
Scientific Journal of Riga Technical University
Computer Science. Applied Computer Systems

2011

__ Volume 47

101

UML Diagram Layouting: the State of the Art

Arthur Galapov
1
, Oksana Nikiforova

2
,

1-2
Riga Technical University

Abstract – The usual aim of the modern computer-aided

system modelling is to improve a connection between software

model and code components. Therefore, the task of a diagram

import/export becomes very important during software

development. Layouting of diagrams after importation from

another tool and application plays the main role. Authors of this

paper describe some concepts, which are currently being

considered in the area of diagram layouting and indicate several

problems and their potential solutions for use in the development

of CASE tools.

Keywords – Diagram layouting, element placement, model

export/import, system model.

1. INTRODUCTION

One of the tasks of software development is to present

different aspects of the system before developing software

solution for the required system. Solving this task, system

modelling becomes one of the important activities during

software development.

System modelling gives software developers the ability to

understand system’s behaviour, structure and its separate

elements. System modelling is a way of thinking about

problems using models, which are based on real-world ideas.

Models are useful for understanding problems, communicating

with everyone involved within the project (customers, domain

experts, analysts, designers etc), modelling enterprises,

preparing documentation and designing applications and

databases. Modelling promotes better understanding of

requirements, clearer view of design and more maintainable

systems.

Usually, system model is organized as a set of diagrams,

where specific notation is defined for each diagram and it

regulates diagram syntax and semantic. As far as system

models are abstractions that display the essentials of a

complex problem or structure by filtering out nonessential

details, models make the problem easy to understand.

Systematic approach to elements placement within the

diagram, which is specified as a task of diagram layouting,

plays an important role in completing the task of modelling.

Increased interest in Model Driven Software Development

again turns focus to the area of diagram layouting, which

concords to the area of graph theory.

In 1985 several works were done on ER (Entity-

Relationship) diagrams: Batini, Furlani and Nardelly in [1]

described some aesthetics and applied topology- shape-metrics

approach. According to Dalj, aesthetics is the theory about

elegancy [2]. For network diagrams Kosak, Marks and Shieber

in [3] specify two algorithms respecting certain visual

organization features. The first algorithm selects and applies a

layout rule until each node is positioned. The second one is a

parallel genetic algorithm. Freivalds and Kikusts in [4] along

with Dogrusoz in [5] propose new approaches and techniques

for graph layouting.

Several researches have been conducted on layouts of class

diagrams. Early work of Battista and his colleagues explored

graph drawing algorithms and aesthetics [6]. Some new

approaches have been proposed for graph layout especially in

the UML class diagram domain. Eiglsperger, Kaufmann M

and Siebenhaller in [7] proposed an algorithm based on the

topology-shape-metrics approach for automatic layout of class

diagrams, which works well for class diagrams with well

defined relationships between classes. Eichelberger introduced

a layout algorithm according to a large number of aesthetic

criteria of UML class diagrams [8]. Dwyer presented a three-

dimensional UML class diagram representation using the

Force Directed algorithm [9]. Andriyevska and her colleges

give ideas on positive aspects of layouting in [10].

Researches also have been carried out on other types of

UML diagrams. Eichelberger in [11] presents research on

automatic layout of UML (Unified Modelling Language)

using case diagrams. Bist with MacKinnon and Murphy

propose an approach to draw sequence diagrams in technical

documentation to ease communication between project

members [12]. Poranen with colleagues proposes various

criteria for drawing a sequence diagram based on traditional

graph drawing aesthetics and the special nature of sequence

diagrams [13]. Wong and Dabo give the requirements set

based on cognitive science for sequence and class diagrams,

which can help in diagram readability improvement [14].

There are many criteria introductions that conflict with each

other. It confuses software engineers and tool developers

while choosing proper criteria to use. Therefore, we can

suggest that the area is not systematized well enough and the

goal of the paper is to summarize existing information

connected with diagram elements layouting and to give

systemised view on existing problems and their potential

solutions, and propose more specified field for further

research.

The paper is structured as follows: the next section

describes general terms and definitions of the area of diagram

layouting and shows classification of diagrams suggested by

the authors, which can be used for working out the algorithms

of element placement. The third section contains theories,

which help to understand how a human being perceives

objects from real world and joins them into a system or

distinguishes them from background. These theories give

opportunity to distinguish how to organize UML diagram

elements for improving its readability and introduce the

requirement set. The subsections of section 4 describe

problems in several areas of working with models and how

layouting automation helps in solving them. In conclusion of

Scientific Journal of Riga Technical University
Computer Science. Applied Computer Systems

2011

__ Volume 47

102

the paper the authors discuss the present research and state the

directions for the future.

