
Applied Computer Systems

2012 / 13 ___

61

Transformation of UML Class Diagram to Internal
Java Domain-Specific Language

Dmitry Buzdin1, Oksana Nikiforova2, 1-2Riga Technical University

Abstract – the article addresses the existing problems found in
the area of Domain-Specific Languages (DSLs). Being a widely
adopted programming technique, DSL grammar creation process
still lacks desirable traceability and automation. The paper
proposes a sequential model transformation process based on
Model-Driven Architecture concepts as one of the potential
solutions to stated problem. One of the main results of the
research work is the implementation of prototype of the full-cycle
model transformation chain starting from the UML domain-
model and ending with internal Java-based DSL grammar
implementation.

Keywords – code generation, domain specific, formal grammar,

system architecture

I. INTRODUCTION

Software complexity continues to grow with each year, and
it is crucial to optimize the development process to follow the
increasing demand. One of the ways for the development
process optimization is avoiding accidental technical
complexity. Accidental complexity is the complexity, which
results from computer systems and is not essential to the
problem domain. Accidental complexity is caused by the
approaches or technologies used to solve the existing real-
world problem [1]. Software development process should
concentrate on gathering and specifying requirements rather
than overcoming technical challenges. One of the sources of
complexity is the use of traditional textual programming
languages. As promised by Model-Driven Architecture
(MDA) [2] the focus of the development should shift from
code to models. There are different initiatives, which propose
ways to make this happen. One of the promising directions in
this field is the use of Domain-Specific Languages (DSLs).

DSLs [3] [4] are formal modelling or textual languages
specializing in solving problems in dedicated solution space.
In contrast to DSLs, General Purpose Languages (GPLs), such
as C++ and Java, are suitable for solving any computational
problem. Compared to GPLs, DSLs benefit from
expressiveness and specialization in their problem area, reduce
the verbosity and result in more comprehensive programs. The
approach of creating specialized languages for certain problem
domains was described back in 1986 [5].

DSLs are a recognizable way of raising the abstraction level
and achieving productivity benefits as proven by existing
research [6]. Several well-known DSLs are SQL (structured
query language) and LATEX (document preparation
language). As of today there are hundreds of different DSLs
available, both small and large. One of the potential research
directions related to DSLs is Language-Oriented Programming
[7]. It proposes to create and reuse DSLs for existing problem

domains systematically. Creation of a new programming
language becomes an integral part of software development
process. This is only possible when there are mature
techniques and tools, making creation and evolution of the
language as easy and straightforward as writing code in GPL.

Given paper proposes an approach to structure and ease
DSL grammar creation and generation process. The main
target of the research is to advance DSL approach to the level
of generally acceptable development practice.

One of widely used DSL categorization techniques is
splitting into two major types: external and internal languages
[6]. External DSLs are completely independent of any existing
programming language, thus free of syntax constraints
imposed by those. Internal language approach, which is also
known as language piggybacking [8], is based on the idea
when the new language is being created on top of the existing
GPL grammar. Internal language typically uses only a subset
of syntax and features of the host language. Programs written
in internal DSL are considered valid programs in the original
GPL. Programs written in internal language are structured in a
way to foster its readability and to hide unnecessary
programming language details.

The article concentrates on usage of internal DSLs to raise
the level of abstraction of computer programs. Currently,
internal DSL grammar creation is a manual or semi-manual
process also referred to as “grammarware hacking” [9]. The
quality and structure of the resulting language are strongly
dependent on the language designer’s personal skills and
preferences. This imposes high technical risks, increases
required software engineer’s qualifications and turns domain-
specific language creation process into “black art”.

Internal domain-specific languages can be created using
both statically typed languages like Java [10] and dynamic
languages like Ruby [11]. One of the core programming
activities during DSL design and implementation is its
grammar definition preparation. Internal DSL grammar
creation involves usage of text editors and integrated
development environments (IDEs). None of these tools are
specialized in DSL creation. There is a new breed of tools,
which are intended to provide grammar definition and
generation automation, such as MPS or openArchitectureWare
[12] [13]. However, these tools cannot be considered generic
ones, since they are only limited to one type of DSLs or a
single technology platform. Usually these tools are built for
definition of external languages and do not offer support for
generation of internal DSLs.

