Scientific Journal of Riga Technical University
Computer Science. Applied Computer Systems

2011
Volume 47

UML Diagram Layouting: the State of the Art

Arthur Galapov', Oksana Nikiforova?, “?Riga Technical University

Abstract — The usual aim of the modern computer-aided
system modelling is to improve a connection between software
model and code components. Therefore, the task of a diagram
import/export becomes very important during software
development. Layouting of diagrams after importation from
another tool and application plays the main role. Authors of this
paper describe some concepts, which are currently being
considered in the area of diagram layouting and indicate several
problems and their potential solutions for use in the development
of CASE tools.

Keywords — Diagram layouting, element placement, model
export/import, system model.

1. INTRODUCTION

One of the tasks of software development is to present
different aspects of the system before developing software
solution for the required system. Solving this task, system
modelling becomes one of the important activities during
software development.

System modelling gives software developers the ability to
understand system’s behaviour, structure and its separate
elements. System modelling is a way of thinking about
problems using models, which are based on real-world ideas.
Models are useful for understanding problems, communicating
with everyone involved within the project (customers, domain
experts, analysts, designers etc), modelling enterprises,
preparing documentation and designing applications and
databases. Modelling promotes better understanding of
requirements, clearer view of design and more maintainable
systems.

Usually, system model is organized as a set of diagrams,
where specific notation is defined for each diagram and it
regulates diagram syntax and semantic. As far as system
models are abstractions that display the essentials of a
complex problem or structure by filtering out nonessential
details, models make the problem easy to understand.
Systematic approach to elements placement within the
diagram, which is specified as a task of diagram layouting,
plays an important role in completing the task of modelling.
Increased interest in Model Driven Software Development
again turns focus to the area of diagram layouting, which
concords to the area of graph theory.

In 1985 several works were done on ER (Entity-
Relationship) diagrams: Batini, Furlani and Nardelly in [1]
described some aesthetics and applied topology- shape-metrics
approach. According to Dalj, aesthetics is the theory about
elegancy [2]. For network diagrams Kosak, Marks and Shieber
in [3] specify two algorithms respecting certain visual
organization features. The first algorithm selects and applies a
layout rule until each node is positioned. The second one is a

parallel genetic algorithm. Freivalds and Kikusts in [4] along
with Dogrusoz in [5] propose new approaches and techniques
for graph layouting.

Several researches have been conducted on layouts of class
diagrams. Early work of Battista and his colleagues explored
graph drawing algorithms and aesthetics [6]. Some new
approaches have been proposed for graph layout especially in
the UML class diagram domain. Eiglsperger, Kaufmann M
and Siebenhaller in [7] proposed an algorithm based on the
topology-shape-metrics approach for automatic layout of class
diagrams, which works well for class diagrams with well
defined relationships between classes. Eichelberger introduced
a layout algorithm according to a large number of aesthetic
criteria of UML class diagrams [8]. Dwyer presented a three-
dimensional UML class diagram representation using the
Force Directed algorithm [9]. Andriyevska and her colleges
give ideas on positive aspects of layouting in [10].

Researches also have been carried out on other types of
UML diagrams. Eichelberger in [11] presents research on
automatic layout of UML (Unified Modelling Language)
using case diagrams. Bist with MacKinnon and Murphy
propose an approach to draw sequence diagrams in technical
documentation to ease communication between project
members [12]. Poranen with colleagues proposes various
criteria for drawing a sequence diagram based on traditional
graph drawing aesthetics and the special nature of sequence
diagrams [13]. Wong and Dabo give the requirements set
based on cognitive science for sequence and class diagrams,
which can help in diagram readability improvement [14].

There are many criteria introductions that conflict with each
other. It confuses software engineers and tool developers
while choosing proper criteria to use. Therefore, we can
suggest that the area is not systematized well enough and the
goal of the paper is to summarize existing information
connected with diagram elements layouting and to give
systemised view on existing problems and their potential
solutions, and propose more specified field for further
research.

The paper is structured as follows: the next section
describes general terms and definitions of the area of diagram
layouting and shows classification of diagrams suggested by
the authors, which can be used for working out the algorithms
of element placement. The third section contains theories,
which help to understand how a human being perceives
objects from real world and joins them into a system or
distinguishes them from background. These theories give
opportunity to distinguish how to organize UML diagram
elements for improving its readability and introduce the
requirement set. The subsections of section 4 describe
problems in several areas of working with models and how
layouting automation helps in solving them. In conclusion of

101

Scientific Journal of Riga Technical University
Computer Science. Applied Computer Systems

2011
Volume 47

the paper the authors discuss the present research and state the
directions for the future.

