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Remarks to the Solution of MHD Problem on an 

Inflow of Conducting Fluid into a Plane Channel 

through the Channel’s Lateral Side  

Elena Ligere, Riga Technical University  

Abstract - An exact analytical solution of MHD problem on an 

inflow of conducting fluid into a plane channel through the split 

of finite width in channel’s lateral side in a strong magnetic field 

is proposed. The problem is solved in Stokes and inductionless 

approximation by using the Fourier transform. Previously this 

problem was solved with an incorrect assumption. Some new 

numerical results for the velocity field are also presented in this 

paper. 

 
Keywords - MHD problem, strong magnetic field, plane 

channel, Fourier transform, Stokes approximation.   

 

I. INTRODUCTION 

In the article [1] the analytical solution is presented for 

MHD problem on an inflow of a conducting fluid into a plane 

through the pane split of finite width in channel’s lateral side 

at presence of uniform external magnetic field eB


. The 

problem is solved both for a longitudinal and transverse 

magnetic fields. The solution of the problem was obtained in 

Stokes and inductionless approximation and it has the form of 

convergent improper integrals. In order to obtain the solution, 

the Fourier transform was used in [1] together with the 

assumption that the velocity and pressure gradient are equal to 

zero in channel in sufficient distance from the entrance region. 

But this assumption is not correct. In a plane channel the 

Poiseuille flow appears far from the entrance region in the 

case of longitudinal magnetic field, but the Hartmann flow 

appears in the case of transverse magnetic field. In the present 

paper the correct analytical solution of the problem is 

presented, besides, it is shown that the final results obtained in 

[1] are correct. Similarly to [1], in order to simplify the 

solving of the problem, the problem is divided into odd and 

even cases with respect to y. In paper [2] the distribution of 

velocity in the channel was obtained numerically for the odd 

problem in the case of longitudinal magnetic field. In the 

present article the numerical analysis of the velocity field in 

the channel is presented for the even and general problems 

both in the case of longitudinal and transverse magnetic fields.  

II. PROBLEM STATEMENT. THE CASE OF SLOPING 

MAGNETIC FIELD 

The plane channel with conducting fluid is located in region 

D: - h < y~ < h ,  x~ ,  z~ . On the channel’s 

lateral side y~ = - h  there is a split in the region LxL
~~~

 , 

y~ =-h,  z~ . Conducting fluid flows into the channel 

through this split with constant velocity 
y

eV


0
. A strong 

uniform external magnetic field eB


is applied under the angle 

 to the split, i.e. 
 

yx

e eBeBB

  sincos

00
. (1) 

 

The geometry of the flow is shown in Fig.1. 
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Fig.1. The geometry of the flow. The case of sloping magnetic field 

 

The case of nonconducting walls hy ~  and perfectly 

conducting lateral sidewalls z~ is considered. In this case 

the electrical field can be assumed to be zero. This is not an 

essential assumption for two-dimensional flows. It is shown in 

[3] that in the case of stationary external magnetic field eB


 

located in the plane of flow, the intensity of electrical field is 

of constant magnitude in all the domain of the flow and the 

vector of this intensity is perpendicular to the plane of flow. 

Thus, in our problem 
x

E  and 
y

E  do not affect the motion of 

fluid and we can assume that 0
yx

EE and constE
z
 . 

One more assumption is used below. We suppose that 

induced streams do not flow through the split hy ~ , 

LxL
~~~

  in the region hy  ~ . 

We introduce dimensionless variables using h (half-width 

of the channel) as the scale of length, V0 (velocity of fluid in 

the split in the entrance region) as the scale of  velocity and 

B0, V0B0, V0/h as the scales of magnetic field, electrical 

field and pressure, respectively, where , ,  are, 

respectively, conductivity, density and viscosity of the fluid. 

MHD equations in Stokes and inductionless approximation 

have the form (see [4]): 
 

    0)(2 
BB

eeVEHaVP


, (2) 

        ,0
y

V

x

V yx








  (3) 
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where 
2

2

2

2

yx 






 ,  

yyxx
eyxVeyxVV


),(),(   is the velocity of the fluid,  

),( yxP  is the pressure,  

yxB
eee

  coscos  is the unit vector of external 

magnetic field, 

zz
eEE

         is the intensity of electrical field, 




hBHa

0
  is the Hartmann number. 

