [20], which essence is two
interrelated models:

1) a business process model—describes the processes of the
developed system;

2)a concept model—describes objects and their interaction
during system work.

Two-hemisphere model-driven approach (Fig. 2) [26]
proposes to start the process of software development based
on the two-hemisphere problem domain model, where one
model reflects functional (procedural) aspects of the business
and the software system, and another model reflects the
corresponding concept structures. The co-existence and
interrelatedness of the models enables knowledge transfer
from one model to another, as well as the utilization of
particular knowledge completeness and consistency checks
[20]. Then elements of the two-hemisphere model are
transformed into elements of the UML class diagram, using an
intermediate model and analysis of object interaction [13].

4)
G1 G2

Process model
_ | 1 J

Concept model

L]

e Y)
> 12X (63 =
vl sV 9
Communication diagram Class
L diagram)

Fig. 2. Transformations from two-hemisphere model into class diagram in
two-hemisphere model driven approach [26]

D. Other Techniques

Another attempt to increase the formalization level of the
class diagram development is the usage of the so-called formal
languages [27]. Formal languages were developed for an
unambiguous system specification. Nevertheless formal
languages have an important defect — only specialists are able
to understand system specifications written in formal
languages.

Formal languages are based on mathematics. Business
specialists usually have difficulties with them. OCL [28],
UML profiles [29] and executable UML [30] are some of the
modeling solutions that could solve this problem. On the other
hand manual transformations that are understandable for the
business specialist do not support formal transformation of
models at all. [31] describes the results of a survey about
different approaches used for transformation of system
requirements into system design and implementation. The
survey shows the result of analysis on different approaches to
transformation of the problem domain description into the
UML class diagram during the last 10 years, published in four
digital libraries (IEEEXplore, ACM, Science Direct,
Springerlink) (see Table II).

Scientific Journal of Riga Technical University
Computer Science. Applied Computer Systems

2011
Volume 47

TABLE Il
SURVEY ON APPROACHES TO UML CLASS DIAGRAM CONSTRUCTION

Type of approach

Amount of papers for exact type of artifact

Type of problem domain description Software 43 / Business 29

Other 3

Structure of problem domain description |Standard model 25 / Non-standard model 25 / Template 1 / Structured natural language 17 / Natural language 10 /

Type of models of problem domain

Structural 9 / Behavioral 39 / Functional 6 / Other 2

Transformations provided Yes 58/ No 14

Transformations level

Endogenous (the same language and abstraction level of source and target model) 9 / Exogenous (different) 52

Transformation type

Standard transformation level 7 / non-standard 46

Transformation automation level

Automatic 27 / Interactive (i.e. Semi-automatic) 11 / Manual 22

Tool support Yes 25/ None 46

Type of validation

Survey 1/ Case Study 32 / Experiment 2 / None 37

Approach scope Academic 53 / Industry 20

The survey states that there exist enough approaches with
different types of solutions for the generation of a UML class
diagram.

What is more, considering the class diagram construction,
we can say that we have quite enough techniques for
derivation of elements of the class diagram from the problem
domain. The analysis of possibilities to use class diagram
elements for further generation of software components is
discussed in the next section.

IV. ANALYSIS OF SOFTWARE COMPONENT
GENERATION

The implementation level of abstraction of the software
system presented in the form of the class diagram serves as
input for the code generation tool. The actual level of
abstraction of programming languages has grown from the
physical machine level of the first and second generation
languages to the abstract machine level of the third and fourth
generation languages. [32] states that one objective in using a
fourth generation language is a shorter code, and, hence,
quicker development and easier maintenance. The use of code
generators takes three goals even further, in that the
programmers have to provide fewer details to a code generator
than they provide to an interpreter or compiler. Therefore it is
expected that the use of code generators will increase
productivity of the software system development.

A. Generation of Class Specification at the Level of Console

Application

To complete the task of code generation we first need to
clarify what component types are developed during system
implementation. These types of components give the
capability of searching for the corresponding components of a
class diagram. In general, a console application of such a
system can consist of classes, their definition and realization,
relationships among classes, classes visibility etc. All the
components required for such an application are already
defined by main statements of object-oriented philosophy, the
main book we can mention is [33].

So far we can see that different solutions are offered for
making the process of the class diagram development more
suitable, more formal, or even more “user-friendly”.