2. CLASSIFICATION OF DIFFERENT DIAGRAM TYPES ON THE

EXAMPLE OF UML

As the authors have mentioned in the introduction, the task

of element placement during system modelling has an impact

on better understanding of the system model and more

effective usage of them during development of the system.

Nowadays, object oriented manner of software development

plays one of the leading roles in system development and

object oriented system modelling has its own way of

presentation of different aspects of the system. Therefore, the

problem of diagram layouting is described on the example of

UML [15], which is declared as a standard for presentation of

software system model. It also provides a notation, which

grows from analysis through design into implementation in

object oriented programming languages.

As a notation of system modelling for different aspects of

the system, UML introduces different types of diagrams,

which can describe a system from different points of view.

According to [15] UML 2.x version distinguishes 13 diagram

types, abstract examples of them are shown in Figure 1:

1) Class diagram – describes the system structure by showing

its classes with methods and attributes, and relations between

these classes.

2) Components diagram – shows how system is divided into

components and in what manner these components relate with

each other.

3) Composite structure diagram – demonstrates classes’ inner

structure and collaborations that this structure make possible.

4) Deployment diagram – describes the hardware used in

system implementations, the execution environments and

artefacts deployed on the hardware.

5) Object diagram – shows full or partial structure of modelled

system at specific time.

6) Package diagram – shows how system is divided into

logical parts and how these parts are connected with each

other. There is no strict difference between other diagram

types and the name is chosen for simplicity – packages and

package diagrams can be part of other diagrams.

7) Activity diagram – shows how certain activity is divided

into different actions.

8) State machine diagram – describes the states and state

transitions of the system.

9) Use case diagram – describe system’s functionality in terms

of actors, their goals represented as use cases and

dependencies between these elements.

10) Communication diagram – shows the interactions

between objects or parts in terms of sequenced messages.

11) Sequence diagram – shows how objects communicate

with each other in terms of sequence of messages.

12) Interaction overview diagram – diagram type, which is

similar to activity diagram with one difference: diagram

activities are pictured as frames, which can contain sequence

diagrams.

13) Timing diagram – specific type of diagram, where the

focus is concentrated on timing constraints.

We can assume that all diagrams more or less are

represented in a graph form – diagram consists of nodes,

which are connected with arcs in some manner. However

different diagram types can have different structure: diagram

can have different type of nodes or arcs, diagram should be

constructed in some special manner.

The “simplest” presentation of elements from the

perspective of graph structure has deployment diagram. It has

two types of elements, one of them is a node, which describes

physical place of system deployment, and the other is a link

between nodes. The same is within the object diagram, where,

in accordance with UML notation, diagram has two types of

elements – objects and links between them.

Diagram having different types of arcs or nodes must be

analyzed separately from diagrams with one type of arcs and

one type of nodes, because extra types of elements should be

taken into consideration.

In spite of simple structure using case diagram, where

actors have to be communicated with use cases by

relationships, the diagram has additional conditions on actors’

placement around the set of use cases, which in turn specifies

the boundary of the system. State chart diagram has the same

structure as use case diagram. UML communication diagram

has similar structure, but a bit more complicated - objects are

connected with arcs, where the arcs have complicated

structure. The link is presented as a connector, which is

anchored with the message that object has to pass to another

object. Therefore, in addition to rules of element placement

accordingly to graph structure, the distance between objects

has to be considered to place the name of the message.

Composite structure diagram has the same structure as

communication diagram: diagram has two types of nodes,

which are connected with one type of arcs and their names

placed on them. These four diagram types can be grouped into

the diagrams, which require specific regulations for graph

nodes.

UML class diagram has one type of nodes that represent

system classes and several types of arcs, which show different

types of class relationships. Component diagrams have one

type of nodes and several types of arcs, like class diagram, but

in this case different types of arcs have the same semantics

and are used to improve the readability of a diagram. These

two types can be joined into the diagrams, which require

specific regulations for graph arcs.

Logically package diagram consists of one type of nodes

that represent packages and several types of arcs that show

how packages relate with each other. But in most cases

package diagrams are part of other diagram types – this adds

more node types to the diagram. Activity diagram also has

several types of nodes: activity, entry point and exit point; and

several arc types. But arc structure is complicated: arcs can

split into several flows and then join into one, also arcs can be

split into alternative flows. These two types of graphs can be

joined into diagrams, which require specific regulations for

graph arcs and nodes.