For determination of the constant constE
z
  we use the 

fact that this flow is the Hartmann flow in a plane channel in 

external magnetic field 
y

e eBB

 sin

0
 as x. Therefore, 

in the case of nonconductive channel’s walls, we have 

 

z
exsignE


)(
2

sin



. (4) 

 

Projecting Eq.(2) onto the x and y axes, we obtain the problem 

in the form: 

 

0)cossin(sin2  



yxzx

VVEHaV
x

P
, (5) 

0cossincos2  )VV(EHaV
y

P
yxzy





, (6) 

  0
y

V

x

V yx








. (7) 

 

Eqs. (5), (6) can be also written in the form: 
 

0)cossin(sin2  



yxx

m VVHaV
x

P
, (8) 

0cossincos2  )V(VHaV
y

P
yxy

m 



, (9) 

 

where 

)sign(
2

cossin

2

sin 222

xy
Ha

x
Ha

PP
m








 



. (10) 

 

The boundary conditions are: 
 

 









),(,1

),(,0
,0:1

LLx

LLx
VVy

yx
; (11) 

 0:1 
yx

VVy ,     (12) 
 

)sign()(: xyVVx
x




,  

                constxsignAxsign
x

P

x

P









  )()( , (13) 

 

where 
x

eyVyV




)()(  is the velocity of the fluid in the 

channel sufficiently far away from the entrance region. 

Depending on the magnetic field, functions )(yV



 and 

x

P




  

at x satisfy one of the below mentioned equations: 

1) In the case of a longitudinal external magnetic field 

x

e eBB



0
 ( 0 ) the Poiseuille flow takes place at 

x  and the velocity )(yV



satisfies equation  

 

Aconst
dy

yVd

x

P







2

2 )(
 (15) 

 

2) In the case of transverse magnetic field 
y

e eBB



0
   

( 2/  ) the Hartmann flow takes place at x  and the 

velocity )(yV



satisfies the equation 

 

AconstyVHa
dy

yVd

x

P







 )(
)(

2

2

2

 (16) 

 

3) In the case of sloping magnetic field 

yx

e eBeBB

  sincos

00
 the Hartman flow with 

Hasin instead of Ha takes place at x : 
 

AconstyVHa
dy

yVd

x

P







 )(sin
)(

22

2

2

  (17) 

 

The boundary conditions for equations (15)-(17) are:  
 

    1y :    0)( 


yV . 

 

For the solution of the problem we use complex Fourier 

transform with respect to x: 
 

dxeyxgyxgFyg xi






 


 ),(

2

1
)],([),(ˆ . (18) 

 

We introduce new functions for the velocity and pressure 

gradient 
 

)()( yVxfVV new





   and    Axf
x

P

x

P m

new

)(








, (19) 

 

where )(xf  is the real argument function that satisfies two 

conditions: 
 

a) 1)( xf      at x    and   1)( xf   at x , 
 

b) the Fourier transform exist for )(xf , i.e. )(xf  is piecewise 

continuous on any finite interval and absolutely integrable for 

all t. 

In this case  

0
new

x
V    and   0





x

P new

    as    x . (20) 

 

As a result, the velocity of the fluid in the channel can be 

written in the form: 

 

    
yyx

new

x
eyxVeyVxfyxVV




),()()(),( .  
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Thus, Eq.(8) becomes: 
  




)()()( yVxfVAxf
x

P new

x

new

m




 

0)(sin
)(

)(sin 22

2

2

*2 
















 yVHa
y

yV
xfVHa   

 

where )V(VV
yx

 cossin*  . 

Since the velocity )(yV


 in this case satisfies Eq.(17) for 

the Hartmann flow, the last equation can be written in the 

form: 
 

0sin)()( *2 


VHayVxfV
x

P new

x

new

m 



 

 

Therefore, problem (7)-(9) has the form: 

 

0)()(sin *2 


yVxfVHaV
x

P new

x

new

m 



 (21) 

0)()(
2

2sin
cos

2

*2 


yVxf
Ha

VHaV
y

P
y

new

m










 (22) 

0)()( 


yVxf
y

V

x

V y

new

x








. (23) 

 

Boundary conditions are: 
 

    









),(,1

),(,0
,0:1

LLx

LLx
VVy

y

new

x
;  (24) 

     0:1 
y

new

x
VVy . (25) 

     0: 
new

x
Vx ,       0





x

P new

. (26) 

 

In contrast to the solution in the article [1], it is already 

correct to use Fourier transform for the problem with 

boundary conditions (26). We apply complex Fourier 

transform with respect to x to problem (21)-(23) and to 

boundary conditions (24)-(26) and as a result we obtain the 

system of ordinary differential equations for Fourier 

transforms )],([),(ˆ yxVFyV
new

xx
 ,  

)],([),(ˆ yxVFyV
yy

 ,  )],([),(ˆ yxPFyP
new

m
   in the form: 

 

0)()(ˆˆsinˆˆ
3

*2 


yVfVHaVPi
x

 L  (27) 

0)()(ˆ
2

2sinˆcosˆ
ˆ

1

2

*2 


yVf
Ha

VHaV
dy

Pd
y




L

 (28) 

0)()(ˆ
ˆ

ˆ
2




yVf
dy

Vd
Vi

y

x
 , (29) 

where  )VV(V
yx

 cosˆsinˆˆ *  ,     
2

2

2

dy

d
 L , (30) 

