
Scientific Journal of Riga Technical University
Computer Science. Applied Computer Systems

2011

__ Volume 47

 65

Role of UML Class Diagram in Object-Oriented

Software Development

Oksana Nikiforova
1
, Janis Sejans

2
, Antons Cernickins

3
,

1-3
Riga Technical University

Abstract – UML is an industrial standard for object-oriented

software specification which offers a notation for class modeling

during object oriented software development. Since the UML

class diagram is a so-called “bridge” between software

specification at the user side and software realization at the

developer side, it requires strong guidelines for identification of

class objects from the problem domain and notational

conventions for modeling of the class diagram for its further

usage in system coding. This paper presents a discussion on

problematic stages and possible element transformations into

software components. Several conclusions are drawn on potential

usage of the class diagram in industry.

Keywords: code generation, MDA transformation, model-to-

model transformation, UML class diagram,

I. INTRODUCTION

The increasing role of modeling in software system

development promotes a methodology, mostly represented by

OMG solution for system abstraction, modeling, development,

and reuse—Model Driven Architecture (MDA) [1]. The key

component of system modeling, which underlies the principles

of MDA—Unified Modeling Language (UML)—is used to

define several kinds of diagrams, their elements and notation

[2]. In fact, UML diagrams should be considered as a way of

describing the system from various perspectives: whereas a

static diagram is used to represent the structure of the system,

dynamic diagrams describe its behavior.

The main goal of MDA is to provide the ability of

automated transformations from platform independent models

into platform-specific source code. However, due to problems

with the definition of system dynamic aspects, as well as their

translation into code components, this goal has not yet been

achieved [3]. Nevertheless, the description of static elements

alone would provide a good starting point for system

development and its further refinement with dynamic aspects.

This representation defined as a UML class diagram, as well

as the study on possible options for generation of software

components are the objects of the present research.

The class diagram, being the most common in modeling

object-oriented systems [2], is used to model the static design

view of a system. According to MDA [4], the automatic

transition from class diagram into platform-specific software

components is done by performing a model transformation,

where model elements and parameters are mapped to

corresponding elements and parameters in the software code.

Since published an article on a renovation of the idea of

model application during software development and automatic

code generation [5], the industry has still been waiting for

ways to apply these ideas in software projects. This would

increase productivity, while maintaining the appropriate level

of software quality. Nevertheless, previous forecasts, that

MDA will cover the whole area as a tsunami in next ten years

(proclaimed at the European Conference of MDA in 2006),

the actual impact of MDA on software development has not

changed.

The authors of this paper propose to investigate the central

component of model driven software development, which is

the UML class diagram. Two factors are established as

limitations of practical usage of the UML class diagram during

software development:

1) Software developers do not invest enough effort in a

formal definition of class diagram elements from the problem

domain, and a class diagram is developed based on hints,

human intuition and previous experience working with class

diagrams. In fact, some commercial industries find that too

much modeling is cumbersome and slows down productivity

[6]. “For such projects, it makes sense to use UML as a sketch

and have your model contain some architectural diagrams and

a few class and sequence diagrams to illustrate key points”

[7];

2) A survey of UML practitioners [8] shows that class

diagrams are not fully used for further software development,

either for code generation or documentation. The results of

this report show differences in several dimensions of UML

diagram usage in software development projects including the

purposes for which they were used and the roles of

clients/users in their creation and approval. Hence class

diagram has lost the role it could play in software

development – i.e. to serve as a bridge between system

specification at the user side and software components at the

developer side [9].

The goal of this paper is to investigate the level of class

diagram usability in software development and to try to

answer the following questions:

1) where is the lack of realization and application of model

driven ideas in software development projects;

2) why the software industry does not apply all the ideas of

MDA at high level of competence;

3) finally, why the industry is not “covered” with MDA

support tools.

The paper is structured as follows. Results of the authors’

research on UML class diagram usage in software

development projects are discussed in Section 2. To advance

practical usage of the class diagram during software

development, we need a clear set of elements of the class

diagram and solutions for their derivation from the problem

Scientific Journal of Riga Technical University
Computer Science. Applied Computer Systems

2011

__ Volume 47

 66

domain. Thus, Section 3 gives a brief review of several

techniques and solutions for development of the class diagram

in a more or less formal manner. Software components

required at the software implementation level and several

theoretical assumptions of code generation abilities are

described in Section 4. Section 5 demonstrates an example of

code generation from a class diagram using the Eclipse

platform. In conclusion the authors refer to problems stated in

the introduction and discuss questions which have been dealt

with and are still open for discussion.

II. SEVERAL ISSUES ON UML CLASS DIAGRAM USAGE IN

OBJECT-ORIENTED SOFTWARE DEVELOPMENT

Regardless of what software life cycle is used, there are

three main activities in software development: analysis (in

conjunction with the requirement definition), design and

implementation (with testing). In each of these activities,

UML class diagrams are used differently.

During the analysis, while collecting information on the

problem domain, the class diagram is viewed from the

conceptual perspective, thus it is called a “conceptual class

diagram”. The diagram is used as a problem domain

dictionary (potential classes) and it contains least specific

notation. The reason is to facilitate communication with the

customer, who is not familiar with the UML notation [10].

In the design process class diagrams are supplemented with

technical details, thus more precision and more notation is

used. Classes are populated with attributes and methods, as

well as different kinds of relations – “structural class

diagrams”, which represent overall system structure

(architecture). Depending on the software development

process, a UML class diagram may contain a sufficiently

detailed design – blueprint, while in an iterative process it can

still be a general system structure – sketch.

Finally, in the implementation process, class diagrams can

be used to generate system basic structure (skeleton) code.

Given that the class diagram represents the structure of the

system, the notation does not provide behavior of the method,

however by assigning a state chart or activity diagram from a

behavioral diagram group, it is possible to provide information

about a body of the method, which shows system dynamics.

Similarly, class diagrams can be used for system

documentation. It is not necessary to reflect the whole system

structure, but for example, only an individual part of the

system [10]. One way or another class diagrams represent the

static structure of the system. They capture domain units,

resources with which the system operates, but not the

operation of the system dynamics [11]. They are also

abstractions from any particular system implementation -

programming language syntax.

