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Abstract. The present paper examines the problems of time 

critical systems. The core of the problem lies in dynamic resource 

allocation and time dependent functional changes of the systems. 

The extensive research is of crucial importance for system 

planning, performance evaluation, time synchronization, 

resource access control and system infrastructure. The formalism 

in a group of stochastic automata is also examined. The 

definitions of “time critical system” and “real time system” are 

given in a context of dynamic and stochastic systems. Such a 

system functioning is determined by a functional, logical and 

morphological description. The procedures of functioning can be 

specified in different ways: as macro models [2], and directed 

graph of procedures [4]. 

The mathematical approach to generalization of the above 

mentioned definitions has been proposed. This approach might 

be used for self organization of system infrastructure or making 

final decision. Finally, the paper presents the approach to 

optimization and design of critical time functioning systems.  
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I. INTRODUCTION 

New systems research and development are consisted with 

functional and morphologic descriptions. The main demand 

for successful self-organization is some general start program. 

This program is capable to improve system behaviours, by 

increasing quantity of contenting in it information. This 

features can be performed by media account or /and in 

cooperation with another systems. The functional description 

of self-organizing features has been proposed in the paper 

[1,6] as a sample of homeostat and the same different 

extensions in the paper [4,7-9]. The multiform morphologic 

description has been proposed in [2,3,5,7-10] and can be used 

for design and simulation of diversity dynamic behaviours  at 

different systems levels description. The innovative  approach 

has been proposed in [11-13] where real-time systems have 

been described by using priced timed automata. Timed 

automaton and their game extension provide limited 

quantitative aspects of the system description.  There are 

limited possibilities for flexible and simultaneous 

implementing of description at different system levels. 

II. PROBLEM STATEMENT 

In this paper we shall assume that automaton [5] is 

described by this formula: 
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, where t = 1, 2, 3 … - discrete time; 

s(t) = (0,1) – integral input variable; 

s = 0 – single winning of positive situation in a system by 

successful procedure,  

s = 1 – the loss; 

f (t) = {f1, f2, … fa, … fj} – function of operation of 

automaton 

if f (l) =fa, a = 1, j – automaton made a action, 

φ (t) = { φ1, φ2, …, φj, … φn } – state of automaton; 

n – capacity of its’ memory. 

If ai fF )( , where fa corresponds to φj. The transition 

of automaton from one state to another can be described by 

this transition matrix: 

 

||,)(|| saa ij i, j = 1, n 

 

and for determined automate each row of matrix a contains 

one unit and other zeros. For stochastic automaton aij(s)≤1 the 

possibility to translate from i to j will take place with known 

S. 

For the static random environment a = a (a1, a2, a3, .. aj) 

action fa in a moment t, will result in a loss in a moment t+1 

(s=1)  with probability of 2/)1( da ap   and winning 

(s=0) with probability of 2/)1( aa aq  . If in the moment 

t automate was in a state φi, i=1,m, to which the following 

action fai=F(φi) corresponds, then a possibility pij of the 

transition to the φi is equal to the pij=paiaij(1) + qaiaij(0), i,j =1, 

m. Matrix p = ||Pij|| is stochastic and process of automate 

functioning is Markov process. The mathematical expectation 

of automate L winning in the environment C is: 
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,where σa – is a probability of the operation fa 

and min(a1, a2, … aj)≤ M(L,C)≤max(a1,…, aj). 

 

For the automaton, which is operating independently from 

the environment (σa - uniform probable distribution) 

mathematical expectation is: 







1

1

a

aa
j

M  

III. PROPOSED APPROACH 

There is a necessity to change f(t) and φ (t) in the non static 

environment.  It means, that automaton have to be trained and 

retrained according to environmental changes. Time of 
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training (or retraining) depends on the automate description 

and on the time, which is needed to detect the state of 

environment. 

We shall consider joint functioning of automate group with  

procedural model graph implementation. This kind of graph 

orders the procedure amount and name. The arrows on this 

graph show the directions, which contain information or/and 

make actions. Moreover, information may be provided from 

outside (from environment), or be produced in that group, by 

executing the given procedures.  

Each procedure may be final and may lead to the certain 

decision, but it may also be intermediate and lead to the new 

procedure.  