 )()(ˆ
1

xfFf   (31) 

  )(ˆ)()(ˆ
12
 fixfFf   (32) 

  )(ˆ)(ˆ)()(ˆ
1

2

23
xfxfixfFf   . (33) 

 

The boundary conditions in the transformed space have the 

form: 

 






L
VVy

yx

sin2ˆ,0ˆ:1  ; (34) 

0ˆ,0ˆ:1 
yx

VVy . (35) 

 

Eliminating 
x

V̂  and P̂  from Eqs.(27) and (28), we obtain the 

4th order differential equation for 
y

V̂ : 
 

0),(ˆˆˆˆ
321

)4(






 yZVaVaVaV

yyyy
  (36) 

 

where    
 

  


)(ˆsin)()(ˆ)(ˆ)(),(
2

22

32

2  fHayVfifyVyZ

  )(ˆ)(ˆ)(ˆ2sin
2

)(
221

2

2

 fVfif
Ha

yV 


 (37) 

and 
 

     ,2sin,sin2 2

2

222

1
 HaiaHaa   

       2224

3
cosHaa   

 

Note, that Eq.(36) for 
y

V̂  differs from the equation obtained in 

[1] only by term ),( yZ  . Taking into account formulae (31)-

(33) and the fact that )(yV


satisfies Eq.(17), we obtain  
 

0),( yZ  . 
 

Thus, the differential equation for 
y

V̂  has the form: 
 

0ˆˆˆˆ
321

)4(








yyyy
VaVaVaV . (38) 

 

This differential equation completely coincides with 

differential equation for obtained in [1] therefore the solution 

of this equation is the same as in [1]: 
 

  ))sinh(())sinh((),(ˆ
21

yeCyeCyV yBiyBi

y


))cosh(())cosh((
43

yeCyeC yBiyBi    (39) 

 

where C1,...,C4  are  arbitrary constants,   
 

 cos2Im,sinRe
1

222

1
 DBDA

 
AA   sin)(,sin)(

. 

)cos2(sin 22

2,1
 iD  ,   2Ha , 

24,312,1
sin,sin DkDk   . 

 

In order to determine constants C1-C4, we have to use 
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boundary conditions (34) and (35) and Eq. (29) which gives 
 

1at0
ˆ

 y
dy

Vd
y

. (40) 

 

After that we can determine 
x

V̂  from Eq.(29) and Pi ˆ  from 

Eq.(27), yP  /ˆ  from (28) and using the inverse Fourier 

transform, we obtain solution for xP
new

m
 / , yP

new

m
 / , 

new

x
V , 

y
V .  

Let us consider in details two special cases, i.e. the case of 

longitudinal magnetic field ( 0 ) and the case of transverse 

magnetic field ( 2/  ). 