A UML class diagram serves as a primary artifact during

object oriented software development. During the evolution of

programming technologies and software development process

in general, the current idea of basing software development on

models is becoming more and more popular. According to the

idea of Model Driven Architecture [1], the class diagram is a

central component for representation of a solution domain in a

platform independent manner and serves as a basis for

generation of platform specific details that are required for

further generation of a software code.

A class diagram describes the static structure of classes in

the system and relationships between those entities. This way,

a class diagram represents the structure of the system, as the

summarized essence, the base for system operation, but not the

system dynamics itself.

The key element in the class diagram is “class”. The other

elements are different types of relationships between classes,

such as aggregation, composition or dependency. To find the

usability of class diagram elements, the authors conducted a

study on the UML class diagram usage in industry (in 2007)

[12]. The results are summarized in Table 1.

TABLE I

ELEMENT USAGE BASED ON RESPONDENTS’ EXPERIENCE

 Usable (often) Irregular use Used in context Unused (rare)

C
la

ss
 e

le
m

en
t

Class stereotype Attribute stereotype Method stereotype

 Stereotype icon

Attribute and method type Method visibility Attribute visibility Package visibility (~) for attribute and method

 Default value for attribute and method Tagged value

Method parameter direction Multiplicity for attribute and method parameter

Abstract method Static method Static attribute

 Derived attribute

 Constraint on attribute and method

R
el

at
io

n
sh

ip
s

Generalization Generalization constraint Generalization discriminator and set name

Composition and aggregation Inner and outer attribute Composite structure (composite and aggregate

attribute)

Association with defined and
undefined navigability

Association name, roles,
read direction, constraints

Bi-directional, one-way navigation and non-
navigable association

Multiplicity Dependency relationship Dependency relationship stereotype

 Realization relationship

S
p

ec
if

ic
 c

la
ss

 Abstract class Active class Association class and N-ary association Class with qualifier

 Template class

 Interface class Provided and required interface

Ports

Internal class structure

 XOR constraint Powertype generalization

Note for additional information User-defined compartment

Scientific Journal of Riga Technical University
Computer Science. Applied Computer Systems

2011

__ Volume 47

 67

The survey was sent to a number of existing software

development companies in Latvia, with an aim to clarify what

UML class diagram elements they were typically using in the

projects. The survey showed a subsequent failure: not all

companies used UML tools which could allow the diagram

creator to use the wide range of notation included in the

survey. This means that UML tools, as such, limit the usability

of UML notation. For example, MS Visio does not provide the

required interface, internal class structure (parts, ports). At the

same time, there are UML tools, which can handle all notation

used in the survey, like Visual Paradigm for UML.

Main elements of the class diagram marked with most

common use, are: generalization, aggregation, composition

and association (with defined and undefined navigability). In

addition, multiplicity is marked as an important part of all

these relationships. Association roles, name, direction of

reading and constraint are used irregularly. In the class

element, the usable parts are: type for attribute and method,

method parameter direction and class stereotype, which in fact

is very important for code generation.

For many elements respondents gave completely opposite

assessments, thus the same element was assessed both with 10

and 0. This fact suggests difference in the level of detail used

in diagrams, as well as possibly different contexts (e.g.

programming in C++, Java or creating object databases) and

the diagram main purpose. These elements include: template

class, provided/required interface, visibility for method and

attribute, default value, association class, stereotyped

realization and dependency relationship, bi-directional

navigation and generalization constraints. Rarely used

elements are: class with internal structure, powertype notation,

package visibility, stereotyped attribute and method, despite

the fact, that the latter one is important for code generation.

Usually developers start modeling a class diagram directly

before writing an application code, but still they construct the

initial architecture defined in terms of the class diagram

manually by reading the requirement specification.

Our conclusion about the usage is that first of all UML class

diagram mainly is used only on a high abstraction level or as a

sketch model, if it is used at all. Some respondents replied “we

are not using UML at all”. Secondly there are no cases with

real code generation from the class diagram. We can also

conclude this from the pure usage of UML 2.0 element

notation invention which is straightforward for code

generation, like the template class, stereotyped relationships,

attributes and methods as well as tagged values and

constraints. Of course there are two different views on the

class diagram, i.e. visible and detailed, which are diverse in

terms of the model information level.

The problem presented with two different kinds of models –

a user oriented model and a developer oriented model, can be

solved by generation of the class diagram from the initial

knowledge about business and its complete usage for

generation of software components.

In order to properly implement the usage of a class diagram,

we need knowledge about:

1. Retrieving the information from the problem domain

description and deriving a class diagram for further use. This

information should be simultaneously complete and

consistent, see current research in Chapter 3.

2. How and what software components we can get from a

class diagram via transformation into code. Based on this

knowledge we can define transformation rules as well as have

the possibility of reengineering, see current research in

Chapter 4.

Only having both components defined gives the possibility

to build a bridge between user oriented models and developer

oriented models of a system. In this way a class diagram helps

to implement software similar to the initial description of

system processes [13].

III. DEFINING A CLASS DIAGRAM FROM THE

PROBLEM DOMAIN

The conceptual idea of a class diagram has been in use for a

long time. Several software development methodologies and

techniques used to identify classes in problem area or in initial

models have been proposed since then. In fact, the approach

proposed by James Rumbaugh in 1991 for Object Modeling

Technique [14] still is considered one of the best approaches

for identification of classes at the system domain level, with

real-world operations on the domain objects and state

diagrams showing the life stories of domain objects.

A. Use-Case Based Class Definition

Ivar Jacobson [15] together with Grady Booch and James

Rumbaugh offered to use the definition of use-cases as a basis

for software development [16]. Several other investigations

also have been initiated in this direction [17], [18], [19]. A

general schema of definition of a class diagram in the use-case

driven approach is shown in Fig. 1 [20].

The use-case oriented approach is based on an effort to

define use-cases and users of the system, as well as to describe

the usage of the system with detailed scenarios that provide a

basis for object interaction and sharing of responsibilities

among domain classes (Fig. 1). A more comprehensive

analysis of object communication results is found in the

definition of class stereotypes.