Let us consider that each automata of a group can make a 

decision, by using any procedure from the list of procedures, 

or can delegate the decision making to (by fulfilling any set of 

the procedures from the list) another automata. In general case 

assignment of the feature of each automaton (for example in 

the form of different procedure usage probability distribution 

and probability of decision making delegation). Using them 

we will describe a procedure graph: 

)/exp1( )()()(
0

i

s

i

s

i

s tpp   

, where t – time is needed to make a decision; 

τ
(i)

s – time constant of decision making, while doing i 

procedure on automaton S.  

p
(i)

s0 – maximal probability of making decision S0 with total 

number of automaton (with t ) with fulfilling procedure 

i.  

Matrix of transition probabilities is: 

0),( ,1,||,|| sjiPP jiss   

Time of transition is described by matrix: 

0),( ,1,||;|| sjijiss    

Full probability of making decisions by position: 
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, where j is a number of j automaton of group 

Procedures can be conditionally formalized and represented 

as an ordered algorithm actions’ sequence. The way of 

ordering, similarly as concrete meaningful essence of 

procedures, can be changed depending on necessarily 

functional and morphological levels of consideration of 

assigned tasks.  Quantitative list of procedures may be any.  

Automatons of the group for the effective successful 

execution of a procedure may each exchange of results of 

procedures following the scheme, which is described by 

orientated sub graphs.   We will assign a probability of finding 

a solution (in some known class of decision making) and time 

of decision making to each vertex of the graph, as well as we 

will assign time of transition necessary for executing next 

procedure, if a decision has not been made, to each edge of the 

graph. 

The repetition of any procedure is possible. It is possible to 

calculate limit evaluations, time of decision making, critical 

paths. i.e., sequence of delegating decision making, which can 

be applied to reach minimal and maximal time of decision 

making. The graph can be optimized according to the 

limitations: getting the minimal time Tr of decision making 

with known probability Pr of solution or maximization of 

decision probability in a specified time. Herewith we consider, 

that each automaton is operating independently in the limits of 

its own competence.  

Each additional exchange of information may increase Pr by 

increasing Tr.  

Let’s consider that Psi – probability of decision making by S 

automate is related to information exchange 
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where Psj – probability of information exchange to j 

automaton, 

Sj – number of automatons, which are exchanging 

information 

Pij – probability of successful information exchange with j 

automaton by i procedure, 1jiP  

From formula 
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In this case graph optimization is dependent on choice of 

procedures and information exchanges between automaton, 

which fulfil these conditions: 

min,])[( *  PPT RR or 

max,])[( * TTP RR where 

*

RP , 
*

RT are corresponding threshold values. 

This way we can concretely specify limitations, which are 

related with uncertainty of system functioning “critical time” 

and more uncertain characterization of real time. 

In the case of more precise and simple definition of system 

functioning critical time is appropriate to use – time of 

decision making by system or system self-organization time. 

IV.EXAMPLE.  

The process of conflict resolution [5] can be depicted as a 

flowchart or, more precisely, a connected locally finite and 

oriented graph (Fig. 2) of tree type with a root. The graph 

vertices denote the following events: C(m), after a time 

segments a collision of m transmissions occurs; bT, after b 

time segments a successful transmission occurs, where a, b  

{0, 1, 2}. The arc denotes transitions from one event (or 

vertex) to another. Each path (route from root to leaf) 
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corresponds to one process, while all possible paths 

correspond to the set of all possible processes that pass 

through the first (root) vertex). Arcs that depart from the same 

vertex correspond to classes of outcomes, and therefore it is 

convenient to number them in the same order, while the 

probability Pi of appearing in the i-th class is the probability 

that a process will proceed further from vertex C(m) along the 

i-th arc.  

We denote the length of the path (or of the path segment under 

consideration) by R, and we define it as the number of vertices 

that are encountered on this path (or segment). Then the list of 

all possible paths of length R can be compiled either in the 

form of a string of events (sequence of graph vertices) or in 

numerical form (sequence of arc numbers). The probabilities 

of all the arcs making up a path are already known, and 

therefore we can use the multiplication rule to determine the 

probability PK that a process will follow the k-th path. For 

example, for m = 2 according to Fig. 2 we have R  3. As we 

know, both forms of path notation uniquely designate a single 

process. Inspection of all paths of length R means 

enumeration, with constraints, of all R- 

 

 
 
Fig. 1. Flowchart of conflict-resolution process 

00=C(2)-1C(2)-1C(2)... 

01=C(2)-1C(2)-0T-0T. 

02=C(2)-1C(2)-0C(2).... 

  1=C(2)-0T-0T. 

20=C(2)-0C(2)-1C(2)... 

21=C(2)-0C(2)-0T-0T. 

22=C(2)-0C(2)-0C(2)... 