In order to simplify the problem and reduce the number of 

constants in Eq.(39) we divide the problems into two odd and 

even problems with respect to y, as it was done in [1]. For this 

purpose we consider the plane channel with two splits on the 

its lateral sides hy   in region LxL
~~~

  and solve two 

problems: 

1) The odd problem (fig.2): the fluid with velocities 
y

eV



0

2

1
,  

flows into the channel through the both splits on hy  . 

Then the dimensionless boundary conditions are: 

 










),(,2/1

),(,0
,0:1

LLx

LLx
VVy

yx


  (41) 

 

)sign()(: xyVVx
x




, constA
x

P

x

P









  . (42) 

 

0

y
hy

y eVV


0
2

1~




x0

e e=BB


y
hy

y eVV


0
2

1~




L
~

 L
~

h

h

y~

x~

 
 
Fig.2. The geometry of the flow for the odd problem with respect to y 

 

2) The even problem: the fluid with velocity 
y

eV


0
2

1
, flows 

into the channel through the split on hy   and flows out 

with the same velocity through the split at hy  . 

Then the dimensionless boundary conditions are: 

 










),(,2/1

),(,0
,0:1

LLx

LLx
VVy

yx
  (43) 

 

   and 0: 
x

Vx ,  0




x

P
.               (44) 

The solution of the general problem is equal to the sum 

of solutions for odd and even problems with respect to y.  

In this article we consider the analytical solution only for 

the odd problem with respect to y due to the velocity and 

pressure gradient are equal to zero at x  for even 

problem and the solution in [1] for this case was obtained in 

correct way. We will present only new numerical results for 

the even problem. 

III. THE CASE OF LONGITUDINAL MAGNETIC FIELD  

In this case 
x

e eBB


0
  ( 0 ). The system of 

dimensionless Eqs.(7)-(9) for the case of longitudinal 

magnetic field can be written in the form: 
 

      0
x

V
x

P




 ,    (45) 

      02 
yy

VHaV
y

P




, (46) 

        0
y

V

x

V yx








. (47) 

 

Note that in this case PP
m
  since 0

z
E . 

 

1) Solution of the odd problem in with respect to y  

 

The geometry of the flow is shown in Fig.2. As in the case 

of slopping magnetic field, we introduce new functions for the 

velocity and pressure gradient (19) to solve the problem in 

correct way. In the case of longitudinal magnetic field, )(yV


 

is the velocity of Poiseuille flow that satisfies Eq.(15). 

The system of equations (21)-(23) can be written in the 

form:  
 

       0)()( 


yVxfV
x

P new

x

new




, (48) 

        02 
yy

new

VHaV
y

P




, (49) 

          0)()( 


yVxf
y

V

x

V y

new

x








. (50) 

 

Boundary conditions are: 
 










),(,2/1

),(,0
,0:1

LLx

LLx
VVy

yx
new

     (51) 

 










),(,2/1

),(,0
,0:1

LLx

LLx
VVy

yx
new

 (52) 

 

0: 
new

x
Vx ,       0





x

P new

. (53) 

The system of  ordinary differential equations for the Fourier 

transforms )],([),(ˆ yxVFyV
new

xx
 , )],([),(ˆ yxVFyV

yy
 ,  

)],([),(ˆ yxPFyP new  can be obtained from (27)-(29) by 

substituting 0  and have the form:  
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        0)()(ˆˆˆ
3




yVfVPi
x

 L , (54) 

         0ˆˆ
ˆ

2 
yy

VHaV
dy

Pd
L , (55) 

            0)()(ˆ
ˆ

ˆ
2




yVf
dy

Vd
Vi

y

x
 , (56) 

 

where 222 / dyd L   and  the functions  )(ˆ
2
f , )(ˆ

3
f  

are defined by formulae (32) and (33). 

Applying the Fourier transform to boundary conditions 

(51), (52) we obtain: 
 

      
 






L
Vy

y

sin2

2

1ˆ:1  ,  0ˆ 
x

V . (57) 

 

Eliminating 
x

V̂  and P̂  from Eqs.(54) and (55) we obtain the 

4
th

 order differential equation for 
y

V̂  that can be obtained also 

from Eq.( 38) by substituting 0 . 

 

0ˆ)(ˆ2ˆ 2242)4(





yyy
VHaVV  . (58) 

 

This differential equation completely coincides with 

differential equation obtained in [1] for the odd problem in the 

case of longitudinal magnetic field therefore the solution of 

this equation is the same as in [1], i.e. 

 

 





Lykkkykkk
yV

y

sin)sinhcoshsinhcosh(
),(ˆ

1

122211 



 ,  (59) 

where   
2111221

sinhcoshsinhcosh kkkkkk  , 

            HaikHaik  , 2

2

2

1
 . 

 

Determining 
x

V̂  from Eq.(56), we obtain: 
 

 







2

1

1221

224 sin)coshcoshcosh(cosh

2

ˆ






 LykkykkHai
V

x

)()(ˆ
2

yVf
i


 


, (60) 

 

Taking into account formulae (32) and (33), the last term of 

(63) can be written as 

 

)()(ˆ)()(ˆ
12

yVfyVf
i


 


. 

Thus, 
 

 







2

1

1221

224 sin)coshcoshcosh(cosh

2

ˆ






 LykkykkHai
V

x

)()(ˆ
1

yVf


  . (61) 

Determining Pi ˆ  from Eq.(54) and 
y

P



 ˆ
from Eq.(55) we 

obtain: 
 

1

211122
sinhcosh)(sinhcosh)(ˆ






ykkkHaiykkkHai
D

y

P 





 (62) 





 )coshcoshcosh(coshˆ

1221

1

224

ykkykk
Ha

DPi


  

  )()(ˆ)(ˆ)(ˆ
131

2 yVfff

   (63) 

 

where 






LHa
D

sin

2