The main technique here is to look for objects with the
same structure (attributes) and behavior (methods) and to
group them together into classes. The object is a class
instance, which at the defined state performs defined
operations. At the moment of object creation, the defined
attribute values are assigned to an object, and another object
can call it to perform the defined method. Class transformation
into the C# programming language is shown in Fig. 3, where
the example of the UML class is shown on the left side of Fig.
3 and the correspondent code generated from the class
specification is presented on the right side of Fig. 3.

ustng Syet
{namespace Exasgle

public cless EzespleCiszs |

pubilic stiring Publicltsiieninit « °

rivate int

‘0
Fig. 3. Example class in both modeling and programming language

The UML class diagram offers different types of
associations between classes: these serve as a basis for the
generation of several other statements of object-oriented
philosophy (e.g., class visibility, generalization, aggregation,
usage, dependency, etc.).

All the main components of object-oriented paradigms at
the console level of system abstraction are being realized since
Booch, Rumbaugh and Jacobson made efforts to create code
generation tools in the mid 90-ties. The Rational Rose CASE
tool was created at that time and has been evolutionarily
developed with IBM brand tools as its successor. A lot of open
source tools have been developed since that time. However the

69

Scientific Journal of Riga Technical University
Computer Science. Applied Computer Systems

2011
Volume 47

authors based on several experiments with code generation
can conclude that despite many papers devoted to the MDA
and a lot of theoretical statements about the likelihood of
model transformation, in fact, the currently available tools out
of the box show very poor results. Since they don’t take into
account target programming language syntax and models, that
are not specially adapted, the tool can easily generate program
code that even does not compile. In other words, current
transformation is a primitive information transfer from model
to code, instead of making additional decisions at the model-
building and generation process stages, which as a result could
at least match syntactically and semantically a proper result
code.

B. Generation of Software Components for Windows/Forms
Applications

The development of business-oriented software systems
with user-friendly GUI interface is more complicated. In this
case, the generation of a Windows/Forms application from the
class diagram is considered. In general, Windows/Forms
applications rely on three-layer architecture [19]: presentation,
logic, and data layers (Fig. 4).

Problem Domain

Class diagram

Boundary Classes Control Classes Classes-Entities

Fig. 4 The three-layer architecture

70

By separating the application into layers it is possible to
modify each layer independently and do the technological
updates for each of them without touching other layers, for
example the application logic.

Presentation is the topmost level of the application, which is
used to show output results from logic level. This is the
interaction level between user and application, in the client-
server environment the presentation level appears on the client
side. Currently there are many frameworks, which support
three layer architecture and where the presentation layer can
be modified based on the target operating system or using
style sheets in case of web environment. As mentioned, the
output design can be changed without touching the other
layers. From the MDA and code generation point of view it
could be possible to generate a base form for each class or
even concatenate related (linked) classes into one form even if
the relation between classes is one to many, because it is
possible to show many-side classes as a table. There are no
problems to correctly guess output control for a class attribute,
the decision may be based on the attribute type, for example
Boolean is a check box, String is an edit box, related class is a
list box etc. Also from class definition it is possible to
correctly address which attributes should be visible and which
are used in the background, using attribute get/set flags. If the
model is enriched with a sequence or communication diagram
which contains an ordered message flow in objects life, it
could be possible to use this information in presentation layer
by ordering input fields or even opening forms in a provided
sequence. Similarly, given that the presentation level fields
may be related to each other, affecting each other’s output,
this link could be determined from the derived class attributes
and the contained fields in the derivation formula. Events
which can be called during the form processing, can be labeled
with appropriate stereotype which can provide visible
separation of other class methods and can be transformed
differently from other methods, for example with an additional
windows handle parameter.

However we still believe that currently some GUI creator
tools should be used at the presentation level to modify and
adapt the result design, because generation can target and
transform the classes thru GUI templates, which should be
configured anyway.

The logic layer contains application functionality and
business rules. All methods and functions are executed in this
layer. At this moment class behavior transformation into
executable code is the MDA weakest point, because it is not
so easy to express algorithms in models. Describing class
behavior UML suggests using activity, sequence,
communication and state machine diagrams, so the class
diagram contains method definition, but the body is expressed
in the mentioned diagrams. This means that we have a choice
between two options for describing class behavior in the
model.

We can use the mentioned diagrams to show the object
message flow, which will result in so-called “functional
block” diagram difficult to read and mixing a low level code
with an abstract platform independent model. Or we can use

Scientific Journal of Riga Technical University
Computer Science. Applied Computer Systems

2011
Volume 47

UML defined OCL [28] and Action languages to formally
describe functionality by writing a pseudo-code. There are
also solutions based on UML Profile extensions such as the
UML profile for EJB [3], but the problem still remains: an
abstraction level is too low. It does not represent the problem
as a collection of classes, attributes and relationships, instead,
the result is composed of entity beans, session beans and Java
classes. Needless to say, such a low level abstraction model
almost coincides with the source code and transformations of
this kind of model are simply straightforward, since there are
no changes in the abstraction level.