Scientific Journal of Riga Technical University
Computer Science. Applied Computer Systems

2011

__ Volume 47

103

Sequence diagram has a special structure: all the objects are

allocated horizontally at the top of the diagram, except objects

created during system operating, each of the objects has its life

time, sequence of messages is shown by links showing its

flow.

Interaction overview diagram has the same structure as

activity diagram, but instead of activities, nodes of interaction

overview diagram can have separate sequence diagrams, also

arcs have simpler structure – no flow separation and joining.

Timing diagram can’t be considered as a graph, because it has

no nodes. These three diagram types can be joined into graphs

with specific conditions for general structure.

Taking into consideration the specific requirements to

structure and placement of elements of UML diagrams above,

it is possible to classify diagrams in different groups, which

are based on diagram structure and it construction principles.

The authors propose to classify diagrams in three major

groups in accordance with requirements for their layout:

1) “Pure” graph –diagrams are represented as a regular graph:

one type of nodes is connected with one type of arcs.

2) Graph with nodes and arcs of different type:

a. diagrams, which are specific in correspondence with

requirements to node types,

b. diagrams, which have specific requirements for the

structure of arcs,

c. diagrams, which have specific requirements for the

structure of nodes and arcs.

3) Diagrams with specific requirements of the diagram

structure – group of diagrams, which are constructed in some

special manner.

Diagrams from the second group can take a form of “pure”

graph in a special case, when the diagram has only one type of

nodes and only one type of arcs. This classification gives an

opportunity to distinguish diagram types, which can be

considered together under research of some specific methods

or criteria for UML diagrams efficiency improvements.

Tilley and Huang in [16] discuss, that UML diagram

efficiency depends on 4 factors: UML syntax and semantics,

layout of UML diagram elements and domain knowledge.

Layout is essential factor for diagram reading and

comprehension, therefore, studies on diagrams aesthetics

appeared, which try to explain effective diagram construction

principles, and on diagram layouting algorithms, which study

and develop algorithms for automation of diagrams of

different type layouting.

To specify UML diagram elements layout comprehension,

possible solutions for UML diagram transformation from

chaos state to normal form have to be defined by analogy

showing how it is made in databases designing. According to

Fig.1. UML diagrams classification

Scientific Journal of Riga Technical University
Computer Science. Applied Computer Systems

2011

__ Volume 47

104

Dalj, chaos is a state of extreme disorder and uncertainty [2].

Taking this definition in consideration, it is possible to

conclude that UML diagram in the chaos state have low

elements layout efficiency. According to Murdock in [17]

normal form – in mathematics, object’s simplified form is

achieved by transformations, which don’t affects this object’s

properties; in data bases, requirement set, which relation it

must satisfy. The normal form of UML diagram is initial

transformed state, which was found applying its diagram

elements relocations in space and which layout satisfy

requirement set (for example, perception theories). The next

chapter defines the requirement set for certain UML diagram

types and explains how these requirements effect UML

diagram readability.

3. GENERAL LAYOUTING PRINCIPLES

Layout of UML diagram elements is of high importance for

software system understanding. The higher the layout of a

diagram elements efficiency is, the easier is its comprehension

and the higher UML use efficiency is. Theory of perception is

one of the bases which can help to define efficiency of layout

of UML diagram elements.

To determine requirements for layouting of diagram

elements there is a need to answer the question – which

element layout will be more perceptible for the user? [14]

explains that principles of perceptual organization and

segregation provide the basic design rules to organize multiple

artefacts. These rules can help users to group related

information and segregate useful information easily and

without ambiguity. So theory of perception can help to

distinguish certain criteria for UML diagram effective

layouting.

A. Perceptual organization

According to Boff, Kaufman and Thomas in [18] -

perceptual organization refers to how objects that we perceive

in the world are located and related with one another. Wong

and Dabo defined the most important laws of object perceptual

organization in [14], such as:

1) Images are perceived in a way that their structures are as

simple as possible. The law of good figure is also called the

law of simplicity.

2) Law of similarity – similar elements (e.g., common in

shape or colour) appear to be grouped together. For example,

in figure 2, (a) can be perceived as either horizontal rows or

vertical columns of circles, but (b) would most likely be

perceived as vertical columns of squares and circles because

of the similar shapes.

3) Law of continuation – points tend to belong together if

they result in straight or smoothly curved lines when

connected, and lines are grouped together in such a way as to

follow the smoothest path.