2. CLASSIFICATION OF DIFFERENT DIAGRAM TYPES ON THE
EXAMPLE OF UML

As the authors have mentioned in the introduction, the task
of element placement during system modelling has an impact
on better understanding of the system model and more
effective usage of them during development of the system.
Nowadays, object oriented manner of software development
plays one of the leading roles in system development and
object oriented system modelling has its own way of
presentation of different aspects of the system. Therefore, the
problem of diagram layouting is described on the example of
UML [15], which is declared as a standard for presentation of
software system model. It also provides a notation, which
grows from analysis through design into implementation in
object oriented programming languages.

As a notation of system modelling for different aspects of
the system, UML introduces different types of diagrams,
which can describe a system from different points of view.
According to [15] UML 2.x version distinguishes 13 diagram
types, abstract examples of them are shown in Figure 1:

1) Class diagram — describes the system structure by showing
its classes with methods and attributes, and relations between
these classes.

2) Components diagram — shows how system is divided into
components and in what manner these components relate with
each other.

3) Composite structure diagram — demonstrates classes’ inner
structure and collaborations that this structure make possible.
4) Deployment diagram — describes the hardware used in
system implementations, the execution environments and
artefacts deployed on the hardware.

5) Object diagram — shows full or partial structure of modelled
system at specific time.

6) Package diagram — shows how system is divided into
logical parts and how these parts are connected with each
other. There is no strict difference between other diagram
types and the name is chosen for simplicity — packages and
package diagrams can be part of other diagrams.

7) Activity diagram — shows how certain activity is divided
into different actions.

8) State machine diagram — describes the states and state
transitions of the system.

9) Use case diagram — describe system’s functionality in terms
of actors, their goals represented as use cases and
dependencies between these elements.

10) Communication diagram — shows the interactions
between objects or parts in terms of sequenced messages.

11) Sequence diagram — shows how objects communicate
with each other in terms of sequence of messages.

12) Interaction overview diagram — diagram type, which is
similar to activity diagram with one difference: diagram
activities are pictured as frames, which can contain sequence
diagrams.

102

13) Timing diagram — specific type of diagram, where the
focus is concentrated on timing constraints.

We can assume that all diagrams more or less are
represented in a graph form — diagram consists of nodes,
which are connected with arcs in some manner. However
different diagram types can have different structure: diagram
can have different type of nodes or arcs, diagram should be
constructed in some special manner.

The “simplest” presentation of elements from the
perspective of graph structure has deployment diagram. It has
two types of elements, one of them is a node, which describes
physical place of system deployment, and the other is a link
between nodes. The same is within the object diagram, where,
in accordance with UML notation, diagram has two types of
elements — objects and links between them.

Diagram having different types of arcs or nodes must be
analyzed separately from diagrams with one type of arcs and
one type of nodes, because extra types of elements should be
taken into consideration.

In spite of simple structure using case diagram, where
actors have to be communicated with use cases by
relationships, the diagram has additional conditions on actors’
placement around the set of use cases, which in turn specifies
the boundary of the system. State chart diagram has the same
structure as use case diagram. UML communication diagram
has similar structure, but a bit more complicated - objects are
connected with arcs, where the arcs have complicated
structure. The link is presented as a connector, which is
anchored with the message that object has to pass to another
object. Therefore, in addition to rules of element placement
accordingly to graph structure, the distance between objects
has to be considered to place the name of the message.
Composite structure diagram has the same structure as
communication diagram: diagram has two types of nodes,
which are connected with one type of arcs and their names
placed on them. These four diagram types can be grouped into
the diagrams, which require specific regulations for graph
nodes.

UML class diagram has one type of nodes that represent
system classes and several types of arcs, which show different
types of class relationships. Component diagrams have one
type of nodes and several types of arcs, like class diagram, but
in this case different types of arcs have the same semantics
and are used to improve the readability of a diagram. These
two types can be joined into the diagrams, which require
specific regulations for graph arcs.

Logically package diagram consists of one type of nodes
that represent packages and several types of arcs that show
how packages relate with each other. But in most cases
package diagrams are part of other diagram types — this adds
more node types to the diagram. Activity diagram also has
several types of nodes: activity, entry point and exit point; and
several arc types. But arc structure is complicated: arcs can
split into several flows and then join into one, also arcs can be
split into alternative flows. These two types of graphs can be
joined into diagrams, which require specific regulations for
graph arcs and nodes.

Scientific Journal of Riga Technical University
Computer Science. Applied Computer Systems

2011
Volume 47

Sequence diagram has a special structure: all the objects are
allocated horizontally at the top of the diagram, except objects
created during system operating, each of the objects has its life

time, sequence of messages is shown by links showing its
flow.