P00=P0
2
 

P01=P0P1 

P02=P0P2 

P1=P1 

P20=P2P0 

P21=P2P1 

P22=P2
2
 

 

position numbers in the (m+1)-th number system; in the 

general case, different numbers have different bases. All 

possible paths of specified length, belonging to the initial 

vertex C(m), form a complete system of paths, and therefore 

 
k

kP 1 . If all outcomes turn up either in the zero or m-th 

classes, then the length of this process R = . Therefore the 

flowchart is also infinite, and is drawn only in part. At the 

same time, the most probable processes are short. The longer 

the process is, the lower its probability, and, therefore, the 

probability of an infinitely long process is equal to zero. 

It is more convenient to employ finite flowcharts in which the 

zero and m-th arcs are transformed into loops (Fig. 3), the zero 

loop yielding a delay tS. Flowcharts with loops are much 

simpler, since they do not explicitly show repeat collisions 

(number of steps around loops). In them, however, it is 

necessary to determine the average delay Dm of the process at 

the vertices C(m). For this we compile a list of all half-

segments of length r = 1, 2, 3, ..., that close at vertex C(m), 

and we determine the probability p(m, x) of each of them. A 

segment of such a path begins by arriving at vertex C(m) and 

ends by departing from it along the j-th arc, where j = 1, 2, ..., 

m - 1. We also determine the instantaneous sum of the 

probabilities of all the paths already considered, and we 

terminate the length increase for r = rmax, when the 

instantaneous sum 
x

xmp ),( , with sufficient accuracy, 

becomes equal to 1. The length of each such a segment of the 

process is l(m,x)=z+cr, where z is the number of zero loops in 

the given segment, i.e., the number of delays of magnitude tS 

in A1-TR transitions; r is the number of repeat collisions C(m) 

on the given segment; and c is the average collision length in 

time segments. As we know, the collision length lies in the 

range 0-tS, and therefore, with a view to the worst case, we 

will assume that c = 1 in what follows. 

Now we can determine the average length of the process 

segment, in other words, the average delay of the process at 

vertex C(m) in time segments, via the formula 

 
x

m xmlxmpD ),(),( . Finally, it is necessary to determine 

the new probability distribution Qj that the process will 

proceed further from C(m) along the j-th arc, where j = 1, 2, 

..., m - 1, since entries into loops are already taken into 

account in Dm. The probabilities Qj can be determined in the 

form of a sum of probabilities p(m, x) of those segments that 

terminate by exiting from C(m) along the j-th arc, i.e., 

,),( jj xmpQ  

or by the formula 
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here a = rmax-1. The calculations are made only for modest m 

values, since, as m increases, the delay Dm 1 and Qj  Pi, 

j=i, while P0, Pm  0. 

Now we can determine the length of the entire specified 

process that begins at vertex C(m): 

 

Tk=Dm+d+T. 

 

where =Dm is the sum of the average delays at those vertices 

that are encountered in the k-th process; d is the sum of the 

pauses, equal to 2t S, which are encountered in the k-th process 

in A2-TR transitions; T is the sum of the time intervals that 

are occupied by all m successful transmissions (in time 

segments). Here T is the useful part of the process, while 
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Dm+d = Yk is the time loss required to implement the 

access method. 

Knowing the losses Yk and the probabilities Pk for each 

process, we can determine the average value of the time loss 

with respect to all processes belonging to C(m), using the 

formula: 

 


k

kkm i
YPY  

where k = 1, 2, ..., is the ordinal number of the process. 

Let us determine the time losses for elementary processes in 

accordance with Fig. 2 for p = 0.5: 

m=2 1=C(2)-0T-0T Y2=D2=2.5 

m=3 11=C(3)-0T-0C(2)-0T-0T Y11=D3+D2=4 

 21= C(3)- 0C(2)-0T-0T-2T Y21=D3+D2+2=6 

 Y3=Q1Y11+Q2Y21=0.54+0.56=5. 

m=4 111=C(4)-0T-0C(3)-0T-0C(2)-0T-0T 

 121=C(4)-0T-0C(3)-0C(2)-0T-0T-2T 

 211=C(4) -0C(2) -0T-0T-2C(2)-0T-0T 

 311=C(4)-0C(3)-0T-0C(2)-0T-0T-2T 

 321=C(4)-0C(3)-0C(2)-0T-0T-2C(2)-0T-0T. 

