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Remarks to the Solution of MHD Problem on an
Inflow of Conducting Fluid into a Plane Channel
through the Channel’s Lateral Side
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Abstract - An exact analytical solution of MHD problem on an
inflow of conducting fluid into a plane channel through the split
of finite width in channel’s lateral side in a strong magnetic field
is proposed. The problem is solved in Stokes and inductionless
approximation by using the Fourier transform. Previously this
problem was solved with an incorrect assumption. Some new
numerical results for the velocity field are also presented in this

paper.
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l. INTRODUCTION

In the article [1] the analytical solution is presented for
MHD problem on an inflow of a conducting fluid into a plane
through the pane split of finite width in channel’s lateral side
at presence of uniform external magnetic field B¢. The
problem is solved both for a longitudinal and transverse
magnetic fields. The solution of the problem was obtained in
Stokes and inductionless approximation and it has the form of
convergent improper integrals. In order to obtain the solution,
the Fourier transform was used in [1] together with the
assumption that the velocity and pressure gradient are equal to
zero in channel in sufficient distance from the entrance region.
But this assumption is not correct. In a plane channel the
Poiseuille flow appears far from the entrance region in the
case of longitudinal magnetic field, but the Hartmann flow
appears in the case of transverse magnetic field. In the present
paper the correct analytical solution of the problem is
presented, besides, it is shown that the final results obtained in
[1] are correct. Similarly to [1], in order to simplify the
solving of the problem, the problem is divided into odd and
even cases with respect to y. In paper [2] the distribution of
velocity in the channel was obtained numerically for the odd
problem in the case of longitudinal magnetic field. In the
present article the numerical analysis of the velocity field in
the channel is presented for the even and general problems
both in the case of longitudinal and transverse magnetic fields.

1. PROBLEM STATEMENT. THE CASE OF SLOPING
MAGNETIC FIELD

The plane channel with conducting fluid is located in region
D: -h<y<h, -0<X<o, —0<Z<o. On the_channel’s
lateral side y =-h there is a split in the region —L <X <L,
y =-h, —0 < Z <. Conducting fluid flows into the channel

30

through this split with constant velocity V€ . A strong
uniform external magnetic field B®is applied under the angle
o to the split, i.e.

B° =B, cosa-€ +B,;sina-€, . (1)

The geometry of the flow is shown in Fig.1.
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Fig.1. The geometry of the flow. The case of sloping magnetic field

y=h

The case of nonconducting walls y =+h and perfectly
conducting lateral sidewalls Z = oo is considered. In this case
the electrical field can be assumed to be zero. This is not an
essential assumption for two-dimensional flows. It is shown in
[3] that in the case of stationary external magnetic field B®
located in the plane of flow, the intensity of electrical field is
of constant magnitude in all the domain of the flow and the
vector of this intensity is perpendicular to the plane of flow.
Thus, in our problem E, and E, do not affect the motion of
fluid and we can assume that E, =E, =0and E, =const .

One more assumption is used below. We suppose that
induced streams do not flow through the split y=-h,
—L<X<L intheregion w0 <y <-h.

We introduce dimensionless variables using h (half-width
of the channel) as the scale of length, V, (velocity of fluid in
the split in the entrance region) as the scale of velocity and
Bo, VoBo, pvVi/h as the scales of magnetic field, electrical
field and pressure, respectively, where o, p, v are,
respectively, conductivity, density and viscosity of the fluid.

MHD equations in Stokes and inductionless approximation
have the form (see [4]):

—VP+AV +Ha?(E+V x&,)x&, =0, )
N, N
SRR EN) (3)
ox oy
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where A=§—+ 7

2

oxt oy?’
v =V, (X, )€, +V, (X, Y)E, is the velocity of the fluid,
P(x,y) is the pressure,
€, =Cos €, +cos f3-€, is the unit vector of external

magnetic field,
E=E,

Ha=B,h /i is the Hartmann number.
o 4

For determination of the constant E, =const we use the
fact that this flow is the Hartmann flow in a plane channel in
external magnetic field B® =B, sina-€, as Xx—oo. Therefore,
in the case of nonconductive channel’s walls, we have

is the intensity of electrical field,

E = —%-sign(x)éz. @)

Projecting Eq.(2) onto the x and y axes, we obtain the problem
in the form:

oP
—§—+AVX —Ha’sina-(E, +V, sina-V, cosa) =0, (5)
X

oP .