"Pure" graph
Deployment diagram Object diagram
: |z
= | S [Eis
—j—*:‘. ¥ Package " Class Componert
R & diagram diagram diagram
Graph with ¢ Graph with specific . " .
specific Activity ooriqs)t rioset img of oreze arid Graph with §pecn°|c const ruct ions
types of diagram rodes of different types of ares of different types
nodes or = —
ares 2 — s = Graph with
= o s specific
= g R placement of
Use case Communication Composite sructure Statechart rodes of
diagram diagram diagram diagram different types
1 = .
Diagram with o :f’:..._ - ’
specific Lol =
conditiors for L= | ;
general
structure Sequence Timing
diagram diagram

-
Interaction overview
“diagram

Fig.1. UML diagrams classification

Interaction overview diagram has the same structure as
activity diagram, but instead of activities, nodes of interaction
overview diagram can have separate sequence diagrams, also
arcs have simpler structure — no flow separation and joining.
Timing diagram can’t be considered as a graph, because it has
no nodes. These three diagram types can be joined into graphs
with specific conditions for general structure.

Taking into consideration the specific requirements to
structure and placement of elements of UML diagrams above,
it is possible to classify diagrams in different groups, which
are based on diagram structure and it construction principles.
The authors propose to classify diagrams in three major
groups in accordance with requirements for their layout:

1) “Pure” graph —diagrams are represented as a regular graph:
one type of nodes is connected with one type of arcs.

2) Graph with nodes and arcs of different type:

a. diagrams, which are specific in correspondence with
requirements to node types,

b. diagrams, which have specific requirements for the
structure of arcs,

c. diagrams, which have specific requirements for the
structure of nodes and arcs.

3) Diagrams with specific requirements of the diagram
structure — group of diagrams, which are constructed in some
special manner.

Diagrams from the second group can take a form of “pure”
graph in a special case, when the diagram has only one type of
nodes and only one type of arcs. This classification gives an
opportunity to distinguish diagram types, which can be
considered together under research of some specific methods
or criteria for UML diagrams efficiency improvements.

Tilley and Huang in [16] discuss, that UML diagram
efficiency depends on 4 factors: UML syntax and semantics,
layout of UML diagram elements and domain knowledge.
Layout is essential factor for diagram reading and
comprehension, therefore, studies on diagrams aesthetics
appeared, which try to explain effective diagram construction
principles, and on diagram layouting algorithms, which study
and develop algorithms for automation of diagrams of
different type layouting.

To specify UML diagram elements layout comprehension,
possible solutions for UML diagram transformation from
chaos state to normal form have to be defined by analogy
showing how it is made in databases designing. According to

103

Scientific Journal of Riga Technical University
Computer Science. Applied Computer Systems

2011
Volume 47

Dalj, chaos is a state of extreme disorder and uncertainty [2].
Taking this definition in consideration, it is possible to
conclude that UML diagram in the chaos state have low
elements layout efficiency. According to Murdock in [17]
normal form — in mathematics, object’s simplified form is
achieved by transformations, which don’t affects this object’s
properties; in data bases, requirement set, which relation it
must satisfy. The normal form of UML diagram is initial
transformed state, which was found applying its diagram
elements relocations in space and which layout satisfy
requirement set (for example, perception theories). The next
chapter defines the requirement set for certain UML diagram
types and explains how these requirements effect UML
diagram readability.

3. GENERAL LAYOUTING PRINCIPLES

Layout of UML diagram elements is of high importance for
software system understanding. The higher the layout of a
diagram elements efficiency is, the easier is its comprehension
and the higher UML use efficiency is. Theory of perception is
one of the bases which can help to define efficiency of layout
of UML diagram elements.

To determine requirements for layouting of diagram
elements there is a need to answer the question — which
element layout will be more perceptible for the user? [14]
explains that principles of perceptual organization and
segregation provide the basic design rules to organize multiple
artefacts. These rules can help users to group related
information and segregate useful information easily and
without ambiguity. So theory of perception can help to
distinguish certain criteria for UML diagram effective
layouting.

A. Perceptual organization

According to Boff, Kaufman and Thomas in [18] -
perceptual organization refers to how objects that we perceive
in the world are located and related with one another. Wong
and Dabo defined the most important laws of object perceptual
organization in [14], such as:

1) Images are perceived in a way that their structures are as
simple as possible. The law of good figure is also called the
law of simplicity.

2) Law of similarity — similar elements (e.g., common in
shape or colour) appear to be grouped together. For example,
in figure 2, (a) can be perceived as either horizontal rows or
vertical columns of circles, but (b) would most likely be
perceived as vertical columns of squares and circles because
of the similar shapes.

3) Law of continuation — points tend to belong together if
they result in straight or smoothly curved lines when
connected, and lines are grouped together in such a way as to
follow the smoothest path.

4) Law of proximity — elements that are close to each other
are grouped together. For example, in figure 3 (), the circles
are more likely to be perceived as horizontal rows since they
are closer horizontally. Also figure 3 (b) most likely will be
perceived as horizontal lines of circles and squares since they

104

are closer horizontally; disregarding the fact that similar
shapes are placed vertically. Conclusion — the law of
proximity is stronger than law of similarity.

5) Law of connectedness — elements that are physically
connected are perceived as a unit. In figure 4, we perceive
three dumbbells rather than some pairs of dots. Note that the
dots that are next to each other in adjacent dumbbells are
actually closer together, and according to the law of proximity,
they should be grouped together. However, in this case, the
law of connectedness overpowers the law of proximity.