 . 

In Eq.(62) yP  /ˆ  is the same as in [1], therefore the 

original yP  /  will be the same. 

Let us simplify Eq. (63). Taking into account formulae (31) 

and (33) it can be written in the form 

 





 )coshcoshcosh(coshˆ

1221

1

22

ykkykk
Ha

DPi




)()(ˆ
1

yVf

  . (64) 

 

Note, that 
x

V̂  and Pi ˆ  differ from result obtained in [1] only 

by last terms. In order to obtain the solution to problem (45)-

(47) we apply the inverse complex Fourier transform 
 

dxeygxgFyxg x






  


 ),(ˆ
2

1
)],(ˆ[),( 1  (65) 

to functions ),(ˆ yV
x
 , ),(ˆ yV

y
 ,  

y

yP



 ),(ˆ 
 and Pi ˆ  .  

Applying the inverse complex Fourier transform we take 

into account the fact that the functions ),(ˆ yV
y
 and yP  /ˆ  

are even functions with respect to  , and the functions 

),(ˆ yV
x
  and Pi ˆ  are odd functions with respect to  . We 

also use formula (31), i.e.   )()(ˆ
1

1 xffF   , formulae (19) 

and the fact that   xPPiF  /ˆ1  . 

As a result, we have the solution to problem (45)-(47) for 

the odd case in the form of convergent improper integrals that 

coincide with the solution of the problem obtained in [1]:  
 







d

xLykkykk
BV

x



 



1

2112

0

sinsin)coshcoshcosh(cosh1
 







d

xLykkkykkk
V

y 







0 1

122211
cossin)sinhcoshsinhcosh(1

 

1

1221

0

sinsin)coshcoshcosh(cosh
















dxLykkykk
B

iHa

x

P

 

where  22 HaB   , 
    

2111221
sinhcoshsinhcosh kkkkkk    

     HaikHaik  , 2

2

2

1
 . 

 

For the odd problem the profiles of the velocity component 

x
V  was presented in [2] for the Hartmann numbers Ha=10, 

Ha=20 and Ha=50. It was shown that the velocity component 
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x
V  has the M-shaped profile in the channel’s entrance region 

and the M-shaped profiles become more pronounced as the 

Hartmann number increases. The qualitative explanation of 

this phenomenon is also given in [2]. 

 

2) Numerical results for the even problem with respect to y  

 

As it was mentioned before, the solution in [1] for this case 

was obtained in correct way, due to the velocity and pressure 

gradient are equal to zero at x  . We represent here only 

the new numerical results for even case. The solution for 

velocity component obtained in [1] has the form  

 







d

xLykkykk
BV

x

sinsin)sinhsinhsinh(sinh1

2

1221

0





 



, 

 







d

xLykkkykkk
V

y 







0 2

211122
cossincoshsinhcoshsinh1

 

where  22 HaB    
           

2111222
coshsinhcoshsinh kkkkkk  ,     

            HaikHaik  , 2

2

2

1
 . 

 

Fig.3 presents the profiles of the velocity component 
x

V  

calculated for the Hartmann numbers Ha=10 and Ha=50 for 

01  y . Note that in this case the function
x

V  is an odd 

function with respect to y. 
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Fig.3. Profiles for the component ),( yxV
x

of the velocity V


 for the even 

problem and 
x

e eBB


0
  

 

It can be seen from Fig.3 that 0
x

V at x  and the 

magnitude of the velocity component 
x

V  slower approach zero 

as the Hartmann number increases. In addition, in the 

channel’s entrance region the component ),( yxV
x

of velocity 

has the M-shaped profile for small x ( 51  x ) and large 

Hartmann numbers ( 50Ha ). 

 

3) Numerical results for the general problem in the case of 

longitudinal magnetic field. 

 

The solutions to general problem (45)-(47), (11)-(14) for 

0  are equal to the sum of solutions for even and odd 

problems with respect to y. The profiles of the velocity 

component 
x

V  are shown in Fig.4 for the Hartmann numbers 

Ha=10 and Ha=50.  
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Fig.4. Profiles for the x component of the velocity V


 for 
x

e eBB


0
  

(                 Vp is the Poiseuille flow) 

 

One can see that near to the entrance split the flow mostly 

occurs along the wall with the split (at 1y ). As the 

Hartmann number increases, the layer of the flow is getting 

narrower and the velocity is increasing in this layer. The 

Poiseuille flow takes place at a distance from the entrance 

split. In addition, when the Hartmann number grows (i.e. with 

the increase of the intensity of the magnetic field) the flow in 

the channel slowly approaches Poiseuille flow. For instance, 

for 10Ha  Poiseuille flow takes place already at 6x , for 

20Ha  at 12x  and for 50Ha  only at 20x . So 
init

L  

increases as the Hartmann number grows. 
init

L  is the length of 

the initial part, where the x component of the velocity 

),( yxV


of fluid in channel differs from the velocity of the 

Poiseuille flow 
P

V  by less than 1%. 

 

IV. THE CASE OF TRANSVERSE MAGNETIC FIELD.  

In this case 
y

e eBB


0
  ( 2/  ). The system of 