Current situation in internal language development is the
reliance on common design patterns and idioms [14]. The

Applied Computer Systems

__ 2012 / 13

62

same approaches are used for building multiple internal
languages. This is a manual process, but there is an
opportunity for automation and reuse. Researchers try to
increase the level of automation during creation and
maintenance of DSLs by proposing both tools and techniques,
which make DSL creation a reproducible and predictable
process.

The goal of the paper is to offer an approach to ensure
traceability and automated transformation from the problem
domain model to internal DSL grammar implementation. The
approach offered in the paper is specialized for using UML
class diagrams [15] at the level of problem domain modelling.
For demonstration purposes Java programming language is
used for internal DSL grammar creation. Meta-modelling
principles defined by Object Management Group for Model
Driven Architecture [2] are used for definition of formal basis
for model-to-text transformations.

The rest of the paper is structured as follows. Section II
explains the research area, which is internal DSLs and
transformation of UML class diagrams to working programs.
It stresses the problematic aspects in the definition of DSL
grammar. Section III proposes the solution offered by the
authors. It defines the hypothesis that MDA principles for
model abstraction and meta-modelling theory could be applied
for the definition of internal DSL grammar. Section IV shows
experiment results validating the stated hypothesis. In the last
section of the paper, the authors stress important statements on
the existing results and outline future research directions.

II. PROBLEM DEFINITION

Internal DSL creation in Java is a common practice used in
many modern frameworks. Internal DSLs are also sometimes
referred to as Fluent Interfaces. One of the widely used
frameworks using such an approach is Apache Camel [16].
Apache Camel is a message routing and transformation
engine, which provides reusable enterprise integration pattern
implementations and hides underlying middleware specifics.
Message routing definition in Camel is a typical example of
internal DSL based on Java. DSL main purpose is to allow
declarative definition of the message processing flow. The
following example is important as it demonstrates the typical
usage of internal DSLs in a variety of Java frameworks.

RouteBuilder builder = new RouteBuilder() {

Public void configure() {
errorHandler(deadLetterChannel(”mock:error”));
from(”seda:a”).choice()

.when(header(”foo”).isEqualTo(”bar”))
.to(”seda:b”)

.when(header(”foo”).isEqualTo(”cheese”))
.to(”seda:c”)

.otherwise().to(”seda:d”); }};

The content of the code is not as important as its

structuring. Code composition approach in the example differs
from traditional imperative Java programs. It is self-
explanatory and benefits from expressive code indentation
technique. The desired effect is achieved using language idiom

called method chaining. Method chaining is an approach,
when method calls on an object return the referred object
instance itself as a result. This makes it possible to invoke the
subsequent method immediately without terminating each line
with a semicolon. This approach requires less code and
application of code-completion capabilities of modern text
editors in the optimal way. The provided example shows the
boundaries of internal Java based DSLs. Even though the code
is easier to read and understand to a non-programmer, there
are a number of constraints mandated by the host language.
Each expression is required to end with a semicolon. Curly
brackets should separate classes and methods. Java compiler
will not accept the program without mentioned rules being
followed.

The same approaches and patterns for Fluent Interface
implementation are used in other modern Java frameworks
such as Google Guice [17]. Java language-based internal
DSLs use in common the following design patterns and
programming language idioms [18]:

– method chaining;
– static factory method;
– static import;
– builder pattern;
– variadic function;
– intermediate object.
Despite the fact that the same patterns, approaches and

techniques are used to implement internal DSLs, grammar
definition, to the authors’ knowledge, is still a manual process.
It is possible that in some cases custom automation approaches
are used during internal language composition. However,
complete generation of internal DSL grammar code is still an
open research field. It is possible to declare that there is no
traceability or automated transformation from the source
problem domain model to target DSL grammar
implementation. In general this leads to the necessity of
model-to-text transformation process.