——+AV, +Ha’cosa-(E, +V, sina-V, cosa)=0, (6)
oy
Wx + WV
ox oy

- 0. @

Egs. (5), (6) can be also written in the form:

oP . .
—a—m+AVx—Hazsma~(Vx sina—V, cosa) =0, (8)
X
P ) .
- +AV, +Ha*cos - (V, sina -V, cosa) =0, 9)
ay
where
2 ain?2 2 o
p P_(Ha sin“a  Ha’sina-cosa y)sign(x). (10)
2 2
The boundary conditions are:
0, xeg(-L, L
y=-1: V. =0, V = #( ); (11)
Y11, xe(-L, L)
y:l Vx =Vy =O, (12)
X—>10: V., >V _(y)-sign(x),
oP, . .
» — —=sign(x) = A-sign(x) = const , (13)
OX oX

where \7w(y)=Vm(y)~éx is the velocity of the fluid in the
channel sufficiently far away from the entrance region.

Depending on the magnetic field, functions V_(y) and a;”
X

at x — oo satisfy one of the below mentioned equations:

1) In the case of a longitudinal external magnetic field
B°=B,-8 (a=0) the Poiseuille flow takes place at
X — 40 and the velocity V. (y) satisfies equation

o

oX dy?

P dV,(y)

=const = A (15)

2) In the case of transverse magnetic field B® =B, ‘€,
(a=m/2) the Hartmann flow takes place at X — 1w and the
velocity V_ () satisfies the equation

oP.  d¥V
—* = —“z(y) —Ha?*v_(y)=const=A (16)
oX dy

3) In the case of sloping magnetic field

B* =B, cosa-€, +B,sina-€ the Hartman flow with
Ha-sina instead of Ha takes place at X — oo
oP, d*V (y)

o

~~—~—Ha’sin® a-V_(y) =const = A
OX dy

(17)

The boundary conditions for equations (15)-(17) are:

y=+1: V_(y)=0.

For the solution of the problem we use complex Fourier
transform with respect to x:

61.9) = FIg(x )1 = [ a0x y)e . (18)

We introduce new functions for the wvelocity and pressure
gradient

P P,

V™ =V - f(x)-V, (y) and - (XA,
OX X

(19)

where f(x) is the real argument function that satisfies two
conditions:
a) f(x) >1 atx—oo and f(x)—>-1 at x—>—0,
b) the Fourier transform exist for f(x),i.e. f(x) is piecewise
continuous on any finite interval and absolutely integrable for
all t.

In this case

oP"™

V"™ 50 and —>0 as X—oiw.

X

(20)

As a result, the velocity of the fluid in the channel can be
written in the form:

V=, (%, y) + £ (0. ())& +V, (x, y) €,

31
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Thus, Eq.(8) becomes: a AL R d?
where V™ =(V, sina-V, cosa), L=—/12+W, (30)

oP. ™ new

————f()A+AV, " + F"(X)-V_(y)- fl(ﬂ)ZF[f(X)] (31)
T Ve SRS f,(2) =F[f'(0)]=i4 f,(2) (32)
—Ha’sing -V’ + (x)(—ayz —Ha’sin’« - w(Y)J— £ = F[70]=i2- f,(0 =2 - £.(x) . (33)

where V™ =(V, sina-V, cosa).

Since the velocity V_(y) in this case satisfies Eq.(17) for
the Hartmann flow, the last equation can be written in the
form:

_oR™

+AV,"™ + £"(x)-V, (y)—Ha’sina-V =0

Therefore, problem (7)-(9) has the form:

—d;‘ +AV, "™ —Ha’sina -V + f"(x)V_(y) =0 (21)
X
P new X 2 -
—aoj +AV, +Ha’cosa -V +Mf(x)vw(y)=0
y
(22)
é\/new Wy
4+ —+ f'(X)V =0. 23
x oy (V..(y) (23)
Boundary conditions are:
0, xeg(-L, L
y=-1: V'"™=0, V, = # ); (24)
Y11, xe(-L, L)
y=1: V"™ =V, =0. (25)
X—>t0: V"™ >0, az —0. (26)
X

In contrast to the solution in the article [1], it is already
correct to use Fourier transform for the problem with
boundary conditions (26). We apply complex Fourier
transform with respect to x to problem (21)-(23) and to
boundary conditions (24)-(26) and as a result we obtain the
system of ordinary differential equations for Fourier
transforms V_ (4, y) = FIV,"™ (x, y)],

\7y (4, y)=FV,(x, )1, P(A,y)=F[P,"(x,y)] inthe form:

—iAP+LV, —Ha’sina-V" +f, (V. (y)=0 27)

—3—P+LVY+HaZCOSa-V*+ms—Mfl(/l)Vw(y):O
y
(28)
C.odv, .
iV, +— -+ £,V (1) =0, (29)
y

32

The boundary conditions in the transformed space have the
form:

y=-1: V, =0, vyz\/z_sing/IL);
VA

Eliminating \7X and P from Eqgs.(27) and (28), we obtain the
4th order differential equation for V, :