dimensionless equations (7)-(9) for the case of transverse 

magnetic field can be written in the form: 
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      02 
xx

m VHaV
x

P




 ,    (66) 

      0
y

m V
y

P




, (67) 

       0
y

V

x

V yx








. (68) 

In this case )sign(
2

2

xx
Ha

PP
m

  (see formula (14)). 

 

1)  Solution of the odd problem in with respect to y  

 

The geometry of the flow is shown in Fig.2, but the external 

magnetic field is perpendicular to the channel’s walls. 

As in the case of slopping magnetic field, we introduce new 

functions for the velocity and pressure gradient (19). In the 

case of transverse magnetic field, )(yV


 is the velocity of 

Hartmann flow that satisfies Eq.(16). 

The system of equations (21)-(23) can be written in the 

form:  

     0)()( 2 
 x

new

x

new

VHayVxfV
x

P




, (69) 

     0
y

new

V
y

P




, (70) 

       0)()( 


yVxf
y

V

x

V y

new

x








. (71) 

 

Boundary conditions are: 
 










),(,2/1

),(,0
,0:1

LLx

LLx
VVy

yx
new      (72) 

 










),(,2/1

),(,0
,0:1

LLx

LLx
VVy

yx
new  (73) 

 

0: 
new

x
Vx ,       0





x

P new

. (74) 

 

The system of ordinary differential equations for the Fourier 

transforms )],([),(ˆ yxVFyV
new

xx
 , )],([),(ˆ yxVFyV

yy
 ,  

)],([),(ˆ yxPFyP new  can be obtained from (27)-(29) by 

substituting 2/  .  As a result, we have:  
 

0)()(ˆˆˆˆ
3

2 


yVfVHaVPi
xx

 L , (75) 

0ˆ
ˆ


y

V
dy

Pd
L , (76) 

0)()(ˆ
ˆ

ˆ
2




yVf
dy

Vd
Vi

y

x
 , (77) 

 

where  
2

2

2

dy

d
 L    and the functions  )(ˆ

2
f , )(ˆ

3
f  

are defined by formulae (32) and (33). 

Applying the Fourier transform to the boundary conditions 

we obtain: 

 






L
Vy

y

sin2

2

1ˆ:1  ,   0ˆ 
x

V . (78) 

 

Eliminating 
x

V̂  and P̂  from Eqs.(75) and (76) we obtain 

the 4
th

 order differential equation for 
y

V̂ , that can be obtained 

also from Eq.(38) by substituting 
2


  : 

 

0ˆˆ)2(ˆ 422)4(





yyy
VVHaV  . (79) 

 

Due to this differential equation completely coincide with 

differential equation obtained in [1] for the odd problem in the 

case of transverse magnetic field, the solution of this equation 

is the same as in [1], i.e. 
 

 







Lykkkykkk
yV

y

sin)sinhcoshsinhcosh(

2

1
),(ˆ

1

122211 





 (80) 

where   
2111221

sinhcoshsinhcosh kkkkkk  . 

22

2

22

1
,   kk ,  

13
kk  ,  

24
kk  . 

 

Determining 
x

V̂  from Eq.(77) we obtain: 

 

   







1

2112
sincoshcoshcoshcosh

2
),(ˆ Lykkykki

yV
x




  

)()(ˆ
2

yVf
i


 


. (81) 

 

Taking into account formulae (32) and (31), the last term of 

(81) can be written in the form 
 

)(ˆ)()(ˆ
12



fyVf

i



. 

 

Thus, 
 

 
)()(ˆ

2

sin)coshcoshcosh(coshˆ
1

1

2112 yVf
Lykkykki

V
x 





 





 (82) 

Determining Pi ˆ  from Eq. (75) and yP  /ˆ from Eq.(76) 

we obtain: 
 

)sin()sinhcoshsinh(cosh
2

ˆ

1221

1

Lykkykk
Ha

y

P












 (83) 

and 
 

  SL
ykkkykkkiHa

Pi 



 


 sin

)coshcoshcoshcosh(

2

ˆ

1

122211

 (84) 
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where  
 

 

 VVHa

f
iVfiyVfS 22

23

)(ˆ
)(ˆ)()(ˆ




  (85) 

 

Taking into account formulae (32), (33) and the fact that 

function 


V  satisfies Eq.(16), we obtain 

 

AfS  )(ˆ
1  . 

 

The solution for 
x

V̂  and Pi ˆ  differ from result obtained in 

[1] only by last terms. In order to obtain the solution to 

problem (66)-(68) we apply the inverse complex Fourier 

transform (65) to the functions ),(ˆ yV
x
 , ),(ˆ yV

y
 ,  

y

yP



 ),(ˆ 
 

and Pi ˆ  .  

Applying the inverse complex Fourier transform, we take 

into account the fact that the functions ),(ˆ yV
y
 and yP  /ˆ  

are even functions with respect to  and the functions 

),(ˆ yV
x
  and Pi ˆ  are odd functions with respect to  . 

We also use formula (31), i.e.    )()(ˆ
1

1 xffF   , formulae 

(19) and the fact that  
x

P
PiF




 ˆ1  . 

As a result, we have the solution to problem (45)-(48) for 

the odd problem for the transverse magnetic field in the form 

of convergent improper integrals that coincide with the 

solution of the problem obtained in [1]:  
 









0 1

1221
sinsin)coshcoshcosh(cosh1





d

xLykkykk
V

x









0 1

122211
cossin)sinhcoshsinhcosh(1







d

xLykkkykkk
V

y
 





d

xLykkkykkkHa

x

P












0 1

211122
sinsin)coshcoshcoshcosh(









0 1

2112
cossin)sinhcoshsinh(cosh







d

xLykkykkHa

y

P

 

where   
2111221

sinhcoshsinhcosh kkkkkk    

           22

2

22

1
,   kk . 

 

2) Numerical results for the odd problem 

 

Fig.5 plots the profiles of the velocity component 
x

V  for the 

Hartmann number Ha=10 and  Ha=50 for L=1 (Fig.5A) and 

for L=4 ((Fig.5B). Note that in this figure the velocity 

component 