4) Law of proximity – elements that are close to each other

are grouped together. For example, in figure 3 (a), the circles

are more likely to be perceived as horizontal rows since they

are closer horizontally. Also figure 3 (b) most likely will be

perceived as horizontal lines of circles and squares since they

are closer horizontally; disregarding the fact that similar

shapes are placed vertically. Conclusion – the law of

proximity is stronger than law of similarity.

5) Law of connectedness – elements that are physically

connected are perceived as a unit. In figure 4, we perceive

three dumbbells rather than some pairs of dots. Note that the

dots that are next to each other in adjacent dumbbells are

actually closer together, and according to the law of proximity,

they should be grouped together. However, in this case, the

law of connectedness overpowers the law of proximity.

6) Law of familiarity – elements are more likely to be

grouped together if the groups seem familiar or meaningful.

Fig.2. Examples of the law of similarity [14]

Fig.3. Examples of law of proximity [14]

Fig.4. Example of law of connectedness [14]

Perceptual organization helps to understand how human

beings’ perceptual system combines separate objects into

system. This helps to determine how to organize UML

diagram elements so these elements would be comprehended

as one.

B. Perceptual segregation

As it is said in Goldstein research in [19] - compared to

perceptual organization, research in perceptual segregation

basically studies the problem of “figure-ground segregation”

to determine when objects (figures) are seen as separate from

the background (the ground). After summarizing perceptual

segregation laws from Dabo and Wong [14] work and Kimchi

and his colleagues [20] work it is possible to distinguish these

as most important:

1) Law of symmetry – symmetric areas are usually seen as a

distinct figure.

Scientific Journal of Riga Technical University
Computer Science. Applied Computer Systems

2011

__ Volume 47

105

2) Law of orientation – horizontal or vertical orientations

have higher probabilities to be seen as a figure than other

orientations. For example, in 5th figure’s (a) subpicture, the

vertical/horizontal “plus” propeller shape (b) is more likely to

be perceived as a figure than the tilted “cross” shape (c).

3) Law of contour – modern theories about figure-ground

segregation discovered that contours (i.e., boundary edges)

help in figure-ground perception.

Fig.5. Example of law of orientation [14]

Perceptual segregation principles give possibility to

understand how human perception system distinguishes

certain objects from background (from big object group). This

gives a possibility to effectively organize UML diagram

elements if these elements should be comprehended different

from the background.

Perceptual theories give possibility to understand in what

way human perceptual system combines objects in subsystems

or distinguishes separate elements from background – how a

human perceives world around him. Perceptual theory

principles can explain why some UML diagrams are better for

reading and comprehension than others.

C. Requirements set for layouting of diagram elements

It is possible to define the requirements set for UML

diagram elements layouting on perceptual theories basis. This

helps to determine UML diagram layouting algorithm

tendency. Therefore algorithm gives the opportunity to

automate layouting of UML diagram elements and transform

the given diagram to its normal form.

Different UML diagram designing software offer different

diagram visualization features. For example, some programs

have the ability to join links (fig.6 (b)), but in some programs

this isn’t provided and all links will be separate as it is shown

in figure 6 (a). It is understandable that link joining gives more

readable UML diagram representation. But not every tool

supports this feature, therefore, all requirements connected

with tools’ functionality will be avoided.

Fig.6. Three separate links (a) and three links joined into one (b) [14]

Previously, all UML diagrams were classified in three

subgroups. Diagrams from each group have different structure

and construction principles. Different layouting principles can

be adjusted for diagrams from different groups. For the first

and the second group these principles mostly are the same, but

still can differ, because the second group diagrams have

several types of nodes or links that must be considered. Every

diagram from the third group has its own structure and must

be examined separately. Wong and Dabo introduce some

requirements that can be used for “pure” graphs and graphs

with nodes and links of different types in [14]:

1) Objects that appear larger or different in size from

neighbouring can attract attention. Different size can

distinguish an object, while uniform sizes can group objects so

that they are seen alike.

2) Minimize crossings and bends – the number of edge

crossings and bends should be minimized to make edges more

continuous and easier to follow. This requirement also is

described in Ware et al [21] work.

3) Exploit proximity – generally, diagrams should be

compact for easier viewing, but further improvements can be

made on the spacing of nodes. Related nodes that should be

perceived together should be placed near each other. And,

nodes that should not be perceived together should be placed

further apart. To enhance grouping, edges should not be too

long. These notions are supported by the law of proximity,

which is described by Purchase et al in [22].