(34)

(3%)

vV, -a,V, +aVvV,-Z(4,y)=0

v, —a, (36)

where
Z(4,y) =v;(y)(f f,(A)+iaf, (z))—v;(y)Haz sin? af, (1) +

Ha?
2

+V"(y)——sin 2,1(/12 f () +iaf, (z))—v;'. f,(2) (37)

and
a, =24 +Ha’sin’ «, a, =iAHa’sin2q,
a,=A"+A"Ha’ cos’ a

Note, that Eq.(36) for \7y differs from the equation obtained in

[1] only by term Z(A,y). Taking into account formulae (31)-
(33) and the fact that V_(y) satisfies Eq.(17), we obtain

Z(4,y)=0.

Thus, the differential equation for V, has the form:

’

A

"
5w o
V," —-aV, -aV,

2

(38)

This differential equation completely coincides with
differential equation for obtained in [1] therefore the solution
of this equation is the same as in [1]:

V, (4, y)=C,e"™ sinh((+)y)+C,e™ sinh((-)y) +

+C.e" cosh((+)y) +C,e "™ cosh((-)y) (39)

where C1,...,C4 are arbitrary constants,

A=Re /D, = A + u*sin* 2, B=1Im,/D, = 24ucos A
(#H) =usina+ A (-)=usina—A

D1.2 :qu sin’ 0!+/1(/1i2iﬂ005a), Ha=2u,

k1,2 zﬂsmai\/ D,, k3‘4 =—usinax,/D, .

In order to determine constants C1-C4, we have to use
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boundary conditions (34) and (35) and Eq. (29) which gives

av,
=0 at
dy
After that we can determine VAX from Eq.(29) and — iAP from
Eq.(27), 8F3/6y from (28) and using the inverse Fourier
transform, we obtain solution for oP,"™ /ox, oP,™ /oy,
(2 VA

Let us consider in details two special cases, i.e. the case of
longitudinal magnetic field (« =0) and the case of transverse
magnetic field (e =x/2).

In order to simplify the problem and reduce the number of
constants in Eq.(39) we divide the problems into two odd and
even problems with respect to y, as it was done in [1]. For this
purpose we consider the plane channel with two splits on the
its lateral sides y ==+h in region —L <X <L and solve two
problems:

y==1. (40)

1) The odd problem (fig.2): the fluid with velocities iévoéy,

flows into the channel through the both splitson y ==+h.
Then the dimensionless boundary conditions are:

0, xe(-L, L)

F1/2, xe(-L, L) (41)

y=+1:V, =0, Vyz{

i = A=const . (42)
OX

X—>30:V >V _(y)-sign(x), %3 -

Xty

Fig.2. The geometry of the flow for the odd problem with respect to y

2) The even problem: the fluid with velocity lVoé , flows
2 y

into the channel through the split on y=-h and flows out
with the same velocity through the splitat y=h.
Then the dimensionless boundary conditions are:

0, xe(-L,L
y=+1:V =0, = #( ) (43)
b 1/2, xe(-L, L)
oP
and X >1w0: V-0, a——>0. (44)
X

The solution of the general problem is equal to the sum
of solutions for odd and even problems with respect to y.

In this article we consider the analytical solution only for
the odd problem with respect to y due to the velocity and
pressure gradient are equal to zero at x —+wo for even
problem and the solution in [1] for this case was obtained in
correct way. We will present only new numerical results for
the even problem.

Ill.  THE CASE OF LONGITUDINAL MAGNETIC FIELD

In this case B°=B, (a=0). The system of
dimensionless Eqs.(7)-(9) for the case of longitudinal
magnetic field can be written in the form:

oP
———+AV, =0, (45)
OX
oP
—6—+Avy_Ha2Vy 201 (46)
y
N
N, +—2=0 47)
ox oy

Note that in this case P, =P since E, =0.

1) Solution of the odd problem in with respect to y

The geometry of the flow is shown in Fig.2. As in the case
of slopping magnetic field, we introduce new functions for the
velocity and pressure gradient (19) to solve the problem in
correct way. In the case of longitudinal magnetic field, V_(y)
is the velocity of Poiseuille flow that satisfies Eq.(15).