However the authors believe that the fundamental problem
is the lack of abstract functional components. Thus to describe
class behavior it would be necessary to use pre-defined
functional components, so it would be necessary to mix UML
model abstraction with concrete programming languages. As
an example the authors remind of the simple square root
function, no one cares about what low-level algorithm
implementation is used to calculate the square root. The
programmer just calls sqrt(x) function and gets a result. The
same analogy should be used for abstract behavior. The
modeler just uses some named component by giving a class
attribute as a parameter or uses stereotypes and tagged values
and at the same time this component is mapped to a platform
specific code. In this way a manageable and transformable
model is obtained, which describes class behavior.

The data layer keeps data neutral and independent from
application servers or business logic. It contains the required
mapping for storing objects into a data source. To create data
tables it is already possible to generate SQL scripts from a
class diagram, which can be executed to build the required
database instance. Similarly, it is possible to generate XML
files with the correct class structure. For example, the Sparx
Enterprise Architect [34] allows generating a DDL model
from a PIM model, providing all the necessary transformation
rules. Thus this is quite similar to generating a class definition
into a target programming language.

In this way we can assume, theoretically, that all the
necessary components for software system generation and the
basis for such transformations rules can be defined and have to
be realized by tools. Thus, the impact of the generated code on
the set of software components, required to be developed, can
be valuable and really powerful.

V.CURRENT FACILITIES OF SOURCE CODE
GENERATION FROM THE UML CLASS DIAGRAM

The Eclipse platform together with Eclipse Modeling
Framework (EMF) was selected to examine the most current
facilities of source code generation, as well as to find out how
model-driven approaches like MDA perform in real-life
application development. In short, Eclipse is a universal tool
platform and an open extensible integrated development
environment (IDE) [35]. In turn, EMF extends The Eclipse
platform with a solid basis for application development using
modeling and code generation facilities [35].

From the MDA perspective, EMF should be considered as a
framework for platform-independent and platform-specific

(i.e., Java) layers. EMF utilizes the concept of the class
diagram, at the same time extending it. In general, EMF has
two models: the first is a meta-model, which describes the
structure of the model, while the second serves as the actual
implementation of it (i.e., is the instance of meta-model).

EMF uses XMI [36] to persist the model definition. The
EMF meta-model definition can be defined based on [37]:
XMI document, Java annotations, UML and XML Schema.

Once the EMF meta-model is specified, the generation of
corresponding Java implementation classes from this model
becomes possible. The source code from EMF is generated
with the intention for further modifications. That is why it
looks clean and documented right “out of the box™ [37].

In fact, with EMF the data model explicitly enhances the
visibility and extendibility of the model [37]. It also provides
change notification functionality to the model in case of
changes in the model happen. The EMF helps to program
interfaces instead of classes. Also, it is possible to regenerate
the Java source code from the model at any point of time.

The EMF Project and EMF Model wizards provide a way
for defining an EMF model from UML [37]. In general,
Eclipse EMF supports various model formats. However, EMF
also provides additional support for IBM/Rational Software
Architect (.mdl files). The reason is that RSA was used to
“bootstrap” the implementation of EMF itself. Nevertheless, it
is possible to create a UML model within Eclipse (via UML2
Tools project or any other UML plug-in).

The EMF model is based on two meta-models: the Ecore
and the Genmodel model [35]. While the former contains
information about defined classes, the latter contains
additional information for code generation.

The generated source code consists of three packages [35]:

1) Model package contains interfaces and the Factory to
create Java classes;

2) Model implementation package contains the concrete
implementation of the interfaces defined in the model (i.e.,
classes);

3) Model utility package contains the AdapterFactory.

The central Factory has methods for creating all defined
objects. Interfaces and their corresponding implementations
contain getter and setter (if allowed) methods for each
attribute. Each interface extends the base interface EObiject,
which together with its corresponding implementation class
EObjectImpl provides a lightweight base class that lets the
generated interfaces and classes participate in the EMF
notification and persistence frameworks.

In order to run the generated application as a console
application, the main method definition should be considered.
Furthermore, if visual GUI development for such application
is necessary, then one of the corresponding GUI design plug-
ins for Eclipse should be considered.