4) Maximize subset separation – subsets of participants that

have little communication should be separated. This is

supported by the law of proximity.

5) Avoid overlapping – overlapping should be avoided.

Nodes and edges should not overlap other nodes or edges. In

figure 7, if overlapping is allowed, (a) would be confusing;

because it would not be clear whether box A is connected to

box B or directly connected to box C. As a result, it could be

perceived as (b), following the law of connectedness, or (c),

following the law of continuation.

Fig.7. Effect of overlapping

6) Employ symmetry – symmetry within the diagram

should be used effectively, since symmetric areas are usually

seen as distinct, as well as being “good figure”. For example,

subclasses of a superclass should be centred. In figure 8, (b) is

preferable to (a) because it is symmetric and looks like a stable

figure. Research on this requirement can also be found in

Purchase [23] research.

Scientific Journal of Riga Technical University
Computer Science. Applied Computer Systems

2011

__ Volume 47

106

Fig.8. Effect of symmetry

7) Draw links orthogonally – the edges connecting nodes

should be orthogonal. This also conforms to the law of

orientation.

8) Enhance flow – diagrams can be difficult to read, and it

may not be obvious where to start; and, even given some

starting point, the next object to look at could be in any

direction. Thus, it is useful to control the degrees of freedom,

as it is said in Petre studies in [24]. Overall, since people

naturally read texts from left to right (in most cultures), and

from top to bottom, diagrams should have a similar starting

point and subsequent flow. According Ambler research in [25]

important classes should be at the top or on the left, and other

related classes should be placed below them or towards the

right.

Some of the defined requirements conflict with each other

(for example, minimize subset separation requirement and

exploit proximity requirement). This means that it is essential

to define significance for conflicting requirements especially

for diagram elements layouting automation; also this ability

can be given to user. Authors propose this task for further

studies.

The described principles and requirements can be used for

creation of an algorithm for diagram elements automated

layouting. The authors state three major fields of working with

diagram layouting problems. They are:

1) Definition of elements placement during creation of the

model.

2) Transformation of one model into another within the one

modelling environment;

3) Model export from one tool into another;

Next sections describe each of the stated fields from the

perspective of the problems existence and their potential

solutions.

4. LAYOUTING ISSUES WITHIN THE WORKING WITH MODELS

Diagram element layout is one of the essential factors of

UML diagram comprehension. The larger and more complex

becomes the diagram due its creation, the more time is spent

by its creator on improving diagram element layout.

Automation of this process fastens diagram creation and

improves readability. Also it can bring unification in diagram

layout problem.

Layouting algorithm can be used for model creation before

all model elements are included or connected to help its

creator to understand the model or after all model elements are

included and connected to improve general model readability.

There are two important areas connected with diagram

elements layouting: the area of model transportation and its

importation.

A. Layouting Issues in the Area of Model Transformation

Many of UML diagram creation tools give opportunity to

transform one diagram into another. Usually sequence

diagram is converted into communication diagram and

backwards. In every tool transformed diagram’s logic stays the

same but its element layout differs. After transformation,

resulting diagram is hardly readable. Layouting algorithm can

be automatically used after diagram transformation to improve

readability.

Figure 9 shows an example of the sequence diagram

transformation into communication one. Resulting

communication diagram is hardly readable: messages overlap,

links cross nodes and existing nodes are overlapping. All these

problems can be solved using layouting algorithm or by

manually allocating elements in space. Layouting algorithm

usage will partly or fully free the user from the manual

elements allocating, this will save diagram creator’s time and

efforts.

Fig.9. Sequence diagram’s transformation in communication diagram in
StarUML tool example

Application of the principles of Model Driven Architecture

[26] shows more complicated requirements for model

transformation where transformations automatically create

other types of diagrams, e.g., PSM class diagrams from PIM

diagrams, so that automatic layout generation is required more

broadly.

B. Layouting Issues in the Area of Model Importation

In some cases there is a need to import UML diagram

created in one tool into another. This can be caused by

different factors: changing developing team, improving project

Scientific Journal of Riga Technical University
Computer Science. Applied Computer Systems

2011

__ Volume 47

107

created by others, changing developing tools and so on. It is

important that diagram should be the same or should have

little difference from original after importing.