When target language syntax and semantics are known,
along with patterns for internal DSL creation, it is possible to
automate the process of language grammar generation. It is
required to provide domain description as an input for the
automation in some generic form. It is proposed to take UML
class diagrams as one of the implementation neutral formats.
As far as UML class diagram is available for the problem
domain, UML modelling tools can be examined for the
support of definition of semantic part of internal DSL. UML
tools by themselves do allow generation of initial class
structure, and they do have a clean model to code mapping for
concepts such as classes, attributes and associations.

However, modern UML tools (Rational Rose, SPARX
Enterprise Architect, AgroUML, Magic UML etc.) generate
only a structural code. Structural code is the direct
representation of UML classes, attributes and methods to the
corresponding elements in target object-oriented programming
language. Programmer’s task is to implement a behavioural
code, which is not being generated. Structural code is not
sufficient for the task of internal DSL grammar generation.
Incomplete transformation process burdens the programmers

Applied Computer Systems

2012 / 13 ___

63

with a necessity to duplicate “lost” concepts in a host
programming language. Reimplementation leads to the
increased efforts and lack of traceability between source and
target models. This also creates a risk of having design models
not in sync with the source code. Furthermore, in some cases,
it is necessary to maintain several versions of internal DSLs
for different target platforms. The typical scenario for this
requirement is cross-language frameworks, such as Apache
Camel having APIs in Java, Scala and XML.

If the generated code is in Java programming language, the
output obeys JavaBeans standard conventions. Each object
property has getter and setter methods and no method chaining
is present. According to internal DSL creation practices, it is
necessary to make object construction concise and verbose. It
is possible to achieve that by dropping unnecessary and
duplicating code fragments with builder pattern
implementation [14] for the used object model. The structural
code being generated by modern UML tools is not intended as
the basis of internal DSLs; thus, other techniques are explored.

Summarizing the problems stated above, the authors can
define the goal of the paper in a more specific way, as to
propose an approach, which fills the transformation gap
between UML class diagrams and Java internal DSL grammar
by generating not only a structural code, but also some part of
the behavioural code. Therefore the proposed approach has to
support the possibility to generate internal Java DSL
implementation for creation of the object model using well-
known internal DSL patterns.

The authors assume that principles of model abstraction and
meta-modelling can be useful for solving the task stated
above. Next section of the paper describes keynote
assumptions for application of these principles for internal
DSL grammar generation based on concepts from MDA [2].

III. SOLUTION

There is no widely adopted tool at the moment, which
would automatically bridge system analysis artefacts, such as
domain models, to DSL grammar definition. Problem domain
description captured in unambiguous specification language,
such as UML, can be used to derive and generate DSL
grammar, either internal or external. This automates the
process of grammar creation and decreases length of software
development cycles. End-to-end processing transformation is
required in order to eliminate domain knowledge duplication
in two different forms – as a model and language grammar.

One of the ways for solving any problem is to find similar
problems and existing approaches to solve them. The authors
propose a hypothesis that the core principles of MDA could
serve as a formal basis for solving the described model
transformation problem. This approach is also called
potentially effective within DSL context in [9], where
application of MDA concepts to DSL generation is mentioned.
It is possible to view generic grammar representation as a
Platform-Independent Model (PIM) and concrete grammar
implementation as a Platform-Specific Model (PSM). One of
the core MDA principles is the abstraction of details, which
are irrelevant on the current level. MDA brings the concept of

meta-levels for describing model transformation process.
Meta-Object Facility (MOF) [19] is the standard describing
meta-modelling architecture in model-driven development.
MOF describes a four-layered meta-modelling architecture.
Level M0 represents the problem domain itself; level M1 is
the model of the problem domain, such as UML class
diagram; level M2 describes modelling language semantics,
such as UML; level M3 is the language of MOF to build meta-
models.

The authors propose to reuse the same multi-level concept
for producing DSL grammars. DSL generation approach is
based on the general model transformation scenario previously
described in [20]. Steps required to transform the existing
domain model to language grammar are depicted in Figure 1.

Fig.1. Model Transformation Process

There are two separate vertical meta-modelling stacks. One
is for the source model and the second one – for the target
model. Actual problem domain concepts reside on level M0.

Both UML class diagram and DSL textual model on level
M1 describe the problem domain. DSL model is an internal
textual DSL describing the same problem domain as the
corresponding UML model.