While the development process of Eclipse and EMF is
fairly convenient and clear, there always is a room for
improvement. First of all, the current release of EMF is not
final, meaning that there is still a lack of stability. In order to
avoid problems with UML model import, models should
contain all primitive types used to define the attributes of

71

Scientific Journal of Riga Technical University
Computer Science. Applied Computer Systems

2011
Volume 47

model elements (at least, this is true for UML2 Tools Eclipse
plug-in). As soon as an UML model is imported, the
relationships among classes in UML class diagrams should be
reassigned manually. This can be achieved by initializing an
Ecore diagram. In fact, the Ecore diagram can be considered
as an EMF representation of a UML class diagram (Fig. 5).

H Reception £l Room

H Hotel

@ checkln = name
@ checkOut o= starRating
1.1 | P

@ checkRoom

= number
= type
= rate

containsReception containsRooms

Fig. 5. An example of Ecore diagram

Eclipse EMF also lacks the option to define the data layer
(like Sparx Systems Enterprise Architect). Currently, the use
of additional plug-ins for modeling entity-relationship
diagrams should be considered in order to generate the DDL
of the database schema. However, this means that additional
time is needed to develop an application, as the ER diagram
should be defined from scratch.

Nevertheless, the use of other technologies such as
Hibernate [38] or Teneo [39] would help to eliminate this
problem by providing a framework for mapping an object-
oriented domain model to a traditional relational database. The
use of Hibernate and Teneo (which actually is a Hibernate
representation in EMF) in itself also is a bit different.

VI. CONCLUSION

Abstraction is the process, where the core principles from a
set of facts or statements are extracted and distilled. In turn, a
model is an abstraction of something in the real world,
representing a particular set of properties. There are two main
reasons why developers should create a model [24]:

1) for better understanding of a process or an object by
identifying and explaining its key characteristics;

2) for documenting the ideas that developers need to
remember, as well as to make those ideas clear to others.

In fact, OMG’s initiative—Model Driven Architecture—
offers the third reason for using the models in software
development [40]: models are the basis for further code
generation. Moreover, the UML class diagram plays the
central role in promoting this vision in the industry.

In this article, the authors investigated the current facilities
of the source code generation from a UML class diagram,
analyzing it from various perspectives. These perspectives
include the modeling of a class diagram from initial business
information, as well as concerns about the usage of a class
diagram for generation of software components.

One of the contributions of the paper is a description of the
state of the art in the area of UML class modeling. This paper
analyzes the wusage of a class diagram in software
development. It looks at bigger issues — why MDE is not used
in projects, why MDA is not applied in a competent way on
projects, and why industry does not have good MDA tools.

The discussion surrounds the question why developers do
not spend enough time developing good UML class diagrams,

72

where one has a lot of approaches for formal construction of
them.

One of the reasons stated is the assumption that the problem
is not in the construction of a class diagram, but rarely occurs
in code generators. The paper summarizes a representative
bibliography assembled over the last 20 years in the area of
object-oriented modeling analysis and approaches to the
creation of a UML class diagram. The correspondent scientific
literature also includes the MDA/MDD inception as well.

The main conclusion is that we have quite enough means to
construct a class diagram. At least at the theoretical level we
have quite enough transformations ready for solving the task
of code generation during system implementation, but in
practice all these means are not sufficiently supported by
modern CASE tools at the sufficient level. The aspect of code
generation and the results of the analysis of the quality of the
code generated by modeling tools are discussed in the authors’
second paper included in this issue [41]. These results clarify
the question why software developers don’t want to use all the
facilities of a UML class diagram.

The main reason is that even if a class diagram were
developed in a formal way and contained complete and
consistent presentation of the problem domain, still software
developers would not be able to fully use it for further
software development due to weaknesses in code generation
tools, because they don’t support all the required
transformations into code components to fulfill all the
requirements of MDA. More developers and developer
companies should be involved in the development of such
technologies as EMF. The investment will pay off in terms of
reduced amount of time spent on other projects.

Of course, the industrial companies have to meet standards
of capability and maturity to be able to use all the principles
and ideas of the most current facilities. However, without
investment in something new and revolutionary there would
be no progress in the current state of the art.

But on the other hand the lack of available powerful tools
supporting all the aspects discussed in the paper can also be
regarded as the most determinative and disincentive factor,
which hinders valuable MDA/MDD ideas being adopted by
industry. Since the renovation of the idea of model application
during software development at the beginning of 21st century
we still are at the same stage. This can raise doubts about the
solvability of the problem.

We can discuss an analogy between code generators and
automatic language translators. Even if we have a condition in
both dictionaries, where the word of one language has one and
only one interpretation in the other language, we can
encounter a problem similar to one typical for poetry
translations. All the words are translated in the correct position
and sequence, but the translated text doesn’t rhyme or have
meaning. The same analogy can be drawn in programming
language, all the code operators would be at their required
places, but the program code as a whole doesn’t “sound” and
doesn’t operate as it should.