The system of equations (21)-(23) can be written in the
form:

opP™

- +AV,"™" +f"(x)-V_(y)=0, (48)
_5; +AV, —Ha’V, =0, (49)
y
W new A/y
+ +f'(x)-V, (y)=0. 50
ox oy (x)-V..(y) (50)
Boundary conditions are:
0, xe(-L, L
y=-1:V", =0, = #CLL (51)
Y112, xe(-L, L)
0, xe(-L, L
y=1: V", =0, V, = #( ) (52)
Y |=1/2, xe(-L, L)
X—>t0: V"0, i —0. (53)

The system of ordinary differential equations for the Fourier

transforms_ V, (4,y) = FIV,"™ (Y1, V,(4,y) = FIV, (x )],
P(4,y) =F[P™(x,y)] can be obtained from (27)-(29) by
substituting « =0 and have the form:

33
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—iAP+LV_+ f,(AV, (y)=0, (54)
o +LV, —~HaVv, =0, (55)
dy
(56)
where L=-4*+d?/dy’> and the functions f,(1), f3 @)

are defined by formulae (32) and (33).
Applying the Fourier transform to boundary conditions
(51), (52) we obtain:

, =51 [2EL) g
2\ A

Eliminating V and P from Egs.(54) and (55) we obtain the
4™ order dlfferentlal equation for V that can be obtained also
from Eq.( 38) by substituting « = O

y=+1: (57)

A 2/12\/ +(ﬂ“ + A Ha’\V, =0. (58)
This differential equation completely coincides with
differential equation obtained in [1] for the odd problem in the
case of longitudinal magnetic field therefore the solution of

this equation is the same as in [1], i.e.

\7y(l, y) = (k, coshk, sinhk,y —k, cosh k, sinhk, y) .sm(/IL) . (59)
A, A
where A, =k, coshk, -sinhk, —k, coshk, -sinhk, ,
k,=vA +i-Hai, k,=+vA —i-Hal.

Determining \7X from Eq.(56), we obtain:

y _ WA +Ha’2 (coshk, coshk,y —coshk, coshk,y) sin(AL) .

N A, x

i -
i f(AV.(Y),

(60)

Taking into account formulae (32) and (33), the last term of
(63) can be written as

% £V, () =~ F. V() -

Thus,

y _ WA +Ha'2 (coshk, coshk,y —coshk, coshk,y) sin(AL)
' J2r A, x

- V. (). (61)

Determining iAP from Eq.(54) and %from Eq.(55) we

obtain:

34

é_ls _D. (i1 —Ha)k, cosh k, sinhk,y + (i1 + Ha)k, cosh k, sinhk,y

ﬁy - Al
(62)
/ 4 2192
ilP=D- m(cosh k, cosh k,y + cosh k, cosh k,y) +
et L)L vy (63)
Ha sinAL
where D= —- -
Vor 2

In Eq.(62) AP/Jy is the same as in [1], therefore the
original #P/2y will be the same.

Let us simplify Eq. (63). Taking into account formulae (31)
and (33) it can be written in the form

V¥ + Ha?
A1

~f.()-V(y).

iP=D- (cosh k, cosh k,y + cosh k, cosh k, y) —

(64)
Note, that V. and iAP differ from result obtained in [1] only

by last terms. In order to obtain the solution to problem (45)-
(47) we apply the inverse complex Fourier transform

1 ;
9% y) = F[§(2,X)] =—== | §(4, y)e " dx (65)
to functions V, (4,Y) , V, (4,Y), PY) and izp .

Applying the inverse complex Fourier transform we take
into account the fact that the functions V (2,y)and AP/édy
are even functions with respect to A, and the functions
V (4,y) and iiP are odd functions with respect to 4. We

also use formula (31), i.e. F’l[fl(/l)]z f(x), formulae (19)

and the fact that F‘lli/‘tlsjz oP/ox.

As a result, we have the solution to problem (45)-(47) for
the odd case in the form of convergent improper integrals that
coincide with the solution of the problem obtained in [1]:

iTB.(COSh k, coshk,y —cosh k, coshk,y)sinALsinAx , .
A, A

v :lj(kNOShklsinhkzy—kz cosh k, sinhk,y)sin AL cos 2x
A, A

@ IHa_[B (cosh k, cosh k,y + cosh k, cosh k, y)sin AL sin AxdA
X A

1

where B=+yA°+Ha’,

A, =Kk, coshk, -sinhk, —k, coshk, -sinhk,
k,=vA +i-Hai, k,=+vA —i-Hal.
For the odd problem the profiles of the velocity component

V, was presented in [2] for the Hartmann numbers Ha=10,
Ha=20 and Ha=50. It was shown that the velocity component
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V, has the M-shaped profile in the channel’s entrance region
and the M-shaped profiles become more pronounced as the
Hartmann number increases. The qualitative explanation of
this phenomenon is also given in [2].