 According to Gulbis in [27] most of the tools provide XMI

(XML Metadata Interchange) standard for diagram

exporting/importing, but most tools use different XMI

standard versions, which are not compatible with each other. If

two different tools use different XMI versions, this will cause

incorrect UML diagram importation. Gulbis provides

experimental results exporting UML class, use case and

sequence diagrams from one tool to another using XMI

standard provided in [27].
Fig.10. Exporting class diagram from AgroUML to MagicDraw [27]

Figure 10 shows the exporting class diagram from

AgroUML tool to MagicDraw tool example – after importing

diagram looses all links and diagram elements original

coordinates. According to Gulbis in [27] this is common for

many tools.

The XMI standard governs only the exchange of abstract

syntax (UML domain), coding of diagram elements with their

coordinates is an excess of the standard. Most of the UML

tools code the layout information in XMI, but do it in a custom

way.

Problem with missing links is more important than diagram

elements positions. Even if user restores all links from original

diagram, he still needs to relocate diagram elements to get

original diagram. A manual diagram elements relocating takes

effort and consumes time. Automation of this process saves

time and efforts. Also if layout of the original diagram was

found by layouting algorithm then applying this algorithm to

imported diagram with “broken” layout most likely will give

the same result.

5. CONCLUSION

As far as for the task of system implementation, where the

formatting guidelines have proved to be a successful method

to improve the readability of source code, the increasing

success of visual specification languages such as UML for

model-driven software development visual guidelines are

needed to standardize the presentation and the exchange of

modelling diagrams with respect to human communication,

understandability and readability. In this article, authors

summarized several problems in the area of visual guidelines

capturing the aesthetic quality of UML diagrams. We propose

these issues as a framework for research on improvement of

the aesthetic quality and thus the understandability of UML

diagrams. All 13 UML diagram types can be classified

according to their structure. This classification helps to

distinguish similar diagrams (according to elements’ sets and

construction principles) and introduce a set of requirements

for the effective element layout for particular diagram’s

groups. This requirement set can be used for algorithm

creation and automatic element layouting.

Most requirements introduced by others authors’ conflict

with each other and must be reconsidered and unified in some

manner. Most of requirements can’t be thrown away even if

they conflict with other requirements, in this case priorities

must be used to distinguish, which of them have higher

influence on diagram readability improvement.

 Automation of diagram element layouting can save

creator’s time and efforts, and give a better result than manual

element distribution. Algorithm for diagram automated

layouting brings positive aspects in model creation,

transformation and export/import areas. Definition of the

algorithm for diagram element layouting in the task of UML

diagram readability improvement and development of such

algorithm support is stated as a direction of future research of

the authors.

Acknowledgments. The research presented in the paper is

supported by the research grant No. FLPP-2009/10 of Riga

Technical University “Development of Conceptual Model for

Transition from Traditional Software Development into

MDA-Oriented.” The research presented in the paper partly is

supported by Grant of Latvian Council of Science No. 09.1245

"Methods, models and tools for developing and governance of

agile information systems".

REFERENCES

[1] Batini C., Furlani L., Nardelly E. What is a Good Diagram? A

Pragmatic Approach. In Entity-Relationship Approach: The Use of ER

Concept in Knowledge Representation, Proceedings of the Fourth
International Conference on Entity-Relationship Approach, USA, IEEE

Computer Society and North-Holland, pp 312–319, 1985.
[2] Даль В. Толковый словарь великорусского языка, 1863. [Online]

Available: http://www.rubricon.com.resursi.rtu.lv/tsd_1.asp

[3] Kosak C., Marks J., Shieber S. Automating the Layout of Network Dia-
grams with Specified Visual Organization. IEEE Trans. Systems, Man

and Cybernetics 24, 3, pp. 440–454, 1994.
[4] K. Freivalds, P. Kikusts Optimum Layout Adjustment Supporting

Ordering Constraints in Graph-Like Diagram Drawing. Proc. of the

Latvian Academy of Sciences, pp. 43–51, 2001
[5] K. Freivalds, U. Dogrusoz, and P. Kikusts, Disconnected Graph Layout

and the Polyomino Packing Approach, Proc. of Graph Drawing 2001,
Lecture Notes in Computer Science,pp. 378-391, Springer-Verlag, 2002.

[6] Battista G.D., Eades P., Tamassia R., Tollis I.G., Graph Drawing:

Algorithms for the Visualization of Graphs. Prentice Hall. 1999.
[7] Eiglsperger M., Kaufmann M., Siebenhaller M., A topology-shape-

metrics approach for the automatic layout of UML class diagrams. In:
Soft Vis 2003: Proceedings of the 2003 ACM Symposium on Software

Visualization, pp.189–198, ACMPress. 2003.

