RAS 2012

TALLINN

Balticum
Organicum
Syntheticum

International Conference on Organic Synthesis

July 1-4, 2012
Tallinn, Estonia
Program and Abstracts

A NOVEL METHOD FOR C(6)-DERIVATIZATION OF PURINE RIBONUCLEOSIDES

Bižāne, I.; Novosjolova, I.; Bizdēna, Ē.; Turks, M.
14/24 Azenes str., Riga, LV-1007, Faculty of Material Science and Applied Chemistry, Riga Technical University, Latvia
erbi@ktf.rtu.lv

Purine nucleoside analogues play important role in modern antiviral and antitumor therapy. ${ }^{1}$ Several C(6)-susbtituted purine derivatives have been synthesized in last years. Ribo- and deoxyribonucleoside analogs containing 2- or 6-(1,2,3-triazolyl)purines were described recently. ${ }^{2}$ To the best of our knowledge, the ditriazolylnucleoside moieties for the synthesis of $\mathrm{C}(6)$-purine derivatives have not been studied yet.

Click reaction was explored to synthesize series of 2,6-ditriazolylpurine ribonucleosides 2 from the corresponding 2,6 -diazidopurine derivatives 1 . These intermediates have been exposed to various N - and S-nucleophiles. For example, the nucleophilic aromatic substitutions at $\mathrm{C}(6)$ with methyl- and dimethylamine, pyrrolidine, piperidine and other amines proceed smoothly at ambient temperature in water, water-THF or water-MeCN. Reaction times varied from 30 min to 2 h . Acetyl protecting groups were simultaneously removed by addition of these low molecular weight amines. On other hand, dipropylamine and morpholine required longer reaction times and elevated ($40-50{ }^{\circ} \mathrm{C}$) temperatures, and deprotection of monosaccharide was carried out separately with $\mathrm{NH}_{3} / \mathrm{EtOH}$ or $\mathrm{CH}_{3} \mathrm{NH}_{2} / \mathrm{H}_{2} \mathrm{O}$. All obtained $\mathrm{C}(6)$-substited 2-triazolylpurine derivatives demonstrated fluorescent properties.

1. Lagisetty, P.; Russon, L. M.; Lakshman, M. K. Angew. Chem. Int. Ed. 2006, 45, 36603663 and references therein.
2. Cosyn, L.; Palaniappan, K. K.; Kim, S.-K.; Duong, H. T.; Gao, Z.-G., Jacobson, K. A.; Calenbergh, S. V. J. Med. Chem. 2006, 49, 7373-7383.