x

V  is shown only for 10  y , since the 

component 
x

V  is an even function with respect to y. 

It can be seen from Fig.5 that 
x

V  has the M-shaped profiles 

only near to the entrance hole ( 1.11  r  at На=10 and 

1.11  r  at На=50) for L=1. 
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Fig.5A. Profiles for the x component ),( yxV
x

of the velocity V


 for odd 

case and 
y

e eBB


0
   if  L=1 (---  Vhart is the Hartmann flow) 
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Fig.5B. Profiles for the x component ),( yxV
x

of the velocity V


 for the 

odd case and 
y

e eBB


0
   if L=4 (Vhart is the Hartmann flow) 

 

However, even at small distance from the entrance, the flow 

approaches the Hartmann flow in a plane channel in transverse 

magnetic field. With increasing L the length of initial part 

increases. For L=4 the Hartmann flow takes place only at x=4. 

Note that in the present problem the initial part of the channel 

is defined to be the part where the x-component of the velocity 

),( yxV


differs from the Hartmann flow 
hart

V  by less than 1%. 

In addition, at L=4, velocity component 
r

V  don’t have M-

shaped profiles. 
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3) Numerical results for the even problem with respect to y  

 

As it was mentioned before, the solution in [1] for this case 

was obtained in correct way, due to the velocity and pressure 

gradient are equal to zero at x  . We represent here new 

numerical results for even problem. The solution for velocity 

component obtained in [1] for the transverse magnetic field 

has the form  
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Fig.6 plots the x profiles of the velocity component 
x

V  for 

the Hartmann numbers Ha=10 and Ha=50 for 01  y . 

Note that in this case the function
x

V  is an odd function with 

respect to y. 

One can see from Fig.6 that 
x

V  differs from zero only near 

the entrance region ( 2r  for 10Ha  and 5.1r  for 

50Ha ). In addition, in Fig.6 for some values of x the 

component 
x

V  is negative at 01  y  and Ha=10. 

However, since the fluid inflows into the channel through the 

hole on 1y , the x-component of the velocity must be 

positive for 01  y  at Ha=0. It means that there exists an 

opposite flow in the region in transverse magnetic field. It 

happens due to a vortex generated in the channel (see Fig.7 ). 
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Fig. 6: Velocity profiles for the x component 
x

V  in the even case for 

y

e eBB


0
 ,  L=1 

One can see from Fig.6 that 
x

V  differs from zero only near 

the entrance region ( 2r  for 10Ha  and 5.1r  for 

50Ha ). In addition, in Fig.6 for some values of x the 

component 
x

V  is negative at 01  y  and Ha=10. 

However, since the fluid inflows into the channel through the 

hole on 1y , the x-component of the velocity must be 

positive for 01  y  at Ha=0. It means that there exists an 

opposite flow in the region in transverse magnetic field. It 

happens due to a vortex generated in the channel (see Fig.7 ). 

Note that the velocity of fluid in this vortex is very small. The 

vector field of velocity for Ha=10 is shown in Fig.7. 
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Fig. 7. Velocity field in the even case for 
y

e eBB


0
 , L=1 at Ha=10 

 

4) Numerical results for the general case 

 

The solution to general problem (66)-(68) at =/2 with 

boundary conditions (11), (14) is equal to the sum of the 

solutions of odd and even problems with respect to y. Fig. 8 

plots the results of calculation of the x-component ),( yxV
x

 of 

the velocity for the general problem for the Hartmann numbers 

Ha=10 and Ha=50.  
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Fig. 8: Velocity profiles for the x component 
x

V  for the general problem 

and 
y

e B eB


0
 , L=1 

One can see that, similarly to the previous case, the profiles 

of the velocity component 
x

V  differ from the Hartmann flow 

profiles only near the entrance region. For Ha=10 the flow 
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approaches the Hartmann flow at 2x and in the case Ha=50 

the Hartmann flow takes the place at 5.1x  

V. CONCLUSIONS 

1. In this paper a correct analytical solution on an inflow of 

conducting fluid into a plane channel through the split of finite 

width in channel’s lateral side in a strong magnetic field is 

presented. The problem is solved in Stokes and inductionless 

approximation by using Fourier transform. In order to solve 

the problem correctly, a new function of velocity and new 

function of pressure gradient are introduced. It is shown, that 

the final results obtained in [1], despite the incorrect 