[8] Eichelberger H. Aesthetics of class diagrams. VISSOFT 2002:
Proceedings of the 1st International Workshop on Visualizing Software

for Understanding and Analysis, pp.23–31, 2002.
[9] Dwyer T. Three dimensional UML using force directed layout. In:

CRPITS 2001: Australian Symposium on Information Visualisation,

pp.77–85, Australian Computer Society, Inc, 2001.
[10] Andriyevska A., Dragan. N, Simoes B., Jonathan I. Maletic. Evaluating

UML Class Diagram Layout based on Architectural Importance
Proceedings of the 3rd International Workshop on Visualizing Software

for Understanding and Analysis, IEEE Computer Society, 2005.

[11] Eichelberger H., Automatic layout of UML use case diagrams, In:

Proceedings of the 4th ACM symposium on Software visualization, pp.

105-114, 2008.

http://www.rubricon.com.resursi.rtu.lv/tsd_1.asp

Scientific Journal of Riga Technical University
Computer Science. Applied Computer Systems

2011

__ Volume 47

108

[12] Bist G., MacKinnon N., Murphy S. Sequence diagram presentation in

technical documentation. In: SIGDOC 2004: Proceedings of the 22nd

Annual International Conference on Design of Communication,
NewYork, NY, USA, pp.128–133, ACMPress. 2004.

[13] Poranen T., Makinen E., Nummenmaa J. How to draw a sequence
diagram. In: Proceedings of the Eighth Symposium on Programming

Languages and Software Tools, SPLST 2003, University of Kuopio,

Department of Computer Science, pp.91–102, 2003.
[14] Wong K., Dabo. S On evaluating the layout of UML diagrams for

program comprehension. Software Qual J, pp. 233–259, 2006.
[15] UML resource page [Online] Available: http://www.uml.org/ [Accessed

26.02.2011].

[16] Tilley S., Huang S., A qualitative assessment of the efficacy of UML
diagrams as a form of graphical Documentation in aiding program

understanding, SIGDOC: Proceedings of the 21st Annual International
Conferenceon Documentation, ACMPress, pp.184–191, 2003.

[17] Murdock J. Normal forms.2006. [Online] Availiable -

http://www.scholarpedia.org/ [Accessed 10.10.2010]

[18] Boff K. R., Kaufman L., Thomas J.P., Handbook of Perception and

Human Performance. Volume II. 1986.
[19] Goldstein B. Sensation and perception. 6thedn. Wadsworth Thomson

Learning, 2002.

[20] Kimchi R., Behrmann M., Olson C. Perceptual organization in vision.
Behavioral and Neural Perspectives. Lawrence Erlbaum, 2003.

[21] Ware C., Purchase H., Colpoys L., McGill M. Cognitive measurements
of graph aesthetics. Information Visualization, pp.103–110, 2002.

[22] Purchase H. C., McGill M., Colpoys L., Carrington D., Graph drawing

aesthetics and the comprehension of UML class diagrams: an empirical
study. CRPITS 2001: Australian Symposium on Information

Visualization, pp.129–137, 2001.
[23] Purchase H.C., Which aesthetic has the greatest effect on human

understanding? In: GD1997: Proceedings of the 5th International

Symposiumon Graph Drawing, pp.248–261, Springer-Verlag, 1997.

[24] Petre M., Why looking isn’t always seeing: readership skills and

graphical programming. Communication of the ACM pp.33–44, 1995.

[25] Ambler S.W., The Elements of UML Style. Cambridge Univ Press. 2003.
[26] MDA resource page [Online] Available: http://www.omg.org/mda/

[Accessed 26.02.2011].
[27] Gulbis I. Modeļu datu apmaiņas standartu izpēte modeļu vadāmās

programmatūras izstrādes kontekstā. 2010.

Arthur Galapov received B. Sc. in computer control and computer science in

2009 from Riga Technical University.
Presently, he is a master student of Riga Technical University at the Faculty of

Computer Science and Information Technology. He took part in several

scientific and industrial projects. He is C/C++ Programmer in the
“Accenture”, Riga, Latvia.

Oksana Nikiforova has received engineering science doctor’s degree

(Dr.sc.ing) in information technologies sector (system analysis, modelling and

designing, sub-sector) from Riga Technical University, Latvia, in 2001.

She is presently a full professor at the Department of Applied Computer

Science of Riga Technical University, where she has worked since 1999. Her
current research interests include object-oriented system analysis and

modelling especially its issues in the framework of Model Driven

Architecture. In these areas she has published extensively and has been
awarded several grants. She has participated in and managed several research

projects related to the system modelling, analysis and design, as well as
participated in several industrial software development projects.