6) Law of familiarity — elements are more likely to be
grouped together if the groups seem familiar or meaningful.

Fig.2. Examples of the law of similarity [14]

000000 OOoOon
000000 OoOoOon
000000 oOoOod
000000 oOonon

{a) ()

Fig.3. Examples of law of proximity [14]

Fig.4. Example of law of connectedness [14]

Perceptual organization helps to understand how human
beings’ perceptual system combines separate objects into
system. This helps to determine how to organize UML
diagram elements so these elements would be comprehended
as one.

B. Perceptual segregation

As it is said in Goldstein research in [19] - compared to
perceptual organization, research in perceptual segregation
basically studies the problem of “figure-ground segregation”
to determine when objects (figures) are seen as separate from
the background (the ground). After summarizing perceptual
segregation laws from Dabo and Wong [14] work and Kimchi
and his colleagues [20] work it is possible to distinguish these
as most important:

1) Law of symmetry — symmetric areas are usually seen as a
distinct figure.

Scientific Journal of Riga Technical University
Computer Science. Applied Computer Systems

2011
Volume 47

2) Law of orientation — horizontal or vertical orientations
have higher probabilities to be seen as a figure than other
orientations. For example, in 5th figure’s (a) subpicture, the
vertical/horizontal “plus” propeller shape (b) is more likely to
be perceived as a figure than the tilted “cross” shape (c).

3) Law of contour — modern theories about figure-ground
segregation discovered that contours (i.e., boundary edges)
help in figure-ground perception.

(a) (h) (<)
Fig.5. Example of law of orientation [14]

Perceptual segregation principles give possibility to
understand how human perception system distinguishes
certain objects from background (from big object group). This
gives a possibility to effectively organize UML diagram
elements if these elements should be comprehended different
from the background.

Perceptual theories give possibility to understand in what
way human perceptual system combines objects in subsystems
or distinguishes separate elements from background — how a
human perceives world around him. Perceptual theory
principles can explain why some UML diagrams are better for
reading and comprehension than others.

C. Requirements set for layouting of diagram elements

It is possible to define the requirements set for UML
diagram elements layouting on perceptual theories basis. This
helps to determine UML diagram layouting algorithm
tendency. Therefore algorithm gives the opportunity to
automate layouting of UML diagram elements and transform
the given diagram to its normal form.

Different UML diagram designing software offer different
diagram visualization features. For example, some programs
have the ability to join links (fig.6 (b)), but in some programs
this isn’t provided and all links will be separate as it is shown
in figure 6 (a). It is understandable that link joining gives more
readable UML diagram representation. But not every tool
supports this feature, therefore, all requirements connected
with tools’ functionality will be avoided.

s
101

(a) (b)

Fig.6. Three separate links (a) and three links joined into one (b) [14]

Previously, all UML diagrams were classified in three
subgroups. Diagrams from each group have different structure
and construction principles. Different layouting principles can
be adjusted for diagrams from different groups. For the first
and the second group these principles mostly are the same, but
still can differ, because the second group diagrams have
several types of nodes or links that must be considered. Every
diagram from the third group has its own structure and must
be examined separately. Wong and Dabo introduce some
requirements that can be used for “pure” graphs and graphs
with nodes and links of different types in [14]:

1) Objects that appear larger or different in size from
neighbouring can attract attention. Different size can
distinguish an object, while uniform sizes can group objects so
that they are seen alike.

2) Minimize crossings and bends — the number of edge
crossings and bends should be minimized to make edges more
continuous and easier to follow. This requirement also is
described in Ware et al [21] work.

3) Exploit proximity — generally, diagrams should be
compact for easier viewing, but further improvements can be
made on the spacing of nodes. Related nodes that should be
perceived together should be placed near each other. And,
nodes that should not be perceived together should be placed
further apart. To enhance grouping, edges should not be too
long. These notions are supported by the law of proximity,
which is described by Purchase et al in [22].

4) Maximize subset separation — subsets of participants that
have little communication should be separated. This is
supported by the law of proximity.

5) Avoid overlapping — overlapping should be avoided.
Nodes and edges should not overlap other nodes or edges. In
figure 7, if overlapping is allowed, (a) would be confusing;
because it would not be clear whether box A is connected to
box B or directly connected to box C. As a result, it could be
perceived as (b), following the law of connectedness, or (c),
following the law of continuation.

[~] |
1 A
| T] [8]
[] ©] [c

(a) (b) (c)

Fig.7. Effect of overlapping

6) Employ symmetry — symmetry within the diagram
should be used effectively, since symmetric areas are usually
seen as distinct, as well as being “good figure”. For example,
subclasses of a superclass should be centred. In figure 8, (b) is
preferable to (a) because it is symmetric and looks like a stable
figure. Research on this requirement can also be found in
Purchase [23] research.