2) Numerical results for the even problem with respect to y

As it was mentioned before, the solution in [1] for this case
was obtained in correct way, due to the velocity and pressure
gradient are equal to zero at X — too . We represent here only
the new numerical results for even case. The solution for
velocity component obtained in [1] has the form

£

v, :EJ'B (sinhk, sinhk,y —sinhk, sinhk; y) .sm/lLsmAxdﬂ,
e A, A
v, = l]‘- (k, sinhk, cosh k,y —k, sinhk, coshk,y)sin AL cos lxdﬂ

T A

0

where B=+2*+Ha’

A, =k, sinhk, -coshk, —k, sinhk, -coshk, ,
k,=vA*+i-Hal, k,=+A —i-Hak.

1

Fig.3 presents the profiles of the velocity component V,

calculated for the Hartmann numbers Ha=10 and Ha=50 for

—1<y<0. Note that in this case the functionV, is an odd
function with respect to y.

Ha=10 V.
x=1.1 X

Ha=50 Vx

Fig.3. Profiles for the component V (X, y) of the velocity V for the even

problem and B® = B g,

It can be seen from Fig.3 that V., ->0at x —> o and the
magnitude of the velocity component V_ slower approach zero
as the Hartmann number increases. In addition, in the
channel’s entrance region the component V (X, y) of velocity

has the M-shaped profile for small x (1<x<5) and large
Hartmann numbers ( Ha =50).

3) Numerical results for the general problem in the case of
longitudinal magnetic field.

The solutions to general problem (45)-(47), (11)-(14) for
a =0 are equal to the sum of solutions for even and odd
problems with respect to y. The profiles of the velocity
component V,_ are shown in Fig.4 for the Hartmann numbers
Ha=10 and Ha=50.

VX Ha=10

0.5 1

Ha=50

0.5 1

Fig.4. Profiles for the x component of the velocity V for B® = B,€
(= = = V,isthe Poiseuille flow)

X

One can see that near to the entrance split the flow mostly
occurs along the wall with the split (at y=-1). As the
Hartmann number increases, the layer of the flow is getting
narrower and the velocity is increasing in this layer. The
Poiseuille flow takes place at a distance from the entrance
split. In addition, when the Hartmann number grows (i.e. with
the increase of the intensity of the magnetic field) the flow in
the channel slowly approaches Poiseuille flow. For instance,
for Ha =10 Poiseuille flow takes place already at x =6, for
Ha =20 at x=12 and for Ha=50 only at x>20.So L,,
increases as the Hartmann number grows. L, is the length of
the initial part, where the Xx component of the velocity
V(x, y) of fluid in channel differs from the velocity of the
Poiseuille flow V, by less than 1%.

IV. THE CASE OF TRANSVERSE MAGNETIC FIELD.

In this case I§e:Boéy (a=nx12). The system of

dimensionless equations (7)-(9) for the case of transverse
magnetic field can be written in the form:

35
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oP

-—"+AV, —Ha®’v =0, (66)
OX
_ R, +AV, =0, (67)
ay
N
N, +—2=0. (68)
ox oy

2

a x-sign(x) (see formula (14)).

In this case P, =P —

1) Solution of the odd problem in with respect to y

The geometry of the flow is shown in Fig.2, but the external
magnetic field is perpendicular to the channel’s walls.

As in the case of slopping magnetic field, we introduce new
functions for the velocity and pressure gradient (19). In the
case of transverse magnetic field, V_(y) is the velocity of
Hartmann flow that satisfies Eq.(16).

The system of equations (21)-(23) can be written in the
form:

opP™

- +AV,"™ + f"(X)V,_ (y)-Ha?Vv, =0, (69)
_P +AV, =0, (70)
W new Wy
— + f'(x)V =0. 71
x oy (V.. (y) (711)
Boundary conditions are:
0, xe(-L, L
y=-1:V"™, =0, = #CLL (72)
b1/2, xe(-L, L)
0, xeg(-L, L
y=1: V"™, =0, VvV, = #( ) (73)
Y |=1/2, xe(-L, L)
X—>t0: V"™ >0, 8; —0. (74)
X

The system of ordinary differential equations for the Fourier
transforms  V, (4,y) = FIV,"" (x, )], V,(4,y) =FIV, (x, )],
IS(/‘L, y)=F[P"™(x,y)] can be obtained from (27)-(29) by
substituting « =7/2. As aresult, we have:

—iAP+LV, —HaV, + f,(A)V.(y)=0, (75)
P -
— = +LV, =0, 76
o Y (76)
Cdv,
AV, +— -+ £, (V.() =0, @)
y

2

where L =-4*+ (;j and the functions fz 1), f3 1)

are defined by formulae (32) and (33).

36

Applying the Fourier transform to the boundary conditions
we obtain:

T

> ) (78)

Eliminating \7X and P from Eqgs.(75) and (76) we obtain
the 4™ order differential equation for \/Ay , that can be obtained

also from Eq.(38) by substituting « = % :

5@ ;" 5

vV, -2 +Ha’)v, +iV, =0. (79)
Due to this differential equation completely coincide with

differential equation obtained in [1] for the odd problem in the

case of transverse magnetic field, the solution of this equation

is the same as in [1], i.e.