However, software developers often ignore the “use-case

driven”, making limited or even no use of either use-case

diagrams or textual use-case descriptions [8]. In fact,

organizations use different tools for business process analysis

and, therefore, have complete and consistent models of their

organizational structure, responsibilities of the employers,

business processes and the structure of documentation

workflows—in other words, well-structured initial business

knowledge [21].

Therefore, the class diagram may be based on the initial

business knowledge (if it is formal enough).

Scientific Journal of Riga Technical University
Computer Science. Applied Computer Systems

2011

__ Volume 47

 68

Fig. 1. Class diagram development, based on definition of use-cases [20]

So far, another group of software developers prefers to use

business process modeling on the initial stages of system

analysis [22], [23]. Process-oriented developers may also

prefer to use use-cases, however, in this case identification of

use-cases is performed in a much more formal way.

B. Data-driven System Modeling

Although only two main concepts are considered during the

analysis of the problem domain—the process and data—

several data-oriented approaches can be applied (e.g., such as

[24]). Entity-relationship modeling (ERM) is a semiformal

data-oriented technique for specifying software systems. It has

been widely used for over 30 years for specifying databases

[25]. Here, the developers work in correspondence with the

definition of data structure since operations with data are of

less importance. Of course, operations are needed to access the

data, as well as the database itself which should be organized

so as to minimize access time. Nevertheless, the operations

performed on the data are less significant. Moreover, the

manner the software is being developed is not object-oriented,

also, the role of the class diagram here is secondary.

C. Two-Hemisphere Model-Driven Class Definition

In general, the concatenation of data (concept) model with the

process diagram can be used to identify classes, their

attributes, relationships with other classes and even more—the

operations of classes. The idea of common consideration of

both models is known; however, this usage in an object-

oriented approach was not widely discussed. [26] proposes the

way the classes and their object operations can be defined

based on a two-hemisphere model [20], which essence is two

interrelated models:

1) a business process model—describes the processes of the

developed system;

2) a concept model—describes objects and their interaction

during system work.

Two-hemisphere model-driven approach (Fig. 2) [26]

proposes to start the process of software development based

on the two-hemisphere problem domain model, where one

model reflects functional (procedural) aspects of the business

and the software system, and another model reflects the

corresponding concept structures. The co-existence and

interrelatedness of the models enables knowledge transfer

from one model to another, as well as the utilization of

particular knowledge completeness and consistency checks

[20]. Then elements of the two-hemisphere model are

transformed into elements of the UML class diagram, using an

intermediate model and analysis of object interaction [13].

Fig. 2. Transformations from two-hemisphere model into class diagram in

two-hemisphere model driven approach [26]

D. Other Techniques

Another attempt to increase the formalization level of the

class diagram development is the usage of the so-called formal

languages [27]. Formal languages were developed for an

unambiguous system specification. Nevertheless formal

languages have an important defect – only specialists are able

to understand system specifications written in formal

languages.

Formal languages are based on mathematics. Business

specialists usually have difficulties with them. OCL [28],

UML profiles [29] and executable UML [30] are some of the

modeling solutions that could solve this problem. On the other

hand manual transformations that are understandable for the

business specialist do not support formal transformation of

models at all. [31] describes the results of a survey about

different approaches used for transformation of system

requirements into system design and implementation. The

survey shows the result of analysis on different approaches to

transformation of the problem domain description into the

UML class diagram during the last 10 years, published in four

digital libraries (IEEEXplore, ACM, Science Direct,

Springerlink) (see Table II).

G1

Process model

Concept model

G2

G3 G4

Communication diagram
Class

diagram

:B:A1

method1()

A1

UC1 B

b1

b2

b3

A2

UC2

C

c1

c2

c3

D

d1

d2

d3

E

e1

e2

e3

step 1 step 2

step 3

method2(c1, c2)

:C

method3()

message 1

:C:A2

method4()
method5()

:D

method6()

message3

:E :A1

message2

method8()
method7()

:B

method1()

:C

method2()
method3()

message1

method4()

:D

method5()

:E

method6()

m
et

hod7(
)

m
e
s
s
a
g
e
2

m
ethod8()

message 3:A2

:A1

<<control>>

C

<<entity>>

D

d1

d2

d3

<<control>>

E

e1

e2

e3

<<boundary>>

G

g1

g2

g3

<<boundary>>

F

f1

f2

:A1

method5()

<<control>>

B

b1

method1()

method3()

:B

method1()

:C

method2()
method3()

message 1

method4()

:D

method5()

method6()

method7()

m
es

sa
ge2m

ethod8()message 3

:A1

:G ...

...

:F ...

:H

...

...

:A2

Use-case diagram
Problem domain classes

Sequence diagram (UC1)

Sequence diagram (UC2)

Communication diagram (UC1+UC2)

Communication
diagram with class
stereotypes

<<boundary>>

H

h1

h2

:A2

method6()

method7()

sendMessage1()

updateReturn()

sendMessage2()

updateReturn()

sendMessage3()

udateReturn()

method2(c1, c2)

method4()

method8()

System classes in
Class diagram

step 1

step 4

step 2

step 3

step 5

...

:E

step1

step2

step3

Scientific Journal of Riga Technical University
Computer Science. Applied Computer Systems

2011

__ Volume 47

 69

TABLE II

SURVEY ON APPROACHES TO UML CLASS DIAGRAM CONSTRUCTION

Type of approach Amount of papers for exact type of artifact

Type of problem domain description Software 43 / Business 29

Structure of problem domain description Standard model 25 / Non-standard model 25 / Template 1 / Structured natural language 17 / Natural language 10 /

Other 3

Type of models of problem domain Structural 9 / Behavioral 39 / Functional 6 / Other 2

Transformations provided Yes 58 / No 14

Transformations level Endogenous (the same language and abstraction level of source and target model) 9 / Exogenous (different) 52

Transformation type Standard transformation level 7 / non-standard 46

Transformation automation level Automatic 27 / Interactive (i.e. Semi-automatic) 11 / Manual 22

Tool support Yes 25 / None 46

Type of validation Survey 1 / Case Study 32 / Experiment 2 / None 37

Approach scope Academic 53 / Industry 20

The survey states that there exist enough approaches with

different types of solutions for the generation of a UML class

diagram.