Scientific Journal of Riga Technical University
Computer Science. Applied Computer Systems

2011
Volume 47

Acknowledgments. The research presented in the paper is
supported by the research grant No. FLPP-2009/10 of Riga
Technical University “Development of Conceptual Model for
Transition from Traditional Software Development into
MDA-Oriented.” The research presented in the paper partly is
supported by Grant of Latvian Council of Science No. 09.1245
"Methods, models and tools for developing and governance of
agile information systems".

(1]
(2]
(3]

(4]
(5]

(6]
(7]
(8l
(]

[10]
[11]

[12]

[13]

[14]

[15]
[16]
[17]
[18]

[19]

[20]

[21]

[22]

REFERENCES
“OMG Model Driven Architecture”, [Online]. Available:
http://www.omg.org/mda [Accessed: Sept. 24, 2010].
“OMG Unified Modeling Language”, [Online]. Available:

http://www.uml.org [Accessed: Sept. 24, 2010].

O. Pastor and J.C. Molina, Model-Driven Architecture in Practice: A
Software Production Enviroment Based on Conceptual Modeling,
Springer, 2007, pp. 302.

A. Kleppe, J. Warmer and W. Bast, MDA Explained : The Model Driven
Architecture — Practise and Promise, Addison Wesley, 2003.

J. Siegel, “Developing in OMG’s Model-Driven Architecture,” in OMG
document omg/01-12-01 2001. [Online]. Auvailable:
http://www.omg.org/mda/papers.htm [Accessed: Sept. 24, 2010].

M. Fowler and K. Scott, UML Distilled: A Brief Guide to the Standard
Object Modeling Language, 2n® Ed., Addison-Wesley Prof., 1999.

R. Miles and K. Hamilton, Learning UML 2.0, 1% Edition, O'Reilly
Media, 2006.

B. Dobing and J. Parsons, Dimensions of UML Diagram Use: A Survey
of Practitioners, 1GI Global, 2008.

A. Burton-Jones and P. Meso, “Conceptualizing systems for
understanding: An empirical test of decomposition principles in object-
oriented analysis,” Information Systems Research, 2006, pp. 101—114.
M. Fowler, UML Distilled: a brief guide to the standard object modeling
language, 3-rd edition, Addison-Wesley Professional, 2003. — 208 Ipp.
B. Unhelkar, Verification and Validation for quality of UML 2.0 models,
New Jersey: John Wiley-Interscience, 2005, pp. 313.

J. Sejans, “Analysis of Notational Elements of UML Class Diagram,”
(In Latvian: Valodas UML klasu diagrammas elementu notacijas
analize) Bachelor thesis, Riga Technical University, 2007.

O. Nikiforova, “Two Hemisphere Model Driven Approach for
Generation of UML Class Diagram in the Context of MDA,” in Huzar,
Z., Madeyski, L. (eds.) e-Informatica Software Engineering Journal, vol.
3, issue 1, Wroctaw University of Technology, Institute of Applied
Informatics, Oficyna Wydawnicza Politechniki Wroctawskiej, Wroctaw,
Poland, 2009, pp. 59—72.

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy and W. Lorensen,
Object Oriented Modelling and Design, Englewood Cliffs: Prentice-
Hall, New Jersey, 1991.

1. Jacobson, Object Oriented Software Engineering: A Use Case Driven
Approach, Addison-Wesley Professional, 1992.

1. Jacobson, G. Booch and J. Rumbaugh, The Unified Software Deve-
lopment Process, Addison-Wesley, 2002.

C. Larman, Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design, Prentice Hall, New Jersey, 2000.

T. Quatrany, Visual Modeling with Rational Rose 2000 and UML, 2™
Edition, Addison-Wesley, 2000.

J. W. Satzinger, R. B. Jackson and S. D. Burd, Object-Oriented Analysis
and Design with the Unified Process, Thomson Course Technology,
2005.

O. Nikiforova, “Object Interaction as a Central Component of Object-
Oriented System Analysis,” International Conference ,,Evaluation of
Novel Approaches to Software Engineering” (ENASE 2010),
Proceedings of the 2nd International Workshop ,Model Driven
Architecture and Modeling Theory Driven Development”
(MDA&MTDD 2010), Osis J., Nikiforova O. (Eds.), Greece, Athens,
July 2010, SciTePress, Portugal, pp. 3-12.

O. Nikiforova and M. Kirikova, “Two-Hemisphere Model Driven
Approach: Engineering Based Software Development,” in: 16th Inter-
national Conference Advanced Information Systems Engineering.
Persson A., Stirna J. (Eds.), LNCS 3084, Springer-Verlag Berlin
Heidelberg, 2004, pp.219-233.