She is a member of RTU Academic Assembly, Council of Faculty of

Computer Science and Information Technology, RTU publishing board, RTU
Scientific Journal Editorial Board, etc. She is a co-chair of annual workshop

of Model Driven Architecture in conjunction with International conference
ENASE. She is awarded as RTU Young Scientist of the Year 2009.

Artūrs Galapovs, Oksana Ņikiforova. Diagrammu elementu izvietojums telpā: esošais stāvoklis

Sistēmas modelēšana dod iespēju programmatūras izstrādātajiem saprast lielu sistēmu uzvedību, struktūru, pamatelementus. Viena no mūsdienas lietotām

notācijām sistēmas modelēšanai ir vienota modelēšanas valoda (angl. Unified Modelling Language – UML). UML diagrammas elementu telpiskā izvietošana

spēlē noteicošu lomu programmatūras sistēmas izpratnē. Jo efektīvāka ir elementu izvietošana, jo vienkāršāka ir diagrammas būtības izpratne un jo efektīvāka ir
UML diagrammas lietošana. Lai to panāktu diagrammas izstrādātājam ir jāizvieto elementi tā, lai paaugstinātu diagrammas uztveramību. Manuālā elementu

izvietošana prasa daudz laika un rezultāts ne vienmēr ir apmierinošs. Šī procesa automatizācija varētu atbrīvot diagrammas izstrādātāju no lieka darba un
piedāvāt labāku rezultātu nekā manuāla elementu izvietošana diagrammas konstruēšanas, transformācijas vai eksporta/importa laikā.

Lai izstrādātu algoritmu diagrammas elementu izvietošanas automatizācijai ir jānoteic pēc kādiem principiem ir jāizvieto diagrammas elementus lai paaugstinātu

tās uztveramību. Viens no pamatiem, uz kuriem var balstīt diagrammas elementu izvietošanas efektivitātes noteikšanu ir objektu uztveres teorijas. Dotas teorijas
izskaidro kādā veidā cilvēka prāts apvieno atsevišķus objektus sistēmās vai otrādi – izdala atsevišķus objektus no kopēja fona.

Dotajā rakstā ir piedāvāta UML diagrammu klasifikācija, kas pamatojas uz diagrammu struktūrām. Dotā klasifikācija dod iespēju izdalīt līdzīgus diagrammu
tipus kurām var pielietot vienas un tās pašas prasības elementu izvietošanai telpā. Tas nozīmē, ka pie dotiem diagrammu tipiem var pielietot vienu un to pašu

elementu izvietošanas automatizācijas algoritmu.

Артур Галапов, Оксана Никифорова. Размещение элементов UML диаграмм в пространстве: Общая ситуация

UML (англ. Unified Modelling Language) является широко используемым стандартом для моделирования систем, который так же частично может
автоматизировать сам процесс разработки. В наши дни инженерам приходится работать с большими и сложными системами, поэтому остро встает

вопрос о читабельности диаграммы, так как с разработанными диаграммами работают так же другие разработчики. Важно, чтобы диаграмма была

интуитивно понятна тем, кому придется с ней работать. Расположение элементов диаграммы в языке UML в пространстве играет важную роль в
вопросе улучшения читабельности диаграммы. Ручное размещение элементов диаграммы в пространстве трудоемкий и долгий процесс, который не

всегда дает нужных результатов. Поэтому автоматизация этого процесса может быть решением, которое даст нужный результат за короткое время во
время создания, трансформации или экспорта\импорта диаграммы.

Для того, чтобы разработать алгоритм для автоматизации размещения элементов диаграммы в пространстве, нужно определить, по каким принципам

нужно размещать элементы диаграммы, чтобы повысить ее читабельность. Для определения требований к взаимному расположению элементов
диаграмм были использованы принципы перцептуальной сегрегации и перцептуального объединения, которые объясняют, каким образом сознание

человека объединяет отдельные объекты в системы или наоборот, выделяет отдельные объекты из общего фона.
В данной статье предложена классификация UML диаграмм, основываясь на их структуре. Данная классификация дает возможность выделить

схожие типы диаграмм, к которым, в свою очередь, можно применить одни и те же требования для взаимного расположения элементов в

пространстве. Что так же значит, что к данным типам диаграмм может быть применен один и тот же алгоритм распределения элементов диаграммы в
пространстве.

http://www.uml.org/
http://www.omg.org/mda/