1 (k coshksinhk,y —k, coshk, sinhk,y) sin(4L)

V,(4,y) = T - S
T 1
(80)
where A, =k, coshk, -sinhk, —k, coshk, -sinhk, .

K, =pu+u’ + A, K, =u—Ju’>+1,

k, =—k,, k,=—k,.

3

Determining \7X from Eq.(77) we obtain:

5 i (coshk, -coshk,y —coshk, -coshk,y)sin(AL)
V(1Y) = . N
(4Y) o A

i -~
= f(AV..(Y)

(81)

Taking into account formulae (32) and (31), the last term of
(81) can be written in the form

i - R
~ LAV =-f)-

Thus,
» i-(coshk,-coshky—coshk -coshk,y)-sin(AL) »
v, = AL : ~f.(V,
; T2n A (AV..(y)
(82)

Determining iAP from Eq. (75) and 6If>/ayfrom Eq.(76)
we obtain:

;i; = —%Ail (cosh k, -sinhk,y —cosh k, -sinhk,y) -sin(AL)
(83)
and
P - __iHa (k coshk, coshk,y —k, coshk, coshk,y) ~sin(/1L)+ S
Vor A,
(84)
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where
S=1f,(1)-V,_(y)—iif,(A)V, +i¥(— Ha?Vv, +V’)  (85)

Taking into account formulae (32), (33) and the fact that
function V_ satisfies Eq.(16), we obtain

S=-f,(1)-A

The solution for V. and iAP differ from result obtained in

[1] only by last terms. In order to obtain the solution to
problem (66)-(68) we apply the inverse complex Fourier
transform (65) to the functions V., (4,y), V, (4,), %
and P .

Applying the inverse complex Fourier transform, we take
into account the fact that the functions \7y (A,y)and SP/oy
are even functjons with respect to Aand the functions
V. (4,y) and iAP are odd functions with respectto A .

We also use formula (31), i.e. F’l[ﬂ (ﬂ)]: f (x), formulae
(19) and the fact that F [i/llf’] = Z—P .
X

As a result, we have the solution to problem (45)-(48) for
the odd problem for the transverse magnetic field in the form
of convergent improper integrals that coincide with the
solution of the problem obtained in [1]:

v, :lj(coshkl'cosh k,y —coshk, - coshk y) -sin ALsin Ax A
1 0 Al
1 ¢ (k,coshk, -sinhk,y —k, coshk, - sinhk, y)sin AL cos Ax
v, == da
Ty A4
6_P_mi(k2 coshk, cosh k,y —k, coshk, cosh kzy)~sinﬂuLsin/1xd/1
ox 7y A,
P _ Ha A(coshk, -sinhk,y —coshk, -sinhk,y) -sin AL cos Ax A

oy &y A,

where A, =k, coshk, -sinhk, —k, coshk, sinhk,
kK, =pu+Ju + 22, K, =pu—Ju+ 2.
2) Numerical results for the odd problem

Fig.5 plots the profiles of the velocity component V, for the
Hartmann number Ha=10 and Ha=50 for L=1 (Fig.5A) and
for L=4 ((Fig.5B). Note that in this figure the velocity
component V,_ is shown only for 0<y<1, since the
component V_ is an even function with respect to y.

It can be seen from Fig.5 that V, has the M-shaped profiles

only near to the entrance hole (1<r <1.1 at Ha=10 and
1<r <1.1 at Ha=50) for L=1.
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Fig.5A. Profiles for the x component V (X, y) of the velocity V  for odd

caseand B® = B,€, if L=1 (--- Vhart is the Hartmann flow)
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Fig.5B. Profiles for the x component V (x,y) of the velocity V for the

odd case and B* = B&, if L=4 (Vi is the Hartmann flow)

However, even at small distance from the entrance, the flow
approaches the Hartmann flow in a plane channel in transverse
magnetic field. With increasing L the length of initial part
increases. For L=4 the Hartmann flow takes place only at x=4.
Note that in the present problem the initial part of the channel
is defined to be the part where the x-component of the velocity
V (%, y) differs from the Hartmann flow V,,, by less than 1%.
In addition, at L=4, velocity component V, don’t have M-
shaped profiles.
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3) Numerical results for the even problem with respect to y

As it was mentioned before, the solution in [1] for this case
was obtained in correct way, due to the velocity and pressure
gradient are equal to zero at x — too . We represent here new
numerical results for even problem. The solution for velocity
component obtained in [1] for the transverse magnetic field
has the form

Vv :iji(sinh k, -sinhk,y —sinhk, -sinhk,y)-sin AL sin Ax i
' T 0 AZ

Y :l” (k, sinhk, cosh k,y —k, sinhk, cosh kzy)sinﬂLLcosﬂLxd/1
X A, -2

A, =k, sinhk, -coshk, —k, -sinhk, -coshk, .