105

Scientific Journal of Riga Technical University
Computer Science. Applied Computer Systems

2011
Volume 47

Fig.8. Effect of symmetry

7) Draw links orthogonally — the edges connecting nodes
should be orthogonal. This also conforms to the law of
orientation.

8) Enhance flow — diagrams can be difficult to read, and it
may not be obvious where to start; and, even given some
starting point, the next object to look at could be in any
direction. Thus, it is useful to control the degrees of freedom,
as it is said in Petre studies in [24]. Overall, since people
naturally read texts from left to right (in most cultures), and
from top to bottom, diagrams should have a similar starting
point and subsequent flow. According Ambler research in [25]
important classes should be at the top or on the left, and other
related classes should be placed below them or towards the
right.

Some of the defined requirements conflict with each other
(for example, minimize subset separation requirement and
exploit proximity requirement). This means that it is essential
to define significance for conflicting requirements especially
for diagram elements layouting automation; also this ability
can be given to user. Authors propose this task for further
studies.

The described principles and requirements can be used for
creation of an algorithm for diagram elements automated
layouting. The authors state three major fields of working with
diagram layouting problems. They are:

1) Definition of elements placement during creation of the
model.

2) Transformation of one model into another within the one
modelling environment;

3) Model export from one tool into another;

Next sections describe each of the stated fields from the
perspective of the problems existence and their potential
solutions.

4. LAYOUTING ISSUES WITHIN THE WORKING WITH MODELS

Diagram element layout is one of the essential factors of
UML diagram comprehension. The larger and more complex
becomes the diagram due its creation, the more time is spent
by its creator on improving diagram element layout.
Automation of this process fastens diagram creation and
improves readability. Also it can bring unification in diagram
layout problem.

Layouting algorithm can be used for model creation before
all model elements are included or connected to help its
creator to understand the model or after all model elements are
included and connected to improve general model readability.

106

There are two important areas connected with diagram
elements layouting: the area of model transportation and its
importation.

A. Layouting Issues in the Area of Model Transformation

Many of UML diagram creation tools give opportunity to
transform one diagram into another. Usually sequence
diagram is converted into communication diagram and
backwards. In every tool transformed diagram’s logic stays the
same but its element layout differs. After transformation,
resulting diagram is hardly readable. Layouting algorithm can
be automatically used after diagram transformation to improve
readability.

Figure 9 shows an example of the sequence diagram
transformation into communication one. Resulting
communication diagram is hardly readable: messages overlap,
links cross nodes and existing nodes are overlapping. All these
problems can be solved using layouting algorithm or by
manually allocating elements in space. Layouting algorithm
usage will partly or fully free the user from the manual
elements allocating, this will save diagram creator’s time and
efforts.

et Satooid ealato N CEAE ok | Bumeend <t Dmosatonll

~ivaien

1 ek

Agomesnif

Llproaarmes - Petnnints Laatendl

; F:Q\WV NS i_-»,.n.g.ms

Fig.9. Sequence diagram’s transformation in communication diagram in
StarUML tool example

Application of the principles of Model Driven Architecture
[26] shows more complicated requirements for model
transformation where transformations automatically create
other types of diagrams, e.g., PSM class diagrams from PIM
diagrams, so that automatic layout generation is required more
broadly.

B. Layouting Issues in the Area of Model Importation

In some cases there is a need to import UML diagram
created in one tool into another. This can be caused by
different factors: changing developing team, improving project

Scientific Journal of Riga Technical University
Computer Science. Applied Computer Systems

2011
Volume 47

created by others, changing developing tools and so on. It is
important that diagram should be the same or should have
little difference from original after importing.

According to Gulbis in [27] most of the tools provide XMl
(XML Metadata Interchange) standard for diagram
exporting/importing, but most tools use different XMI
standard versions, which are not compatible with each other. If
two different tools use different XMI versions, this will cause
incorrect UML diagram importation. Gulbis provides
experimental results exporting UML class, use case and
sequence diagrams from one tool to another using XMI

standard provided in [27].
Fig.10. Exporting class diagram from AgroUML to MagicDraw [27]

Figure 10 shows the exporting class diagram from
AgroUML tool to MagicDraw tool example — after importing
diagram looses all links and diagram elements original
coordinates. According to Gulbis in [27] this is common for
many tools.

The XMI standard governs only the exchange of abstract
syntax (UML domain), coding of diagram elements with their
coordinates is an excess of the standard. Most of the UML
tools code the layout information in XM, but do it in a custom
way.

Problem with missing links is more important than diagram
elements positions. Even if user restores all links from original
diagram, he still needs to relocate diagram elements to get
original diagram. A manual diagram elements relocating takes
effort and consumes time. Automation of this process saves
time and efforts. Also if layout of the original diagram was
found by layouting algorithm then applying this algorithm to
imported diagram with “broken” layout most likely will give
the same result.