M. Havey, Essential Business Process Modeling, O'Reilly Media, 2005.

[23]

[24]

[25]

[26]

[27]
(28]

[29]

(30]

(31]

(32]
(33]

(34]

(35]
(36]

(371

(38]
(39]

(40]

[41]

J. Jeston and J. Nelis, Business Process Management, 2" Edition,
Practical Guidelines to Successful Implementations, Butterworth-
Heinemann , 2008.

J. Toby, S. S. Teorey, T. N. Lightstone and H. V. Jagadish, “Database
Modeling and Design: Logical Design,” 4" Edition, in The Morgan
Kaufmann Series in Data Management Systems, Morgan Kaufmann,
2005.

P. Chen, The entity relationship model — towards a unified view of data,
ACM Trans. Database Systems, 1, 1976, pp. 9—36.

O. Nikiforova, A. Cernickins and N. Pavlova, “Discussing the
Difference between Model Driven Architecture and Model Driven
Development in the Context of Supporting Tools: Projection of Two-
Hemisphere Model into Component Model of MDA/MDD” presented at
4th International Conference on Software Engineering Advances. IEEE
Computer Society, Conference Proceedings Services, 2009, pp. 1—6.

A. B. Webber, Formal Language: A Practical Introduction, Franklin,
Beedle & Associates, 2008.

“OCL Specification”, [Online]. Awvailable: http://www.omg.org/cgi-
bin/apps/doc?ptc03-10-14.pdf [Accessed: Okt. 7, 2010].

Ambler S.W. Approaches to Agile Model Driven Development (AMDD)
Auvailable: http://www.agilemodeling.com/essays/
amddApproaches.htm#Manual

S. J. Mellor and M. Balcer, Executable UML: A Foundation for Model-
Driven Architecture, Boston, MA: Addison-Wesley, 2002.

G. Loniewski, E. Insfran, S. Abrahao, A Systematic Review of the Use of
Requirements Techniques in Model-Driven Development, D.C. Petriu,
N. Rouguette, O. Haugen (Eds.) the Proceedings of the 13" Conference,
MODELS 2010, Model Driven Engineering Languages and Systems,
Part 11, Oslo, Norway, pp. 213—227

S. R. Schach, Object-Oriented & Classical Software Engineering, 7"
Edition, McGraw-hill International Edition, 2007.

G. Booch, Object-Oriented Design with Applications, 2" Edition,
Englewood City, California, 1994.

“Sparx Enterprise Architect”, [Online].
http://www.sparxsystems.com.au/products/ea/index.html
Sept. 19, 2010].

D. Steinberg, F. Budinsky, M. Paternostro and E. Merks, Eclipse Mode-
ling Framework, 2" Edition, Addison-Wesley, 2008.

“Information Technology—XML Metadata Interchange (XMI)”, Inter-
national Standard, ISO/IEC 19503, First Edition, 2005.

“Eclipse Modeling Framework (EMF)—Tutorial”, [Online]. Available:
http://www.vogellade/articles/EclipseEMF/article.html [Accessed: Sept.
19, 2010].

“Hibernate—jBoss Community”, [Online].
http://www.hibernate.org [Accessed: Sept. 19, 2010].
“Teneo”, [Online]. Available: http://wiki.eclipse.org/teneo [Accessed:
Sept. 19, 2010].

D. Gasevic, D. Djuric and V. Devedzic, Model Driven Engineering and
Ontology Development, 2" Edition, Springer, 2009.

J. Sejans, O. Nikiforova, Problems and Perspectives of Code Generation
from UML Class Diagram, The Scientific Journal of Riga Technical
University, Series Computer Science — Applied Computer Systems,
2011 (accepted for publication)

Available:
[Accessed:

Available:

Oksana Nikiforova received engineering science
doctor’s degree (Dr.sc.ing) in information
technologies sector (system analysis, modeling
and designing, sub-sector) from the Riga
Technical University, Latvia, in 2001.

She is presently a full professor at the
Department of Applied Computer Science of
Riga Technical University, where she has worked
since 1999. Her current research interests include
object-oriented system analysis and modeling,
especially related issues in the framework of
Model Driven Architecture.

In these areas she has published extensively and has been awarded several
grants. She has participated and managed several research projects related to
the system modeling, analysis and design, as well as participated in several
industrial software development projects.

She is a member of RTU Academic Assembly, Council of the Faculty of
Computer Science and Information Technology, RTU publishing board, RTU
Scientific Journal Editorial Board, etc. She is awarded as RTU Young
Scientist of the Year 2009.