Fig.6 plots the x profiles of the velocity component V,_ for
the Hartmann numbers Ha=10 and Ha=50 for -1<y<0.
Note that in this case the functionV, is an odd function with
respect to y.

One can see from Fig.6 that V,_ differs from zero only near
the entrance region (r<2 for Ha=10 and r<15 for
Ha =50). In addition, in Fig.6 for some values of x the
component V,_ is negative at —-1<y<O and Ha=10.
However, since the fluid inflows into the channel through the
hole on y=-1, the x-component of the velocity must be
positive for —1<y <0 at Ha=0. It means that there exists an
opposite flow in the region in transverse magnetic field. It
happens due to a vortex generated in the channel (see Fig.7 ).
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Fig. 6: Velocity profiles for the x component V,_ in the even case for

B =B, L=1

One can see from Fig.6 that V, differs from zero only near
the entrance region (r<2 for Ha=10 and r<15 for
Ha =50). In addition, in Fig.6 for some values of x the
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component V_ is negative at —-1<y<O and Ha=10.
However, since the fluid inflows into the channel through the
hole on y=-1, the x-component of the velocity must be
positive for —1< y <0 at Ha=0. It means that there exists an
opposite flow in the region in transverse magnetic field. It
happens due to a vortex generated in the channel (see Fig.7 ).
Note that the velocity of fluid in this vortex is very small. The
vector field of velocity for Ha=10 is shown in Fig.7.
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Fig. 7. Velocity field in the even case for B® = Bg , L=1 at Ha=10
4) Numerical results for the general case

The solution to general problem (66)-(68) at a=n/2 with
boundary conditions (11), (14) is equal to the sum of the
solutions of odd and even problems with respect to y. Fig. 8
plots the results of calculation of the x-component V (x,y) of
the velocity for the general problem for the Hartmann numbers
Ha=10 and Ha=50.

Vx Ha=10

x=1.01 06 Vhart.

~
1.1

Vx Ha=50

/Vhartm

Fig. 8: Velocity profiles for the x component V_ for the general problem
and B° = B8, L=1
One can see that, similarly to the previous case, the profiles

of the velocity component V, differ from the Hartmann flow
profiles only near the entrance region. For Ha=10 the flow
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approaches the Hartmann flow at x > 2 and in the case Ha=50
the Hartmann flow takes the place at x >1.5

V. CONCLUSIONS

1.In this paper a correct analytical solution on an inflow of
conducting fluid into a plane channel through the split of finite
width in channel’s lateral side in a strong magnetic field is
presented. The problem is solved in Stokes and inductionless
approximation by using Fourier transform. In order to solve
the problem correctly, a new function of velocity and new
function of pressure gradient are introduced. It is shown, that
the final results obtained in [1], despite the incorrect
assumption, nevertheless are correct.

2. The problem is solved by its dividing into the odd and
even cases with respect to y axis. The solution of general
problem is equal to the sum of even and odd problems with
respect to y.

3.New numerical results are presented for the velocity field
both for the longitudinal and transverse magnetic fields.

4.Velocity profiles of the component V, are obtained
numerically at Ha=10 and Ha=50 for the even problem with
respect to y. For even with respect to y problem in transverse
magnetic field there exists an opposite flow in the region of
transverse magnetic field. It happens due to a vortex generated
in the channel. Note that the velocity of fluid in this vortex is
very small.

5.Velocity profiles of the component V,  are obtained
numerically at Ha=10 and Ha=50 also for the general problem

In the strong longitudinal magnetic field flows mostly
happen along the wall with a split. On increasing the
Hartmann number, the layer of a flow is getting narrower.