So far we can see that different solutions are offered for

making the process of the class diagram development more

suitable, more formal, or even more “user-friendly”.

What is more, considering the class diagram construction,

we can say that we have quite enough techniques for

derivation of elements of the class diagram from the problem

domain. The analysis of possibilities to use class diagram

elements for further generation of software components is

discussed in the next section.

IV. ANALYSIS OF SOFTWARE COMPONENT

GENERATION

The implementation level of abstraction of the software

system presented in the form of the class diagram serves as

input for the code generation tool. The actual level of

abstraction of programming languages has grown from the

physical machine level of the first and second generation

languages to the abstract machine level of the third and fourth

generation languages. [32] states that one objective in using a

fourth generation language is a shorter code, and, hence,

quicker development and easier maintenance. The use of code

generators takes three goals even further, in that the

programmers have to provide fewer details to a code generator

than they provide to an interpreter or compiler. Therefore it is

expected that the use of code generators will increase

productivity of the software system development.

A. Generation of Class Specification at the Level of Console

Application

To complete the task of code generation we first need to

clarify what component types are developed during system

implementation. These types of components give the

capability of searching for the corresponding components of a

class diagram. In general, a console application of such a

system can consist of classes, their definition and realization,

relationships among classes, classes visibility etc. All the

components required for such an application are already

defined by main statements of object-oriented philosophy, the

main book we can mention is [33].

The main technique here is to look for objects with the

same structure (attributes) and behavior (methods) and to

group them together into classes. The object is a class

instance, which at the defined state performs defined

operations. At the moment of object creation, the defined

attribute values are assigned to an object, and another object

can call it to perform the defined method. Class transformation

into the C# programming language is shown in Fig. 3, where

the example of the UML class is shown on the left side of Fig.

3 and the correspondent code generated from the class

specification is presented on the right side of Fig. 3.

Fig. 3. Example class in both modeling and programming language

The UML class diagram offers different types of

associations between classes: these serve as a basis for the

generation of several other statements of object-oriented

philosophy (e.g., class visibility, generalization, aggregation,

usage, dependency, etc.).

All the main components of object-oriented paradigms at

the console level of system abstraction are being realized since

Booch, Rumbaugh and Jacobson made efforts to create code

generation tools in the mid 90-ties. The Rational Rose CASE

tool was created at that time and has been evolutionarily

developed with IBM brand tools as its successor. A lot of open

source tools have been developed since that time. However the

Scientific Journal of Riga Technical University
Computer Science. Applied Computer Systems

2011

__ Volume 47

 70

authors based on several experiments with code generation

can conclude that despite many papers devoted to the MDA

and a lot of theoretical statements about the likelihood of

model transformation, in fact, the currently available tools out

of the box show very poor results. Since they don’t take into

account target programming language syntax and models, that

are not specially adapted, the tool can easily generate program

code that even does not compile. In other words, current

transformation is a primitive information transfer from model

to code, instead of making additional decisions at the model-

building and generation process stages, which as a result could

at least match syntactically and semantically a proper result

code.

B. Generation of Software Components for Windows/Forms

Applications

The development of business-oriented software systems

with user-friendly GUI interface is more complicated. In this

case, the generation of a Windows/Forms application from the

class diagram is considered. In general, Windows/Forms

applications rely on three-layer architecture [19]: presentation,

logic, and data layers (Fig. 4).

Fig. 4 The three-layer architecture

By separating the application into layers it is possible to

modify each layer independently and do the technological

updates for each of them without touching other layers, for

example the application logic.

Presentation is the topmost level of the application, which is

used to show output results from logic level. This is the

interaction level between user and application, in the client-

server environment the presentation level appears on the client

side. Currently there are many frameworks, which support

three layer architecture and where the presentation layer can

be modified based on the target operating system or using

style sheets in case of web environment. As mentioned, the

output design can be changed without touching the other

layers. From the MDA and code generation point of view it

could be possible to generate a base form for each class or

even concatenate related (linked) classes into one form even if

the relation between classes is one to many, because it is

possible to show many-side classes as a table. There are no

problems to correctly guess output control for a class attribute,

the decision may be based on the attribute type, for example

Boolean is a check box, String is an edit box, related class is a

list box etc. Also from class definition it is possible to

correctly address which attributes should be visible and which

are used in the background, using attribute get/set flags. If the

model is enriched with a sequence or communication diagram

which contains an ordered message flow in objects life, it

could be possible to use this information in presentation layer

by ordering input fields or even opening forms in a provided

sequence. Similarly, given that the presentation level fields

may be related to each other, affecting each other’s output,

this link could be determined from the derived class attributes

and the contained fields in the derivation formula. Events

which can be called during the form processing, can be labeled

with appropriate stereotype which can provide visible

separation of other class methods and can be transformed

differently from other methods, for example with an additional

windows handle parameter.

However we still believe that currently some GUI creator

tools should be used at the presentation level to modify and

adapt the result design, because generation can target and

transform the classes thru GUI templates, which should be

configured anyway.

The logic layer contains application functionality and

business rules. All methods and functions are executed in this

layer. At this moment class behavior transformation into

executable code is the MDA weakest point, because it is not

so easy to express algorithms in models. Describing class

behavior UML suggests using activity, sequence,

communication and state machine diagrams, so the class

diagram contains method definition, but the body is expressed

in the mentioned diagrams. This means that we have a choice

between two options for describing class behavior in the

model.

We can use the mentioned diagrams to show the object

message flow, which will result in so-called “functional

block” diagram difficult to read and mixing a low level code

with an abstract platform independent model. Or we can use

Scientific Journal of Riga Technical University
Computer Science. Applied Computer Systems

2011

__ Volume 47

 71

UML defined OCL [28] and Action languages to formally

describe functionality by writing a pseudo-code. There are

also solutions based on UML Profile extensions such as the

UML profile for EJB [3], but the problem still remains: an

abstraction level is too low. It does not represent the problem

as a collection of classes, attributes and relationships, instead,

the result is composed of entity beans, session beans and Java

classes. Needless to say, such a low level abstraction model

almost coincides with the source code and transformations of

this kind of model are simply straightforward, since there are

no changes in the abstraction level.