5. CONCLUSION

As far as for the task of system implementation, where the
formatting guidelines have proved to be a successful method
to improve the readability of source code, the increasing
success of visual specification languages such as UML for
model-driven software development visual guidelines are
needed to standardize the presentation and the exchange of
modelling diagrams with respect to human communication,
understandability and readability. In this article, authors
summarized several problems in the area of visual guidelines
capturing the aesthetic quality of UML diagrams. We propose
these issues as a framework for research on improvement of
the aesthetic quality and thus the understandability of UML
diagrams. All 13 UML diagram types can be classified
according to their structure. This classification helps to
distinguish similar diagrams (according to elements’ sets and
construction principles) and introduce a set of requirements

for the effective element layout for particular diagram’s
groups. This requirement set can be used for algorithm
creation and automatic element layouting.

Most requirements introduced by others authors’ conflict
with each other and must be reconsidered and unified in some
manner. Most of requirements can’t be thrown away even if
they conflict with other requirements, in this case priorities
must be used to distinguish, which of them have higher
influence on diagram readability improvement.

Automation of diagram element layouting can save
creator’s time and efforts, and give a better result than manual
element distribution. Algorithm for diagram automated
layouting brings positive aspects in model creation,
transformation and export/import areas. Definition of the
algorithm for diagram element layouting in the task of UML
diagram readability improvement and development of such
algorithm support is stated as a direction of future research of
the authors.

Acknowledgments. The research presented in the paper is
supported by the research grant No. FLPP-2009/10 of Riga
Technical University “Development of Conceptual Model for
Transition from Traditional Software Development into
MDA-Oriented.” The research presented in the paper partly is
supported by Grant of Latvian Council of Science No. 09.1245
"Methods, models and tools for developing and governance of
agile information systems".

REFERENCES

[1] Batini C., Furlani L., Nardelly E. What is a Good Diagram? A
Pragmatic Approach. In Entity-Relationship Approach: The Use of ER
Concept in Knowledge Representation, Proceedings of the Fourth
International Conference on Entity-Relationship Approach, USA, IEEE
Computer Society and North-Holland, pp 312-319, 1985.

[2] Hane B. Toaxoswiii crosape eenuxopycckozo szwika, 1863. [Online]
Available: http://www.rubricon.com.resursi.rtu.lv/tsd_1.asp

[3] Kosak C., Marks J., Shieber S. Automating the Layout of Network Dia-
grams with Specified Visual Organization. |EEE Trans. Systems, Man
and Cybernetics 24, 3, pp. 440-454, 1994.

[4] K. Freivalds, P. Kikusts Optimum Layout Adjustment Supporting
Ordering Constraints in Graph-Like Diagram Drawing. Proc. of the
Latvian Academy of Sciences, pp. 43-51, 2001

[5] K. Freivalds, U. Dogrusoz, and P. Kikusts, Disconnected Graph Layout
and the Polyomino Packing Approach, Proc. of Graph Drawing 2001,
Lecture Notes in Computer Science,pp. 378-391, Springer-Verlag, 2002.

[6] Battista G.D., Eades P., Tamassia R., Tollis I.G., Graph Drawing:
Algorithms for the Visualization of Graphs. Prentice Hall. 1999.

[7] Eiglsperger M., Kaufmann M., Siebenhaller M., A topology-shape-
metrics approach for the automatic layout of UML class diagrams. In:
Soft Vis 2003: Proceedings of the 2003 ACM Symposium on Software
Visualization, pp.189-198, ACMPress. 2003.

[8] Eichelberger H. Aesthetics of class diagrams. VISSOFT 2002:
Proceedings of the 1% International Workshop on Visualizing Software
for Understanding and Analysis, pp.23-31, 2002.

[9] Dwyer T. Three dimensional UML using force directed layout. In:
CRPITS 2001: Australian Symposium on Information Visualisation,
pp.77-85, Australian Computer Society, Inc, 2001.

[10] Andriyevska A., Dragan. N, Simoes B., Jonathan I. Maletic. Evaluating
UML Class Diagram Layout based on Architectural Importance
Proceedings of the 3rd International Workshop on Visualizing Software
for Understanding and Analysis, IEEE Computer Society, 2005.

[11] Eichelberger H., Automatic layout of UML use case diagrams, In:
Proceedings of the 4th ACM symposium on Software visualization, pp.
105-114, 2008.

107

http://www.rubricon.com.resursi.rtu.lv/tsd_1.asp

Scientific Journal of Riga Technical University
Computer Science. Applied Computer Systems

2011
Volume 47

[12] Bist G., MacKinnon N., Murphy S. Sequence diagram presentation in
technical documentation. In: SIGDOC 2004: Proceedings of the 22™
Annual International Conference on Design of Communication,
NewYork, NY, USA, pp.128-133, ACMPress. 2004.

[13] Poranen T., Makinen E., Nummenmaa J. How to draw a sequence
diagram. In: Proceedings of the Eighth Symposium on Programming
Languages and Software Tools, SPLST 2003, University of Kuopio,
Department of Computer Science, pp.91-102, 2003.