UML meta-model is shown on M2 on the left side.
Implementation of specific language grammar is on the right
side of M2. In case of internal DSL, this is a set of instructions
expressed in a host programming language. In case of external
DSL, this would be a grammar definition in EBNF or a similar
form.

The left part of the level M3 contains MOF as a generic
meta-modelling framework for use with UML. The right part
of the level M3 depicts graph representation of the DSL
grammar, which may be used in order to provide a platform-
independent way of expressing results. It is important to note
that graph representation is platform-independent and can be
used to generate grammar definition in the technology of
choice.

Applied Computer Systems

__ 2012 / 13

64

It is proposed to move from UML to DSL lane on the level
M2 since the meta-model allows transformation into the
corresponding textual meta-model, which is a language formal
grammar. MOF and graph representation serve as the basis for
this transformation as those provide meta-modelling facilities.
It is impossible to do the move on the level M3, as there is no
information about the problem domain. If the transformation
were done on the level M1, it would be necessary to derive the
meta-model from the domain model first to produce the
language grammar.

In order to transform UML domain model to a platform
independent format (PIM), first, it is necessary to receive the
initial graph representation of the class diagram. Algorithm of
UML diagram transformation to the directed labeled graph is
previously addressed in [21]. The same approach could be
reused as the first step of the transformation. Graph
representation allows applying formal modifications to the
existing structure.

In order to perform the transformation on the level M2,
additional input is required. UML model corresponds to the
target language semantics, but syntax should be defined
elsewhere. It is possible to define a set of graph rewriting
rules, which would enrich the core language concepts with
additional syntax elements. In order to get to the desired
language style graph enrichment is performed by appending
new nodes.

When the resulting graph is prepared, it is possible to
transform that into textual grammar representation. Any
available model to text transformation technology can perform
the task. The simplest approach is to use a programming
technique called template processing. In template processing
the text is composed of two components: static textual
templates with placeholders and macros and the model,
provided in a generic format. The resulting internal grammar
definition, which is an output of template processing, is used
as a part of the system source code and is being compiled or
interpreted in runtime.

The outlined solution builds on top of several existing
research papers. Definition of bi-directional transformation
algorithm between MOF meta-models and context-free
grammars, which is taken as the reference, is provided in [22].
However, the paper demonstrates mapping between existing
GPL and MOF, which is a different scenario than DSL and
MOF proposed by the authors. The problem of bridging meta-
models and language grammars has been addressed before in
[23]. The approach is limited to external DSLs and does not
use UML as a meta-modelling language. Transformations
between different model formats have been analyzed in
several works. Topic of UML and DSL model transformation
was previously covered in [24]. The difference is that the
authors propose to map UML meta-model to DSL grammar,
whereas [24] describes mapping of UML model to DSL
model. Object-oriented model structure refinement via graph
transformation rules is described in [25]. This approach is
used for model enhancement during transformation sequence.
Reverse approach of transforming the language grammar to
UML model is proposed in [26]. Transformation process in

the referenced article is also backed-up by MOF meta-model,
but the direction is opposite of the described one.

IV. EXAMPLE

The proposed approach is demonstrated on the example of a
non-trivial problem domain. The domain complexity is
sufficient to demonstrate common cases of conceptual
modelling. The example shows the flow of model
transformation starting with UML class diagram, representing
the domain model and ending with generated internal Java-
based DSL implementation. The demonstrated example is
simplified, but contains all major elements from large-scale
problem domains (classes, attributes, associations). The
example is based on hotel room booking domain, where core
entities are the following: rooms, bookings, payments and
guests. UML Class diagram used as an input analysis artefact
is shown in Figure 2.

Booking class is a central piece of the domain and has
several associations with the other classes. The purpose of the
new DSL is to cover the process of registering new bookings
in the existing system and adding all required information to
them.

The example describes the process of creation of internal
DSLs based on Java programming language [27]. Java has
been chosen due to the following reasons:

– language popularity [28];
– wide use of internal DSLs in frameworks;
– mature patterns and idioms for internal DSL creation.