For the transverse magnetic field, the profiles of the
velocity component V_ differ from the Hartmann flow profiles
only near the entrance region. For Ha=10 the flow approaches
the Hartmann flow at x> 2 and for Ha=50 the Hartmann flow
takes place at x>1.5
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Jelena Ligere. Piezimes par analitisko risinadjumu MHD problémam par vaditspéjiga $kidruma ietecéSanu plakana kanala caur kanala maléjo sienu
Saja darba tiek aprakstits korekts analitiskais risindjums uzdevumam par vaditspgjiga Skidruma ietecg$anu plakana kanala caur galiga platuma spraugu kanala
malgja siena. Probléma tiek risinata Stoksa un bezindukcijas tuvinajuma, izmantojot Furjé transformaciju. Sikak tiek aplikoti paraléla magnétiska lauka un
perpendikulara magnétiska lauka gadijumi. Sis uzdevums jau ir atrisinats raksta (Antimirov M., Ligere E. Analytical solutions for the problems of the flowing
into of the conducting fluid through the lateral side of the plane channel in a strong magnetic field//Magnetohydrodynamics.—2000.-Vol.36, No.1.-pp.47-60), bet
risinajumam bija izmantots nekorekts pienémums. Tas ir, minétaja raksta bija pienemts, ka $kidruma atrums un spiediena gradients ir vienadi ar nulli pietiekosa
attdluma no ieejas regiona. Isteniba, pietiekosi talu no ieejas spraugas, pliisma parvérSas par Puazela plismu paraléla magnétiska lauka gadijuma un par
Hartmana plismu perpendikulara magnétiska lauka gadijuma. Dotaja raksta tiek prezentéts analitiski precizs risinajums, un tiek pieradits, ka atrisinajums, kas ir
ieglits minétaja raksta, ir pareizs neskatoties uz nekorekto pienémumu. Lai vienkarSotu risindjumu, uzdevums sadalits divos apakSuzdevumos: viens ir para
uzdevums attieciba pret y un otrais - nepara uzdevums. Saja darba ir iegiiti arT jaunie skaitliski rezultati. Tas ir, skaitliski tiek izpétits $kidruma atrumu lauks
kanala para uzdevumam attieciba pret y un visparigam uzdevumam, kuram atrisinajums ir vienads ar atrisindgjumu summu para un nepara gadjjumiem.

Eunena Jlurepe. lonosiHenus k pemennio MI'/l 3a1a4u 0 BTeKaHUM NPOBOJSIIIEH :KHIKOCTH B IVIOCKUI KaHAJ Yepe3 G0KOBYIO CTEHKY KaHaJia

B manHoif pabore mpuBoaHTCs KOppekTHOe pemienne MI'/] 3amaun o BTeKaHWH HMPOBOMSIIEH JKUIKOCTH B INIOCKHH KaHAJT 4epe3 IIeNIb KOHEUYHOW IMHPUHEI B
OokoBoif creHke KaHana. [Ipobnema pemaercss B CTOKCOBOM M OE3bIHAYKIIMOHHOM NPHONMKEHUH, HCIONb3ys mpeoOpasoBanue dDypve. B meramix
paccMaTpUBArOTCS CIIydaH IPOIOJIBHOrO | MOIEPEYHOro MarHUTHBIX Mosiell. DTa 3a1a4a paHee peruaiack B padore (Antimirov M., Ligere E. Analytical solutions
for the problems of the flowing into of the conducting fluid through the lateral side of the plane channel in a strong magnetic field//Magnetohydrodynamics.—
2000.-Vol.36, No.1.-pp.47-60) ¢ ncmonp30BaHEeM HEKOPPEKTHBIX AOMYIICHHNA. A HMEHHO, IPEINOIAaraioCh YTO CKOPOCTh M TPAJINEHT JABICHHS PABHBI HYIIO B
KaHaJle Ha JOCTaTOYHOM yHaJIeHHH OT BXOJHOTO OTBepcTHs. Ha camoM ke Jene, Ha HEKOTOPOM PAacCTOSIHHHU OT IIEN TeUCHHE B KaHaJe HEePeXOAUT B TeUCHHE
ITyazens B cirydae NpOAOIGHOTO MarHUTHOTO I10JIS, M B TeUeHHe | apTMaHa IIpH MOIepeYHOM MarHUTHOM HoJie. B TaHHOM cTaThe 3a/iavya peleHa aHaIUTHIECKH
CTPOTO U MOKa3aHO, YTO KOHEUHBIC PE3yNbTAThl, IOIyYeHHBIC B paHee yMOMSIHYTOH CTaThe, SIBIIOTCS MPABUIIBHBIMU, HECMOTPS Ha HETOUHOE pemieHue. J{ms
VIPOLICHUs pelleHus, 3aJadya pa3buBacTcs Ha JBE MOJA3aJa4yd - YETHYIO 3aJady OTHOCHTENIBHO OCH )y WM HEYeTHYI0. B paboTe NMpHBOISTCS TakKe HOBBIE
YHCIICHHBIE PE3yIbTaThl. A HMEHHO, YHCICHHO H3y4aeTcsl 10JIe CKOPOCTEeH IS YeTHOI OTHOCHTENBHO y 3a/laudl U JUTs OOIIeH 3a/1aul, pelieHne KOTOPOl paBHO
CyMMe pelIeHH YeTHON 1 HeueTHOMH 3a/1a4.
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