However the authors believe that the fundamental problem

is the lack of abstract functional components. Thus to describe

class behavior it would be necessary to use pre-defined

functional components, so it would be necessary to mix UML

model abstraction with concrete programming languages. As

an example the authors remind of the simple square root

function, no one cares about what low-level algorithm

implementation is used to calculate the square root. The

programmer just calls sqrt(x) function and gets a result. The

same analogy should be used for abstract behavior. The

modeler just uses some named component by giving a class

attribute as a parameter or uses stereotypes and tagged values

and at the same time this component is mapped to a platform

specific code. In this way a manageable and transformable

model is obtained, which describes class behavior.

The data layer keeps data neutral and independent from

application servers or business logic. It contains the required

mapping for storing objects into a data source. To create data

tables it is already possible to generate SQL scripts from a

class diagram, which can be executed to build the required

database instance. Similarly, it is possible to generate XML

files with the correct class structure. For example, the Sparx

Enterprise Architect [34] allows generating a DDL model

from a PIM model, providing all the necessary transformation

rules. Thus this is quite similar to generating a class definition

into a target programming language.

In this way we can assume, theoretically, that all the

necessary components for software system generation and the

basis for such transformations rules can be defined and have to

be realized by tools. Thus, the impact of the generated code on

the set of software components, required to be developed, can

be valuable and really powerful.

V. CURRENT FACILITIES OF SOURCE CODE

GENERATION FROM THE UML CLASS DIAGRAM

The Eclipse platform together with Eclipse Modeling

Framework (EMF) was selected to examine the most current

facilities of source code generation, as well as to find out how

model-driven approaches like MDA perform in real-life

application development. In short, Eclipse is a universal tool

platform and an open extensible integrated development

environment (IDE) [35]. In turn, EMF extends The Eclipse

platform with a solid basis for application development using

modeling and code generation facilities [35].

From the MDA perspective, EMF should be considered as a

framework for platform-independent and platform-specific

(i.e., Java) layers. EMF utilizes the concept of the class

diagram, at the same time extending it. In general, EMF has

two models: the first is a meta-model, which describes the

structure of the model, while the second serves as the actual

implementation of it (i.e., is the instance of meta-model).

EMF uses XMI [36] to persist the model definition. The

EMF meta-model definition can be defined based on [37]:

XMI document, Java annotations, UML and XML Schema.

Once the EMF meta-model is specified, the generation of

corresponding Java implementation classes from this model

becomes possible. The source code from EMF is generated

with the intention for further modifications. That is why it

looks clean and documented right “out of the box” [37].

In fact, with EMF the data model explicitly enhances the

visibility and extendibility of the model [37]. It also provides

change notification functionality to the model in case of

changes in the model happen. The EMF helps to program

interfaces instead of classes. Also, it is possible to regenerate

the Java source code from the model at any point of time.

The EMF Project and EMF Model wizards provide a way

for defining an EMF model from UML [37]. In general,

Eclipse EMF supports various model formats. However, EMF

also provides additional support for IBM/Rational Software

Architect (.mdl files). The reason is that RSA was used to

“bootstrap” the implementation of EMF itself. Nevertheless, it

is possible to create a UML model within Eclipse (via UML2

Tools project or any other UML plug-in).

The EMF model is based on two meta-models: the Ecore

and the Genmodel model [35]. While the former contains

information about defined classes, the latter contains

additional information for code generation.

The generated source code consists of three packages [35]:

1) Model package contains interfaces and the Factory to

create Java classes;

2) Model implementation package contains the concrete

implementation of the interfaces defined in the model (i.e.,

classes);

3) Model utility package contains the AdapterFactory.

The central Factory has methods for creating all defined

objects. Interfaces and their corresponding implementations

contain getter and setter (if allowed) methods for each

attribute. Each interface extends the base interface EObject,

which together with its corresponding implementation class

EObjectImpl provides a lightweight base class that lets the

generated interfaces and classes participate in the EMF

notification and persistence frameworks.

In order to run the generated application as a console

application, the main method definition should be considered.

Furthermore, if visual GUI development for such application

is necessary, then one of the corresponding GUI design plug-

ins for Eclipse should be considered.

While the development process of Eclipse and EMF is

fairly convenient and clear, there always is a room for

improvement. First of all, the current release of EMF is not

final, meaning that there is still a lack of stability. In order to

avoid problems with UML model import, models should

contain all primitive types used to define the attributes of

Scientific Journal of Riga Technical University
Computer Science. Applied Computer Systems

2011

__ Volume 47

 72

model elements (at least, this is true for UML2 Tools Eclipse

plug-in). As soon as an UML model is imported, the

relationships among classes in UML class diagrams should be

reassigned manually. This can be achieved by initializing an

Ecore diagram. In fact, the Ecore diagram can be considered

as an EMF representation of a UML class diagram (Fig. 5).

Fig. 5. An example of Ecore diagram

Eclipse EMF also lacks the option to define the data layer

(like Sparx Systems Enterprise Architect). Currently, the use

of additional plug-ins for modeling entity-relationship

diagrams should be considered in order to generate the DDL

of the database schema. However, this means that additional

time is needed to develop an application, as the ER diagram

should be defined from scratch.

Nevertheless, the use of other technologies such as

Hibernate [38] or Teneo [39] would help to eliminate this

problem by providing a framework for mapping an object-

oriented domain model to a traditional relational database. The

use of Hibernate and Teneo (which actually is a Hibernate

representation in EMF) in itself also is a bit different.

VI. CONCLUSION

Abstraction is the process, where the core principles from a

set of facts or statements are extracted and distilled. In turn, a

model is an abstraction of something in the real world,

representing a particular set of properties. There are two main

reasons why developers should create a model [24]:

1) for better understanding of a process or an object by

identifying and explaining its key characteristics;

2) for documenting the ideas that developers need to

remember, as well as to make those ideas clear to others.