Fig.2. Class Diagram of the Domain Model

Internal DSL generation example has been automated as
part of the research. Overall transformation sequence is
depicted in Figure 3. In order to read the class model for
transformation purposes it is proposed to read the model
specification using the XML Metadata Interchange (XMI)
format, supported by the most of UML tools [29]. XMI format

Applied Computer Systems

2012 / 13 ___

65

is a textual, XML based language, which is used to exchange
with UML models in a vendor independent format. It is
possible to extract all necessary information from the class
diagram by processing XMI file, which is exported from the
modelling tool. After the extraction the domain model gets
programmatically transformed into graph representation.
Graph model serves as an intermediate step, suitable for
further transformation to the chosen grammar definition type
and language style. Therefore, transformation rules determine
semantics of the language and enrich the domain model with
an additional structure.

After the transformation and application of graph rewriting
rules the graph is transformed into Java classes using
FreeMarker template processing library [30]. This is a model
to text transformation step. The resulting Java code forms the
necessary building blocks for the internal DSL. The generated
code is created in accordance with the mentioned design
patterns for internal DSL creation. Text templates define the
syntax of the generated language. By changing the templates,
it is possible to produce results for other host programming
languages or change the style of the generated language.

Fig.3. Model Transformation Steps

Transformation rules and text templates form the unique

language type and can be reused for different domain models.
In order to generate a full solution, the following steps should
be completed:

– Generate JavaBeans for domain classes. It can be
done with the existing UML tools.

– Build a fluent interface definition. The tool
implemented during the research performs this
successfully.

The described model transformation sequence outputs the
source code of internal Java-based DSL, which in combination
with domain classes, could be used as an internal DSL. The
grammar implementation, which is necessary for the shown
code to be compiled and run, is generated automatically out of
UML class diagram previously shown in Figure 2. The
resulting program excerpt, which uses the internal DSL, is
demonstrated below.

Booking booking = booking()
.id(123456l)
.from(new Date()).to(new Date())
.room(room()

.number(23)

.roomType(Room.RoomType.FAMILY)

.build())
.reservedBy(guest()

.name(”John”)

.surname(”Smith”)

.age(34)

.build())
.payment(payment()

.amount(new BigDecimal(100))

.cardNumber(”12345678”)

.build())
.noOfGuests(2)
.build();

When running the sample code, it is possible to receive a

new booking object populated with all stated information. The
source code is being compiled without problems due to the
fact that required supporting classes and methods have been
generated out of the domain model description. The resulting
code uses well-known patterns and techniques (such as
method chaining and builder pattern) used in modern
frameworks, where an internal DSL definition is hand-crafted.

It is possible to compare the resulting DSL code with the
traditional coding approach.

Booking booking = new Booking();
booking.setId(123456l);
booking.setFrom(new Date());
booking.setTo(new Date());
Room room = new Room();
room.setNumber(23);
room.setRoomType(Room.RoomType.FAMILY);
booking.setRoom(room);
Guest guest = new Guest();
guest.setName(”John”);
guest.setSurename(”Smith”);
guest.setAge(34);
booking.setReservedBy(guest);
Payment payment = new Payment();
payment.setAmount(new BigDecimal(100));
payment.setCardNumber(”12345678”);
booking.setPayment(payment);
booking.setNoOfGuests(2);

Both DSL and traditional coding approaches produce the

same result. However, internal DSL approach is smaller in
size and is more readable. Language composition patterns
used in a given example are equivalent to those used in
modern Java frameworks. Therefore, it is possible to state that
the proposed approach is applicable for solving real-world
problems. With the proposed approach it is possible to
automate the creation of internal Java DSLs based on the
provided UML domain meta-model. This transformation step
automates the routine, which was previously done manually.

The generative language grammar definition approach
facilitates model reuse and platform independence. In the
given example, the approach is demonstrated using the pre-
defined technology stack. The approach can be ported to

Applied Computer Systems

__ 2012 / 13

66

another host language other than Java, or support several code
generation targets. It is possible to change the generated
grammar output by modifying the model transformation rules
to rely on a different set of language building patterns and
idioms. It helps to achieve separation of platform independent
models from platform specific models.