 Y111=D4+D3+D2=1,22+1,5+2,5=5,22 

 Y121=D4+D3+D2+2=5,22+2=7,22 

 Y211=D4+D2+2+D2=1,22+2,5+2+2,5=8,22 

 Y311=D4+D3+D2+2=5,22+2=7,22 

 Y321=D4+D3+D2+2+D3=7,22+2,5=9,72 

 Y4=0,28556,22+0,4298,22+0,28558,47=7,22 

 
Fig. 2. Flowcharts with loops for m = 2, 3, 4 

CONCLUSION 

The proposed approach provides an opportunity for flexible 

and simultaneously utilizing of different descriptions at 

different systems and descriptions levels. 

The formalism of stochastic automata allows generalization 

for successful self-organization as some general start program, 

which is capable of operating in the determined conditions, 

improving system behaviours, by increasing quantity of 

contenting in media and its subsystems information.  

Formalism of stochastic automata, which is functioning at 

group, provides possible specifications of “critical time 

systems” or “ŗeal time systems” definitions as self-

organization time systems.  
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Valerijs Zagurskis, Dmitrijs Bļizņuks, Romāns Taranovs. Pašorganizacijas princips laika kritiskos uzdevumos.Rakstā tiek pētītas problēmas saistītas ar 

laika kritiskām sistēmām. Šī jautājuma kodolā ir dinamiskā resursu izdalīšana un sistēmas funkcionālas izmaiņas laikā. Plašs pētījums ir kritisks priekš sistēmas 

plānošanas, veiktspējas novērtēšanas, laika sinhronizācijas, resursu piekļuves vadības un sistēmas infrastruktūras. Šajā rakstā arī mēs apskatam formalizētus 
stohastiskus automātus, kas darbojas grupās. Kā arī tiek piedāvāta kritiskā laika sistēmas jeb reāla laika sistēmas definīcija sakarā ar dinamisko un stohastisko 

sistēmas uzvedību. Tādas sistēmas funkcionēšana tiek determinēta izmantojot funkcionālus, morfoloģiskus un loģiskus aprakstus. Funkcionēšanas procedūra var 

būt specificēta dažādos veidos, tādos kā makro modeļos [2], virzīts grafs vai procedūras [4]. Formalizētie stohastiskie automāti ļauj vispārināt veiksmīgu 
pašorganizāciju, kas spēj uzlabot sistēmas uzvedību, palielinot daudzumu satura informāciju tajā. Rakstā tiek piedāvāts un apskatīts piemērs, kas bāzējas uz 

konfliktu atklāšanas procesa. Kas ir piedāvāts orientēta grafa veidā, ar kuru tiek pētīti kolīziju aprakstīšanas un viņu iespaids komunikācijas sistēmai jautājumos. 

Rakstā tiek piedāvāta pieeja kā matemātiski vispārināt augšminētas definīcijas. Šī pieeja var būt izmantota priekš sistēmu infrastruktūras pašorganizācijas vai 
pieņemot gala lēmumu. Un beigās rakstā tiek prezentēta kritisko laika sistēmu optimizācijas un projektēšanas pieeja. 

 

Валерий Загурский, Дмитрий Близнюк, Роман Таранов. Парадигма самоорганизации в системах с критическим временем 

функционирования. 

В статье исследуются проблемы, связанные с критичными по времени системами. В основе этого вопроса лежит динамическое выделение ресурсов, и 

функциональные изменения системы во времени. Широкое исследование необходимо для планирования, оценки производительности, временной 
синхронизации, управлением доступом к ресурсам таких систем. В статье рассмотрен формализм стохастических автоматов, работающих в группе. 

Представлена возможная спецификация дефиниций «системы реального времени», «системы критического времени» в связи с динамическим и 
стохастическим поведением систем. Оно определяется функциональным (информационным), логическим  и морфологическим описанием, причём 

процедуры функционирования могут быть заданы как на уровне макромоделей [2] ,так и в виде ориентированного графа процедур [4]. Предложен 

математический подход для генерализации вышеуказанных дефиниций как время самоорганизации инфраструктуры системы для принятия 
окончательного решения. Предложен возможный подход к оптимизации и дизайну систем с критическим временем принятия решений. Формализм 

стохастических автоматов позволяет обобщить успешную самоорганизацию, которая улучшает поведение системы, повышая количество информации. 

В работе предложен пример, которой базируется на процессе разрешении конфликтных ситуаций, который представлен в виде ориентированного 
графа, с помощью которого исследуются коллизии, а также их влияние на функционирование коммуникационной системы. 

 

 
 