In fact, OMG’s initiative—Model Driven Architecture—

offers the third reason for using the models in software

development [40]: models are the basis for further code

generation. Moreover, the UML class diagram plays the

central role in promoting this vision in the industry.

In this article, the authors investigated the current facilities

of the source code generation from a UML class diagram,

analyzing it from various perspectives. These perspectives

include the modeling of a class diagram from initial business

information, as well as concerns about the usage of a class

diagram for generation of software components.

One of the contributions of the paper is a description of the

state of the art in the area of UML class modeling. This paper

analyzes the usage of a class diagram in software

development. It looks at bigger issues – why MDE is not used

in projects, why MDA is not applied in a competent way on

projects, and why industry does not have good MDA tools.

The discussion surrounds the question why developers do

not spend enough time developing good UML class diagrams,

where one has a lot of approaches for formal construction of

them.

One of the reasons stated is the assumption that the problem

is not in the construction of a class diagram, but rarely occurs

in code generators. The paper summarizes a representative

bibliography assembled over the last 20 years in the area of

object-oriented modeling analysis and approaches to the

creation of a UML class diagram. The correspondent scientific

literature also includes the MDA/MDD inception as well.

The main conclusion is that we have quite enough means to

construct a class diagram. At least at the theoretical level we

have quite enough transformations ready for solving the task

of code generation during system implementation, but in

practice all these means are not sufficiently supported by

modern CASE tools at the sufficient level. The aspect of code

generation and the results of the analysis of the quality of the

code generated by modeling tools are discussed in the authors’

second paper included in this issue [41]. These results clarify

the question why software developers don’t want to use all the

facilities of a UML class diagram.

The main reason is that even if a class diagram were

developed in a formal way and contained complete and

consistent presentation of the problem domain, still software

developers would not be able to fully use it for further

software development due to weaknesses in code generation

tools, because they don’t support all the required

transformations into code components to fulfill all the

requirements of MDA. More developers and developer

companies should be involved in the development of such

technologies as EMF. The investment will pay off in terms of

reduced amount of time spent on other projects.

Of course, the industrial companies have to meet standards

of capability and maturity to be able to use all the principles

and ideas of the most current facilities. However, without

investment in something new and revolutionary there would

be no progress in the current state of the art.

But on the other hand the lack of available powerful tools

supporting all the aspects discussed in the paper can also be

regarded as the most determinative and disincentive factor,

which hinders valuable MDA/MDD ideas being adopted by

industry. Since the renovation of the idea of model application

during software development at the beginning of 21st century

we still are at the same stage. This can raise doubts about the

solvability of the problem.

We can discuss an analogy between code generators and

automatic language translators. Even if we have a condition in

both dictionaries, where the word of one language has one and

only one interpretation in the other language, we can

encounter a problem similar to one typical for poetry

translations. All the words are translated in the correct position

and sequence, but the translated text doesn’t rhyme or have

meaning. The same analogy can be drawn in programming

language, all the code operators would be at their required

places, but the program code as a whole doesn’t “sound” and

doesn’t operate as it should.

Scientific Journal of Riga Technical University
Computer Science. Applied Computer Systems

2011

__ Volume 47

 73

Acknowledgments. The research presented in the paper is

supported by the research grant No. FLPP-2009/10 of Riga

Technical University “Development of Conceptual Model for

Transition from Traditional Software Development into

MDA-Oriented.” The research presented in the paper partly is

supported by Grant of Latvian Council of Science No. 09.1245

"Methods, models and tools for developing and governance of

agile information systems".

REFERENCES

[1] “OMG Model Driven Architecture”, [Online]. Available:

http://www.omg.org/mda [Accessed: Sept. 24, 2010].

[2] “OMG Unified Modeling Language”, [Online]. Available:
http://www.uml.org [Accessed: Sept. 24, 2010].

[3] O. Pastor and J.C. Molina, Model-Driven Architecture in Practice: A

Software Production Enviroment Based on Conceptual Modeling,

Springer, 2007, pp. 302.

[4] A. Kleppe, J. Warmer and W. Bast, MDA Explained : The Model Driven
Architecture – Practise and Promise, Addison Wesley, 2003.

[5] J. Siegel, “Developing in OMG’s Model-Driven Architecture,” in OMG
document omg/01-12-01 2001. [Online]. Available:

http://www.omg.org/mda/papers.htm [Accessed: Sept. 24, 2010].

[6] M. Fowler and K. Scott, UML Distilled: A Brief Guide to the Standard
Object Modeling Language, 2nd Ed., Addison-Wesley Prof., 1999.

[7] R. Miles and K. Hamilton, Learning UML 2.0, 1st Edition, O'Reilly
Media, 2006.

[8] B. Dobing and J. Parsons, Dimensions of UML Diagram Use: A Survey

of Practitioners, IGI Global, 2008.
[9] A. Burton-Jones and P. Meso, “Conceptualizing systems for

understanding: An empirical test of decomposition principles in object-
oriented analysis,” Information Systems Research, 2006, pp. 101—114.

[10] M. Fowler, UML Distilled: a brief guide to the standard object modeling

language, 3-rd edition, Addison-Wesley Professional, 2003. – 208 lpp.

[11] B. Unhelkar, Verification and Validation for quality of UML 2.0 models,

New Jersey: John Wiley-Interscience, 2005, pp. 313.
[12] J. Sejans, “Analysis of Notational Elements of UML Class Diagram,”

(In Latvian: Valodas UML klašu diagrammas elementu notācijas

analīze) Bachelor thesis, Riga Technical University, 2007.
[13] O. Nikiforova, “Two Hemisphere Model Driven Approach for

Generation of UML Class Diagram in the Context of MDA,” in Huzar,
Z., Madeyski, L. (eds.) e-Informatica Software Engineering Journal, vol.

3, issue 1, Wrocław University of Technology, Institute of Applied

Informatics, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław,
Poland, 2009, pp. 59—72.

[14] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy and W. Lorensen,
Object Oriented Modelling and Design, Englewood Cliffs: Prentice-

Hall, New Jersey, 1991.