V. CONCLUSIONS

The main novelty of the research is the description of a
process of automated conversion of UML-based domain
model into internal DSL grammar. The approach is the
original contribution explaining the conceptual approach of
the transformation chain. The approach has been prototyped
successfully using a simplified domain model as the input and
an internal Java-based DSL grammar as the output. The
prototype itself has been developed in Java programming
language.

Unlike the existing DSL definition tools, which concentrate
on one or several predefined grammar description formats, the
proposed approach is extensible and independent both from
technology and platform specifics. The proposed
transformation sequence benefits from meta-modelling
concepts inspired by MDA and MOF. The same approach was
previously used in [20] to generate external DSL grammar
definition using ANTLR [31] grammar format. These two
experiments have led to the conclusion that the proposed
approach is feasible both with internal and external DSL
grammar creation.

The solution developed for generation of DSL grammar can
be used as a starting point for creation of a new language. This
could be done after the domain analysis is conducted. When
the changes to the existing domain model are required, it is
possible to change the source model itself and re-generate the
grammar instead of applying manual modifications.
Implementation of the internal DSL will follow widely
accepted patterns and practices and will be cleanly separated
from a hand-written code. The limitations of the demonstrated
example are the lack of constraint checks on the model and
limited flexibility of graph rewriting rules, since those are
implemented in an imperative fashion.

Further research will be concentrated on testing and
adapting the proposed transformation process to the different
implementation platforms and grammar definition formats.
One of the next steps of the generator is to start processing
constraints defined in the source model, such as OCL
expressions. Another challenge is to produce an extensible
transformation engine, which is able to support multiple DSL
types and technical platforms as its output targets.

ACKNOWLEDGEMENTS

We thank the organizers of conference “Engineering for Rural
Development” from Technical faculty of Latvia University of
Agriculture for permission to use their publication template
for our needs. The research presented in the paper partly is
supported by Grant of Latvian Council of Science No. 09.1245
"Methods, models and tools for developing and governance of
agile information systems".

REFERENCES
[1] F. P. Brooks, The Mythical Man-Month: Essays on Software

Engineering, Addison Wesley, 1995.
[2] OMG, “Model-Driven Architecture Guide Version 1.0.1.” OMG, 2003.
[3] W. Taha, “Domain-Specific Languages,” The 2008 IEEE International

Conference on Computer Engineering and Systems (ICCES 2008), 2008.
[4] A. V. Deursen and P. Klint, “Little languages: Little maintenance?”

Journal of Software Maintenance, 1998.
[5] J. Bentley, “Programming Pearls: Little languages,” Communications of

the ACM, 29(8):711721, 1986.
[6] M. Fowler, Domain-Specific Languages, Addison Wesley, 2010.
[7] S. Dmitriev, “Language-Oriented Programming: The next programming

approach,” On-Board, 2004.
[8] D. Spinellis, “Notable Design Patterns for Domain-Specific Languages,”

Journal of Systems and Software, vol. 56, pp. 91–99, Feb. 2001.
[9] P. Klint, R. Lammel, and C. Verhoef, “Toward an Engineering

Discipline for Grammarware,” ACM Transactions on Software
Engineering Methodology, vol. 14, no. 3, pp. 331–380, 2005.

[10] S. Freeman and N. Pryce, “Evolving an Embedded Domain-Specific
Language in Java,” OOPSLA 2006.

[11] H. C. Cunningham, “A Little Language for Surveys: Constructing an
Internal DSL in Ruby,” ACM-SE 46: Proceedings of the 46th Annual
Southeast Regional Conference on XX, (New York, NY, USA), pp. 282–
287, ACM, 2008.

[12] JetBrains, “Meta-Programming System.” Internet, 2009.
http://www.jetbrains.com/mps/. [Accessed September, 2011].

[13] S. Effinge, M. Voelter et al., “openArchitectureWare.” Internet, 2008.
http://www.openarchitectureware.org/. [Accessed September, 2011].

[14] Erich Gamma et al., Design Patterns: Elements of Reusable Object-
Oriented Software, Addison Wesley, 1994.