73

http://www.omg.org/mda
http://www.uml.org/
http://www.omg.org/mda/papers.htm
http://www.sparxsystems.com.au/products/ea/index.html
http://www.vogellade/articles/EclipseEMF/article.html
http://www.hibernate.org/
http://wiki.eclipse.org/teneo

Scientific Journal of Riga Technical University
Computer Science. Applied Computer Systems
2011
Volume 47

Anton Cernickins was born in 1985, died in
2010. Earned a degree of Bachelor of
Engineering Sciences in 2007, a degree of Master
of Engineering Sciences in 2009—hboth at Riga
Technical University, Latvia. He was a doctoral
student at the Institute of Applied Computer
Systems, Riga Technical University.
He was a researcher at the Department of Applied
Computer Science, RTU.

Field of interest: computer science. Special
interests: modeling, model-driven development.

Janis Sejans obtained engineering science master
degree (Mg.sc.ing) in information systems from
Riga Technical University, in 2010. Currently he
is a PhD student at the Faculty of Computer
Science and Information Technology

He is a researcher at the Department of
Applied Computer Science of Riga Technical
University. The work experience has been related
to ERP system programming and implementation
since 2002. Currently he is running his own
company TownTech and working at Joint Stock
Company Latvian Roadworks as a programmer
for ERP system.

He was awarded and included in Riga Technical University Gold Student
Fund in 2010. His master thesis was awarded by Verner fon Siemens as a best
research in 2010.

Oksana Nikiforova, Janis S€jans, Antons Cerpitkins. UML kladu diagrammas loma objektorientéta programmatiiras izstrade

UML ir industrialais standarts objektorientéta programmatiiras izstrade, kas piedava dazadu sistémas aspektu modeléSanas notaciju. Viens no sistémas
modeléSanas uzdevumiem UML notacija ir kalpot par ,tiltu” starp programmatiras sist€émas specificéSanu lietotaja pusé un programmatiiras realizaciju
programmétaja pusé. ST uzdevuma risinasanai UML valoda ir jabiit defingtam stingram prasibam diagrammu elementu identificé8anai un sistémas modela
izstradei, kur galveno lomu ,,spéle” UML klasu diagrammas izstrade. Klasu diagramma tiek veidota, apkopojot informaciju par izstradajamo programmatiiras
sistému no lietotdja puses, un kalpo par pamatu programmatiiras komponentu izstradei. Paslaik pastiprinata uzmaniba ir pievérsta klasu diagrammas elementu
automatizétai transformacijai koda fragmentos. Sis raksts fokusgjas uz klagu diagrammas lieto§anu programmatiiras izstradé no diviem aspektiem, gan aprakstot
dazadus papémienus klasu diagrammas izstrades metodés no sakotngjas informacijas par sistému, gan ari aprakstot dazas perspektivas koda generéSanas
uzdevuma. Raksta ir secinats par to, ka eksisté pietickami daudz pieeju, lai izstradatu UML klasu diagrammu pilnigu un nepretrunigu, un ar formalam
transformacijam no dazadiem problémvides apraksta veidiem. Tacu koda generéSanas joma joprojam pastav problémas, ka iegit stradajoSas programmatiras
komponentes. Tas ir iemesls, kadé] klasu diagrammas joprojam tiek lietotas tikai dokumentacijai. Pat, ja klasu diagramma tiks izstradata formala cela, tik un ta,
musdienas to vél nav iesp&ams lietot koda generé$anai. Patreizgja klasu diagrammas versija nesatur pietiekamu informaciju, kuru varétu “tiesa” veida
transformét programmatiiras komponentos. Koda generé$anas riki nepilda visas modelvadamas programmatiiras izstrades prasibas, lidz ar to, pieaug riku
standartizacijas nepiecieSamiba. Nobeiguma tiek diskutéts par esoSajam problémam klasu diagrammas lietoSana un perspektivam plasakai klasu diagrammas
lietosanai programmatiiras izstrades projektos.