[14] Wong K., Dabo. S On evaluating the layout of UML diagrams for
program comprehension. Software Qual J, pp. 233-259, 2006.

[15] UML resource page [Online] Available: http://www.uml.org/ [Accessed
26.02.2011].

[16] Tilley S., Huang S., 4 qualitative assessment of the efficacy of UML
diagrams as a form of graphical Documentation in aiding program
understanding, SIGDOC: Proceedings of the 21st Annual International
Conferenceon Documentation, ACMPress, pp.184-191, 2003.

[17] Murdock J. Normal forms.2006. [Online] Availiable -
http://www.scholarpedia.org/ [Accessed 10.10.2010]

[18] Boff K. R., Kaufman L., Thomas J.P., Handbook of Perception and
Human Performance. Volume I1. 1986.

[19] Goldstein B. Sensation and perception. 6™edn. Wadsworth Thomson
Learning, 2002.

[20] Kimchi R., Behrmann M., Olson C. Perceptual organization in vision.
Behavioral and Neural Perspectives. Lawrence Erlbaum, 2003.

[21] Ware C., Purchase H., Colpoys L., McGill M. Cognitive measurements
of graph aesthetics. Information Visualization, pp.103-110, 2002.

[22] Purchase H. C., McGill M., Colpoys L., Carrington D., Graph drawing
aesthetics and the comprehension of UML class diagrams: an empirical
study. CRPITS 2001: Australian Symposium on Information
Visualization, pp.129-137, 2001.

[23] Purchase H.C., Which aesthetic has the greatest effect on human
understanding? In: GD1997: Proceedings of the 5" International
Symposiumon Graph Drawing, pp.248-261, Springer-Verlag, 1997.

[24] Petre M., Why looking isn’t always seeing: readership skills and
graphical programming. Communication of the ACM pp.33-44, 1995.

[25] Ambler S.W., The Elements of UML Style. Cambridge Univ Press. 2003.

[26] MDA resource page [Online] Available: http://www.omg.org/mda/
[Accessed 26.02.2011].

[27] Gulbis |. Modeju datu apmaipas standartu izpéte modelu vadamas
programmatiiras izstrades konteksta. 2010.

Arthur Galapov received B. Sc. in computer control and computer science in
2009 from Riga Technical University.

Presently, he is a master student of Riga Technical University at the Faculty of
Computer Science and Information Technology. He took part in several
scientific and industrial projects. He is C/C++ Programmer in the
“Accenture”, Riga, Latvia.

Oksana Nikiforova has received engineering science doctor’s degree
(Dr.sc.ing) in information technologies sector (system analysis, modelling and
designing, sub-sector) from Riga Technical University, Latvia, in 2001.

She is presently a full professor at the Department of Applied Computer
Science of Riga Technical University, where she has worked since 1999. Her
current research interests include object-oriented system analysis and
modelling especially its issues in the framework of Model Driven
Architecture. In these areas she has published extensively and has been
awarded several grants. She has participated in and managed several research
projects related to the system modelling, analysis and design, as well as
participated in several industrial software development projects.

She is a member of RTU Academic Assembly, Council of Faculty of
Computer Science and Information Technology, RTU publishing board, RTU
Scientific Journal Editorial Board, etc. She is a co-chair of annual workshop
of Model Driven Architecture in conjunction with International conference
ENASE. She is awarded as RTU Young Scientist of the Year 2009.

Arturs Galapovs, Oksana Nikiforova. Diagrammu elementu izvietojums telpa: esoSais stavoklis

Sistémas modelésana dod iesp&u programmatiiras izstradatajiem saprast lielu sistému uzvedibu, struktiiru, pamatelementus. Viena no misdienas lietotam
notacijam sistémas model&Sanai ir vienota modelésanas valoda (angl. Unified Modelling Language — UML). UML diagrammas elementu telpiska izvieto$ana
speleé noteico$u lomu programmatiiras sistémas izpratné. Jo efektivaka ir elementu izvieto$ana, jo vienkar$aka ir diagrammas bitibas izpratne un jo efektivaka ir
UML diagrammas lietoSana. Lai to panaktu diagrammas izstradatajam ir jaizvieto elementi ta, lai paaugstinatu diagrammas uztveramibu. Manuala elementu
izvieto§ana prasa daudz laika un rezultats ne vienmér ir apmierinoss. ST procesa automatizacija varétu atbrivot diagrammas izstradataju no lieka darba un
piedavat labaku rezultatu neka manuala elementu izvietosana diagrammas konstrug$anas, transformacijas vai eksporta/importa laika.