assumption, nevertheless are correct. 

2.  The problem is solved by its dividing into the odd and 

even cases with respect to y axis. The solution of general 

problem is equal to the sum of even and odd problems with 

respect to y.  

3. New numerical results are presented for the velocity field 

both for the longitudinal and transverse magnetic fields. 

4. Velocity profiles of the component 
x

V  are obtained 

numerically at Ha=10 and Ha=50 for the even problem with 

respect to y. For even with respect to y problem in transverse 

magnetic field there exists an opposite flow in the region of 

transverse magnetic field. It happens due to a vortex generated 

in the channel. Note that the velocity of fluid in this vortex is 

very small. 

5. Velocity profiles of the component 
x

V  are obtained 

numerically at Ha=10 and Ha=50 also for the general problem 

both for the longitudinal and transverse magnetic fields.  

In the strong longitudinal magnetic field flows mostly 

happen along the wall with a split. On increasing the 

Hartmann number, the layer of a flow is getting narrower. 

For the transverse magnetic field, the profiles of the 

velocity component 
x

V  differ from the Hartmann flow profiles 

only near the entrance region. For Ha=10 the flow approaches 

the Hartmann flow at 2x and for Ha=50 the Hartmann flow 

takes place at 5.1x  
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Jeļena Liģere. Piezīmes par analītisko risinājumu MHD problēmām par vadītspējīga šķidruma ietecēšanu plakanā kanālā caur kanāla malējo sienu  

Šajā darbā tiek aprakstīts korekts analītiskais risinājums uzdevumam par vadītspējīga šķidruma ietecēšanu plakanā kanālā caur galīga platuma spraugu kanāla 

malējā sienā. Problēma tiek risināta Stoksa un bezindukcijas tuvinājumā, izmantojot Furjē transformāciju. Sīkāk tiek aplūkoti paralēla magnētiskā lauka un 

perpendikulāra magnētiskā lauka gadījumi. Šis uzdevums jau ir atrisināts rakstā (Antimirov M., Ligere E. Analytical solutions for the problems of the flowing 
into of the conducting fluid through the lateral side of the plane channel in a strong magnetic field//Magnetohydrodynamics.–2000.-Vol.36, No.1.-pp.47-60), bet 

risinājumam bija izmantots nekorekts pieņēmums. Tas ir, minētajā rakstā bija pieņemts, ka šķidruma ātrums un spiediena gradients ir vienādi ar nulli pietiekošā 

attālumā no ieejas reģiona. Īstenībā, pietiekoši tālu no ieejas spraugas, plūsma pārvēršas par Puazeļa plūsmu paralēla magnētiskā lauka gadījumā un par 
Hartmana plūsmu perpendikulāra magnētiskā lauka gadījumā. Dotajā rakstā tiek prezentēts analītiski precīzs risinājums, un tiek pierādīts, ka atrisinājums, kas ir 

iegūts minētajā rakstā, ir pareizs neskatoties uz nekorekto pieņēmumu. Lai vienkāršotu risinājumu, uzdevums sadalīts divos apakšuzdevumos: viens ir pāra 

uzdevums attiecībā pret y un otrais - nepāra uzdevums. Šajā darbā ir iegūti arī jaunie skaitliski rezultāti. Tas ir, skaitliski tiek izpētīts šķidruma ātrumu lauks 
kanālā pāra uzdevumam attiecībā pret y un vispārīgam uzdevumam, kuram atrisinājums ir vienāds ar atrisinājumu summu pāra un nepāra gadījumiem.  

 

Елена Лигере. Дополнения к решению МГД задачи о втекании проводящей жидкости в плоский канал через боковую стенку канала  

В данной работе приводится корректное решение МГД задачи о втекании проводящей жидкости в плоский канал через щель конечной ширины в 

боковой стенке канала. Проблема решается в Стоксовом и безындукционном приближении, используя преобразование Фурье. В деталях 

рассматриваются случаи продольного и поперечного магнитных полей. Эта задача ранее решалась в работе (Antimirov M., Ligere E. Analytical solutions 
for the problems of the flowing into of the conducting fluid through the lateral side of the plane channel in a strong magnetic field//Magnetohydrodynamics.– 

2000.-Vol.36, No.1.-pp.47-60) c использованием некорректных допущений. А именно, предполагалось что скорость и градиент давления равны нулю в 

канале на достаточном удалении от входного отверстия. На самом же деле, на некотором расстоянии от щели течение в канале переходит в течение 
Пуазеля в случае продольного магнитного поля, и в течение Гартмана при поперечном магнитном поле. В данной статье задача решена аналитически 

строго и показано, что конечные результаты, полученные в ранее упомянутой статье, являются правильными, несмотря на неточное решение. Для 

упрощения решения, задача разбивается на две подзадачи - четную задачу относительно оси у и нечетную. В работе приводятся также новые 
численные результаты. А именно, численно изучается поле скоростей для четной относительно у задачи и для общей задачи, решение которой равно 

сумме решений четной и нечетной задач.  

 

 