Oxcana Huxudoposa, SIunc Cesinc, AHTOH YUepHuukuH. Poab amarpammbl kjaccoB s3bika UML B pa3padorke 00beKTHO-OPHMEHTHPOBAHHOIO
NMPOrpaMMHOI0 ofecneveHust

UML sBnsiercs MHIOYCTPUAIBHBIM CTAaHIAPTOM Uil pa3pabOTKM CHCTEM IIPOrPAMMHOIO OO0ECIEYEHMs, HCIOJIB3YIOIUM O0bEKTHO-OPUEHTUPOBAHHYIO
TexHooruto. OmHOI M3 3a7ad MOJEIUPOBAHHS CHCTEMBI, HCIONb3ys HoTammio UML, sBisieTcst obecniedeHne «MOCTa» MeXIy cherupHuKaryed CHCTeMBl Ha
CTOpOHE 3aKa3ylKa W peaju3alyell CUCTeMbl Ha CTOpoHe paspaborumka. J{ns pemenus 3Tod 3amaud B s3bike UML 1OMKHBI OBITH ONMpEeneHbl CTPOTHe
TpeOOBaHUA K MACHTU(UKALNK 3IEMEHTOB JHarpaMM M pa3pabOTKe MOJEIN CHCTEMBI, I7I¢ TIIABHYIO POJIb UIPaeT AuarpaMma KiaccoB. /luarpamMma KiIaccoB
cTpoutcs, 0000mas MHPOPMAIHMIO, TTOTyIeHHYI0 OT 3aKa3uWka, M JIOJDKHA CITy)KHTh OCHOBaHMEM IS pealu3allid CHCTeMBL. B mocnennee Bpems OoibImoe
BHHMaHHE YIEIIeTCs PEIICHHIO IPOOIeMBl aBTOMAaTHIECKON TeHepaIuy KoJa U3 JHarpaMMbl KI1accoB. B craThe paccMaTpHBaroTCs 1Ba acleKTa UCHOJIB30BAHMS
JHarpaMMBl KJIacCOB B pa3paboTKe MPOrpaMMHOr0 00eCeueHusl: C OIHOI CTOPOHBI - IPUEMBI KOHCTPYUPOBAHUA JHAarpaMMBI Ha 0a3e HaualbHOH HHGOPMAIUH O
CHCTEME, a C IPYToH - MepCIeKTHBEI TeHepalny Koja U3 JuarpaMMbl K1accoB. B cTaTbe maercst monTBep kaeHne Toro, 9To 3a 20 JIeT CyIecTBOBaHUS JHarpaMMBbI
KJIaccoB, pa3pabOTaHO JOCTAaTOYHO METOJOB, IPUEMOB M TEXHHK IUIS TOTO, YTOOBI CUMTAaTh, YTO IpobiieMa (GOpMaIbHOTO MOCTPOSHHUS THAarpaMMEI KIIACCOB
pemieHa. A BOT IO YacTH TeHEpalMH KOJa CYMIECTBYIOT NPOOJEMBI, CBS3aHHBIE C ABTOMATHYECKUM IIOMyYeHHEM DPaOOTAIOIIMX KOMIIOHEHTOB CHCTEMbI
ImporpaMMHoro obecmedenus. Y 3To sBisiercs oJHON U3 OPHYMH, T0YEeMy AHAarpaMMa KJIacCOB HCIHOIb3yeTcs TONBKO I JOKYMEHTAIMH, a B IIOJHOM o0beMe
CBOMX BO3MOXKHOCTEH B IIpoIlecce pa3pabOTKH MPOTpaMMHOTO OOECTIeUeHHs He HCIIONb3yeTcs, Jaxe eciy pa3paborana (opmanbHbIM obpasom. Ha manHbrit
MOMEHT JHarpaMMa KJIaCCOB HE COAEP)KUT JOCTATOYHBI CHHTAKCHC JUIS TOTO, YTOOBI OMMCATh BCE BO3MOXKHBIE M HEOOXOAUMBIE DJIEMEHTHI, KOTOPbIE JaayT
BO3MOXKHOCTb T€HEpPUPOBATh MOIHOLEHHBIH nporpamMublit kox. I CASE cpencTa, KOTOpbIe CYIECTBYIOT B MOANEPXKKY FeHepallul KoJa Ha JaHHOM dTalle, He
COOTBETCTBYIOT BCeM TPeOOBAaHUSM JUIS pa3pabOTKH yHpPaBIsieMOil MOJEISIMU CHCTEMBI, TAKUM 00pa3oM, BO3pacTaeT HeOOXOAMMOCTh CTaHAAPTH3UPOBATh TaKHe
CASE cpexctBa. B 3akimroueHne aBTopsI BeyT JUCKYCCHIO O CYIIECTBYIOIINX NMpoOIeMax B HCIIOIb30BaHUH JHarpaMMbl kiaccoB si3bika UML u mep ciekTnBax
paciupeHus 06IacTy UCIIONB30BAHMS JHarpaMMbI KJIIaCCOB B IIPOEKTAX MO Pa3paboTKe MPOrpaMMHOTO 0OecIedeHHUsI.

74