[15] I. Jacobson, Object Oriented Software Engineering: A Use Case Driven
Approach, Addison-Wesley Professional, 1992.

[16] I. Jacobson, G. Booch and J. Rumbaugh, The Unified Software Deve-

lopment Process, Addison-Wesley, 2002.

[17] C. Larman, Applying UML and Patterns: An Introduction to Object-

Oriented Analysis and Design, Prentice Hall, New Jersey, 2000.
[18] T. Quatrany, Visual Modeling with Rational Rose 2000 and UML, 2nd

Edition, Addison-Wesley, 2000.
[19] J. W. Satzinger, R. B. Jackson and S. D. Burd, Object-Oriented Analysis

and Design with the Unified Process, Thomson Course Technology,

2005.
[20] O. Nikiforova, “Object Interaction as a Central Component of Object-

Oriented System Analysis,” International Conference „Evaluation of
Novel Approaches to Software Engineering” (ENASE 2010),

Proceedings of the 2nd International Workshop „Model Driven

Architecture and Modeling Theory Driven Development”
(MDA&MTDD 2010), Osis J., Nikiforova O. (Eds.), Greece, Athens,

July 2010, SciTePress, Portugal, pp. 3-12.
[21] O. Nikiforova and M. Kirikova, “Two-Hemisphere Model Driven

Approach: Engineering Based Software Development,” in: 16th Inter-

national Conference Advanced Information Systems Engineering.

Persson A., Stirna J. (Eds.), LNCS 3084, Springer-Verlag Berlin

Heidelberg, 2004, pp.219–233.
[22] M. Havey, Essential Business Process Modeling, O'Reilly Media, 2005.

[23] J. Jeston and J. Nelis, Business Process Management, 2nd Edition,

Practical Guidelines to Successful Implementations, Butterworth-

Heinemann , 2008.
[24] J. Toby, S. S. Teorey, T. N. Lightstone and H. V. Jagadish, “Database

Modeling and Design: Logical Design,” 4th Edition, in The Morgan
Kaufmann Series in Data Management Systems, Morgan Kaufmann,

2005.

[25] P. Chen, The entity relationship model – towards a unified view of data,
ACM Trans. Database Systems, 1, 1976, pp. 9—36.

[26] O. Nikiforova, A. Cernickins and N. Pavlova, “Discussing the
Difference between Model Driven Architecture and Model Driven

Development in the Context of Supporting Tools: Projection of Two-

Hemisphere Model into Component Model of MDA/MDD” presented at
4th International Conference on Software Engineering Advances. IEEE

Computer Society, Conference Proceedings Services, 2009, pp. 1—6.
[27] A. B. Webber, Formal Language: A Practical Introduction, Franklin,

Beedle & Associates, 2008.

[28] “OCL Specification”, [Online]. Available: http://www.omg.org/cgi-

bin/apps/doc?ptc03-10-14.pdf [Accessed: Okt. 7, 2010].

[29] Ambler S.W. Approaches to Agile Model Driven Development (AMDD)
Available: http://www.agilemodeling.com/essays/

amddApproaches.htm#Manual

[30] S. J. Mellor and M. Balcer, Executable UML: A Foundation for Model-
Driven Architecture, Boston, MA: Addison-Wesley, 2002.

[31] G. Loniewski, E. Insfran, S. Abrahao, A Systematic Review of the Use of
Requirements Techniques in Model-Driven Development, D.C. Petriu,

N. Rouguette, O. Haugen (Eds.) the Proceedings of the 13th Conference,

MODELS 2010, Model Driven Engineering Languages and Systems,
Part II, Oslo, Norway, pp. 213—227

[32] S. R. Schach, Object-Oriented & Classical Software Engineering, 7th
Edition, McGraw-hill International Edition, 2007.

[33] G. Booch, Object-Oriented Design with Applications, 2nd Edition,

Englewood City, California, 1994.
[34] “Sparx Enterprise Architect”, [Online]. Available:

http://www.sparxsystems.com.au/products/ea/index.html [Accessed:
Sept. 19, 2010].

[35] D. Steinberg, F. Budinsky, M. Paternostro and E. Merks, Eclipse Mode-

ling Framework, 2nd Edition, Addison-Wesley, 2008.
[36] “Information Technology—XML Metadata Interchange (XMI)”, Inter-

national Standard, ISO/IEC 19503, First Edition, 2005.
[37] “Eclipse Modeling Framework (EMF)—Tutorial”, [Online]. Available:

http://www.vogellade/articles/EclipseEMF/article.html [Accessed: Sept.

19, 2010].
[38] “Hibernate—jBoss Community”, [Online]. Available:

http://www.hibernate.org [Accessed: Sept. 19, 2010].
[39] “Teneo”, [Online]. Available: http://wiki.eclipse.org/teneo [Accessed:

Sept. 19, 2010].

[40] D. Gasevic, D. Djuric and V. Devedzic, Model Driven Engineering and
Ontology Development, 2nd Edition, Springer, 2009.

[41] J. Sejans, O. Nikiforova, Problems and Perspectives of Code Generation
from UML Class Diagram, The Scientific Journal of Riga Technical

University, Series Computer Science – Applied Computer Systems,

2011 (accepted for publication)

Oksana Nikiforova received engineering science
doctor’s degree (Dr.sc.ing) in information

technologies sector (system analysis, modeling

and designing, sub-sector) from the Riga
Technical University, Latvia, in 2001.

 She is presently a full professor at the
Department of Applied Computer Science of

Riga Technical University, where she has worked

since 1999. Her current research interests include
object-oriented system analysis and modeling,

especially related issues in the framework of
Model Driven Architecture.