Lai izstradatu algoritmu diagrammas elementu izvieto$anas automatizacijai ir janoteic p&c kadiem principiem ir jaizvieto diagrammas elementus lai paaugstinatu
tas uztveramibu. Viens no pamatiem, uz kuriem var balstit diagrammas elementu izvieto$anas efektivitates noteik$anu ir objektu uztveres teorijas. Dotas teorijas
izskaidro kada veida cilvéka prats apvieno atseviskus objektus sistémas vai otradi — izdala atseviskus objektus no kopgja fona.

Dotaja raksta ir piedavata UML diagrammu klasifikacija, kas pamatojas uz diagrammu struktiram. Dota klasifikacija dod iespgju izdalit lidzigus diagrammu
tipus kuram var pielietot vienas un tas pasas prasibas elementu izvieto$anai telpa. Tas nozimé, ka pie dotiem diagrammu tipiem var pielietot vienu un to pasu
elementu izvietoSanas automatizacijas algoritmu.

Aptyp I'ananos, Oxcana Hukndgoposa. Pazmemenue s1ementoB UML nuarpamm B npoctpancrse: O6mas curyanus

UML (aurn. Unified Modelling Language) siBiisiercst IHPOKO HCIHOIB3YEMbIM CTaHIapTOM JUISl MOJCIUPOBAHHUS CHCTEM, KOTOPBIA Tak)K€ YaCTHYHO MOXKET
aBTOMATH3MPOBATh CaM Ipolecc pa3paboTku. B Hamm THY MHXKEHepaM NMPUXOMUTCS paboTaTh ¢ OONBIIMMH M CIOKHBIMH CHCTEMAaMH, ITO3TOMY OCTPO BCTaeT
BOIIPOC O YUTAOETBHOCTH JUAarpaMMbl, TaK KakK ¢ pa3paOOTaHHBIMH AMarpaMMaMH paboTaroT Tak e Apyrue pazpadordyuku. BaxxHo, 4ToObI quarpamma Obuia
HHTYUTHBHO TOHSTHA TeM, KOMy HpHIETCs ¢ Hell paboTaTth. Pacronoxenne aimeMeHTOB auarpammsl B si3bike UML B mpocTpaHCTBe UrpaeT BaKHYIO POJIb B
BOIIPOCE YIY4IICHNUs YUTa0ETbHOCTH JHArpaMMBL. PydHOoe pa3sMelieHre 3JIeMEHTOB JHarpaMMBbl B IPOCTPAHCTBE TPYJOSMKHI H TOJITHH MpOIiecc, KOTOPHI He
BCErZa JacT HY)KHBIX Pe3y/IbTaToB. [103TOMY aBTOMATH3aIMs HTOTO MIpoIiecca MOKET OBITh PEIICHHEM, KOTOPOE JAaCT HY)XHBII Pe3yJIbTaT 3a KOPOTKOE BPEMs BO
BpeMsl CO3/IaHusL, TPAaHC(HOPMALNK WITH SKCIIOPTA\MIIOPTa AHATrPaMMBI.

Jlnist Toro, 4ToOBI pa3paboTaTh AJITOPHTM I aBTOMATH3AIMH PAa3MEIIEHHS JIEMEHTOB IUarpPaMMBI B IIPOCTPAHCTBE, HY)KHO ONPEACIIHTE, 10 KaKHM IIPUHIMIIAM
HY)KHO pa3MellaTh SJIEMEHTHI AMarpaMMbl, 4TOObI IOBBICUTH €€ YMTa0eIbHOCTh. JlIst ompeneneHus TpeOOBaHMH K B3aMMHOMY DACIHOJIOKEHHIO JJIEMEHTOB
JarpamMM OBITH HCIIOJIB30BaHbl MPHHIHUIIBI TIEPIENTYaIbHON Cerperalyi 1 MepuenTyaabHOro 00beIHHEHNUs, KOTOPbIe OOBICHIIOT, KAKUM 00pa3oM CO3HAHHE
YenoBeKa 00BbEANHSCT OTACIBHBIC OOBEKTHI B CHCTEMBI WII HA000POT, BEIICISIET OT/IeNbHBIE 00BEKTHI U3 001Iero GoHa.

B nmanHO#f cratbe mpemnoxkena kinaccugukanus UML nmuarpamM, OCHOBBIBAasSCh Ha MX CTpyKType. [laHHas kiaccudUKaims JaeT BO3MOXKHOCTH BBIICIUTH
CXOKHME THIIBI JMarpamM, K KOTOPHIM, B CBOIO OYepelb, MOXHO IPUMCHHTb OJHM M T€ XK€ TPeOOBaHHS IS B3aHMHOIO PACIIOJIOKEHUSI HJIEMEHTOB B
npocTpaHcTBe. YTO Tak e 3HAYHT, YTO K JAHHBIM TUIAM JAUAarpaMM MOXKET OBITh IPUMEHEH OJMH U TOT XK€ aJrOPHTM PacIipeleIeHUs] IeMEHTOB JHarpaMMbl B
MIPOCTPAHCTBE.

108

http://www.uml.org/
http://www.omg.org/mda/