[15] OMG, “OMG Unified Modeling Language Specification” OMG, 2003.
[16] Apache Foundation, “Apache Camel.” Internet, 2010.

http://camel.apache.org/index.html. [Accessed September, 2011].
[17] Google, “Google Guice.” Internet, 2010.

http://code.google.com/p/google-guice/. [Accessed September, 2011].
[18] Jeff Bay and Alex Ruiz, “An Approach to Internal Domain-Specific

Languages in Java,” Internet, 2008.
http://www.infoq.com/articles/internal-dsls-java. [Accessed September,
2011].

[19] OMG, “Meta Object Facility (MOF) Specification, version 1.4” OMG,
2002.

[20] D. Buzdin, “Generative Approach to DSL Grammar Definition,” in
Proceedings of 43rd Spring International Conference MOSIS’09,
Modeling and Simulation of Systems (J. Stefan and P. Peringer, ed.),
(Ostrava), 2009.

[21] P. Ziemann, K. Holscher, and M. Gogolla, “From UML Models to
Graph Transformation Systems,” Electronic Notes in Theoretical
Computer Science, 127, pp. 17–33, 2005.

[22] M. Alanen and I. Porres, “A Relation between Context-Free Grammars
and Meta Object Facility Metamodels,” TUCS Technical Report No 606,
2003.

[23] F. Jouault, J. Bezivin, and I. Kurtev, “TCS: a DSL for the Specification
of Textual Concrete Syntaxes in Model Engineering,” GPCE06, 2006.

[24] M. Wimmer, A. Schauerhuber, M. Strommer, W. Schwinger, and G.
Kappe, “A Semi-Automatic Approach for Bridging DSLs with UML,”
OOPSLA’07, 2007.

[25] X. Liu, Z. Liu, and L. Zhao, “Object-Oriented Structure Refinement - a
Graph Transformation Approach,” Electronic Notes in Theoretical
Computer Science 187, pp. 145–159, 2007.

[26] A. Kunert, “Semi-Automatic Generation of Metamodels and Models
from Grammars and Programs,” Electronic Notes in Theoretical
Computer Science, vol. 211, pp. 111–119, 2008.

[27] Oracle, “Java.” Internet, 2010. http://www.java.com/en/. [Accessed
September, 2011].

[28] Tiobe Software, “Tiobe Programming Community Index.” Internet,
2011. http://www.tiobe.com/tpci.htm. [Accessed September, 2011].

[29] OMG, “XML Metadata Interchange.” Internet, 2007.
http://www.omg.org/spec/XMI/. [Accessed September, 2011].

[30] FreeMarker, Internet, http://freemarker.sourceforge.net/. [Accessed
September, 2011].

[31] T. Parr, The Definitive ANTLR Reference. Pragmatic Programmers,
2007.

Applied Computer Systems

2012 / 13 ___

67

Dmitry Buzdin
Educational background
B.sc. in computer science, 2005
M.sc. in computer science, 2007
Work experience
Software Developer, 2005 – 2006
Software Architect, C.T.Co Ltd., 2006 – now
Past research interests: modelling languages, design patterns, object-oriented
programming. Current research interests: domain-specific languages, code
generation, model transformation.
E-mail: buzdin@gmail.com

Oksana Nikiforova received the doctoral degree in information technologies
(system analysis, modelling and design) from Riga Technical University,
Latvia, in 2001.
She is presently a Full Professor at the Department of Applied Computer
Science, Riga Technical University, where she has been on the faculty since
1999. Her current research interests include the object-oriented system
analysis and modelling, especially the issues in the framework of Model
Driven Software Development (MDSD). She has published extensively in
these areas and has been awarded several grants. She has participated and
managed several research projects related to the system modelling, analysis
and design, as well as participated in several industrial software development
projects.
She is a member of RTU Academic Assembly, Council of the Faculty of
Computer Science and Information Technology, RTU Publishing Board, RTU
Scientific Journal Editorial Board, etc. She is a co-chair of workshops focused
on MDSD – MDA 2009 in conjunction with ADBIS, MDA&MTDD 2010 and
MDA&MDSD 2011 in conjunction with ENASE. She was awarded as RTU
Young Scientist of the Year 2009.
E-mail: oksana.nikiforova@rtu.lv