 In these areas she has published extensively and has been awarded several

grants. She has participated and managed several research projects related to
the system modeling, analysis and design, as well as participated in several

industrial software development projects.
 She is a member of RTU Academic Assembly, Council of the Faculty of

Computer Science and Information Technology, RTU publishing board, RTU

Scientific Journal Editorial Board, etc. She is awarded as RTU Young
Scientist of the Year 2009.

http://www.omg.org/mda
http://www.uml.org/
http://www.omg.org/mda/papers.htm
http://www.sparxsystems.com.au/products/ea/index.html
http://www.vogellade/articles/EclipseEMF/article.html
http://www.hibernate.org/
http://wiki.eclipse.org/teneo

Scientific Journal of Riga Technical University
Computer Science. Applied Computer Systems

2011

__ Volume 47

 74

Janis Sejans obtained engineering science master

degree (Mg.sc.ing) in information systems from

Riga Technical University, in 2010. Currently he
is a PhD student at the Faculty of Computer

Science and Information Technology
 He is a researcher at the Department of

Applied Computer Science of Riga Technical

University. The work experience has been related
to ERP system programming and implementation

since 2002. Currently he is running his own
company TownTech and working at Joint Stock

Company Latvian Roadworks as a programmer

for ERP system.
 He was awarded and included in Riga Technical University Gold Student

Fund in 2010. His master thesis was awarded by Verner fon Siemens as a best
research in 2010.

Anton Cernickins was born in 1985, died in

2010. Earned a degree of Bachelor of

Engineering Sciences in 2007, a degree of Master
of Engineering Sciences in 2009—both at Riga

Technical University, Latvia. He was a doctoral
student at the Institute of Applied Computer

Systems, Riga Technical University.

He was a researcher at the Department of Applied
Computer Science, RTU.

 Field of interest: computer science. Special
interests: modeling, model-driven development.

Oksana Ņikiforova, Jānis Sējāns, Antons Čerņičkins. UML klašu diagrammas loma objektorientētā programmatūras izstrādē

UML ir industriālais standarts objektorientētā programmatūras izstrādē, kas piedāvā dažādu sistēmas aspektu modelēšanas notāciju. Viens no sistēmas

modelēšanas uzdevumiem UML notācijā ir kalpot par „tiltu” starp programmatūras sistēmas specificēšanu lietotāja pusē un programmatūras realizāciju
programmētāja pusē. Šī uzdevuma risināšanai UML valodā ir jābūt definētām stingrām prasībām diagrammu elementu identificēšanai un sistēmas modeļa

izstrādei, kur galveno lomu „spēlē” UML klašu diagrammas izstrāde. Klašu diagramma tiek veidota, apkopojot informāciju par izstrādājamo programmatūras

sistēmu no lietotāja puses, un kalpo par pamatu programmatūras komponentu izstrādei. Pašlaik pastiprināta uzmanība ir pievērsta klašu diagrammas elementu
automatizētai transformācijai koda fragmentos. Šis raksts fokusējas uz klašu diagrammas lietošanu programmatūras izstrādē no diviem aspektiem, gan aprakstot

dažādus paņēmienus klašu diagrammas izstrādes metodēs no sākotnējas informācijas par sistēmu, gan arī aprakstot dažas perspektīvas koda ģenerēšanas
uzdevumā. Rakstā ir secināts par to, ka eksistē pietiekami daudz pieeju, lai izstrādātu UML klašu diagrammu pilnīgu un nepretrunīgu, un ar formālām

transformācijām no dažādiem problēmvides apraksta veidiem. Taču koda ģenerēšanas jomā joprojām pastāv problēmas, kā iegūt strādājošas programmatūras

komponentes. Tas ir iemesls, kādēļ klašu diagrammas joprojām tiek lietotas tikai dokumentācijai. Pat, ja klašu diagramma tiks izstrādāta formālā ceļa, tik un tā,
mūsdienās to vēl nav iespējams lietot koda ģenerēšanai. Patreizējā klašu diagrammas versija nesatur pietiekamu informāciju, kuru varētu “tiešā” veidā

transformēt programmatūras komponentos. Koda ģenerēšanas rīki nepilda visas modeļvadāmās programmatūras izstrādes prasības, līdz ar to, pieaug rīku
standartizācijas nepieciešamība. Nobeigumā tiek diskutēts par esošajām problēmām klašu diagrammas lietošanā un perspektīvām plašākai klašu diagrammas

lietošanai programmatūras izstrādes projektos.

Оксана Никифорова, Янис Сеянс, Антон Черничкин. Роль диаграммы классов языка UML в разработке объектно-ориентированного

программного обеспечения

UML является индустриальным стандартом для разработки систем программного обеспечения, использующим объектно-ориентированную

технологию. Одной из задач моделирования системы, используя нотацию UML, является обеспечение «моста» между спецификацией системы на

стороне заказчика и реализацией системы на стороне разработчика. Для решения этой задачи в языке UML должны быть определены строгие
требования к идентификации элементов диаграмм и разработке модели системы, где главную роль играет диаграмма классов. Диаграмма классов

строится, обобщая информацию, полученную от заказчика, и должна служить основанием для реализации системы. В последнее время большое
внимание уделяется решению проблемы автоматической генерации кода из диаграммы классов. В статье рассматриваются два аспекта использования

диаграммы классов в разработке программного обеспечения: с одной стороны - приемы конструирования диаграммы на базе начальной информации о

системе, а с другой - перспективы генерации кода из диаграммы классов. В статье дается подтверждение того, что за 20 лет существования диаграммы
классов, разработано достаточно методов, приемов и техник для того, чтобы считать, что проблема формального построения диаграммы классов

решена. А вот по части генерации кода существуют проблемы, связанные с автоматическим получением работающих компонентов системы
программного обеспечения. И это является одной из причин, почему диаграмма классов используется только для документации, а в полном объеме

своих возможностей в процессе разработки программного обеспечения не используется, даже если разработана формальным образом. На данный

момент диаграмма классов не содержит достаточный синтаксис для того, чтобы описать все возможные и необходимые элементы, которые дадут
возможность генерировать полноценный программный код. И CASE средства, которые существуют в поддержку генерации кода на данном этапе, не

соответствуют всем требованиям для разработки управляемой моделями системы, таким образом, возрастает необходимость стандартизировать такие
CASE средства. В заключение авторы ведут дискуссию о существующих проблемах в использовании диаграммы классов языка UML и перспективах

расширения области использования диаграммы классов в проектах по разработке программного обеспечения.

