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GENERAL DESCRIPTION OF THE THESIS 

Research motivation 
The topicality of the research is related to the priorities within supply chain 

management field raised in the European Commission 6th and 7th framework 
programmes. They cover moving from recourse-based approaches towards more 
knowledge-based ones and integration of European companies in global supply 
and distribution networks with the aim to serve regional markets efficiently and 
to achieve cost-optimal production and logistic processes in the future [29,30]. 
Fast globalisation of the European and world market leads to the deeper 
investigation of the global supply chain management issues. Furthermore, it is 
necessary to consider optimality in processes for each supply chain node. 
Effective planning of the supply chain is the possible solution to achieve 
proposed requirements. 

Traditionally, cyclic and non-cyclic methods are used in the planning 
process of complex systems like supply chains. However, the utilisation 
conditions and optimality of the methods have not been thoroughly investigated 
in multi-echelon supply chains within product life cycle and under uncertainty. 
Simulation as a technique provides new opportunities for solving that problem. 
Furthermore, there is a lack of simulation-based procedure for optimality 
evaluation of supply chain planning methods in scientific literature. The 
aforementioned aspects emphasize the importance of: 

• improvement of complex systems planning process within product life 
cycle and under uncertainty; 

• extended analysis and choice of the planning methods, their optimality 
introduction and investigation; 

• analysis of simulation utilisation in multi-echelon supply chain planning 
tasks.  

The goal and the tasks of the thesis 
The thesis is aimed at developing simulation-based optimality evaluation 

procedure for multi-echelon supply chain planning methods under uncertain 
conditions. To achieve this goal, the following tasks are specified: 

1. To analyse the utilisation of planning approach and methods in supply 
chains under uncertain conditions. 

2. To investigate the essence of optimality gap within supply chain planning 
and management tasks.   

3. To analyse general and simulation-based methods of alternative 
comparison.  

4. To develop simulation-based supply chain planning procedure and 
switching algorithm within product life cycle. 

5. To analyse input data modelling methods for supply chain planning tasks 
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solving, as well as determine factors that influence optimality of planning 
policies. 

6. To apply the developed procedure in solving multi-echelon supply chain 
cyclic planning problem. 

The object and the subject of the research 
The object of the research is multi-echelon supply chain planning methods 

and policies used in the stochastic environment with customer nondeterministic 
demand as the main factor of uncertainty.   

The subject of the research is the simulation-based comparison methods of 
planning policies and possibility of optimality estimation. 

Research methods 
The theoretical research is based on the analysis of scientific literature to 

investigate the preferences of supply chain planning policies and their comparison 
possibilities. Theoretical results are achieved using methods of inventory 
planning, mathematical statistics and probability theory. Supply chain cyclic and 
non-cyclic planning methods and discrete-event simulation are used within 
practical research realisation.  

Scientific novelty 
The scientific novelty of the thesis is as follows: 

1. Optimality evaluation procedure is developed. It is aimed at analysis of 
multi-echelon supply chain planning methods in stochastic environment. 
Initially, optimality interval utilisation is analysed within the areas of 
information technology and supply chain management.  

2. Simulation-based switching algorithm for supply chain planning methods 
based on their comparison is developed. It is applied in real supply chain 
planning problem and allows smooth switching from one planning policy 
to another within product life cycle.  

3. The production rules that determine conformable planning policy are 
generated, according to the results of optimality estimation procedure. 

In parallel with the main scientific novelty after analysing and solving the gaps 
determined during research, other scientific outcomes are as follows: 

1. Modelling methods of stochastic demand are investigated to work with a 
wide range of demand variability.  

2. Simulation-based methods of statistical comparison of alternatives based 
on confidence intervals are analysed. 

3. Sensitivity analysis of the factors influencing supply chain performance 
measures is performed to run simulation experiments and create 
production rules. 
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Practical value 
Simulation-based optimality evaluation procedure for multi-echelon supply 

chain planning methods is developed and supports the algorithm of the switching 
moment determination. The algorithm execution allows improving of supply 
chain planning process.  

The developed procedure is applied in business case study in order to 
determine a switching point between planning methods after maturity phase of 
the product life cycle has started.  

Approbation of the obtained results 
The results of the thesis have been presented at eight international scientific 

conferences: 
1. International Conference “12th International Conference on Computer 

Modelling and Simulation” (UKsim’2010), Cambridge, Great Britain, 
March 24-26, 2010. 

2. International Conference “1st International Conference on Intelligent 
Systems, Modelling and Simulation” (ISMS’2010), Liverpool, Great 
Britain, January 27-29, 2010. 

3. RTU 50th International Scientific Conference, Section “Information 
Technology and Management Science”, Riga, Latvia, October 12-16, 
2009. 

4. International Conference “7th WSEAS International Conference on 
System Science and Simulation in Engineering” (ICOSSSE’2008), 
Venice, Italy, November 21-23, 2008. 

5. RTU 49th International Scientific Conference, Section “Information 
Technology and Management Science”, Riga, Latvia, October 13-15, 
2008. 

6. International Conference “10th International Conference on Computer 
Modelling and Simulation” (EUROSIM/UKsim’2008), Cambridge, Great 
Britain, April 1-3, 2008. 

7. RTU 48th International Scientific Conference, Section “Information 
Technology and Management Science”, Riga, Latvia, October 11-13, 
2007. 

8. International Conference “6th International Conference on Production 
Engineering” (PE’2008). Wroclaw, Poland, December 7-8, 2006. 
 

The results have been reported in eight scientific papers in scientific 
proceedings of international conferences: 

1. Merkuryeva, G., Vecherinska, O. Simulation-based Comparison: An 
Overview and Case Study// The 12th International Conference on 
Computer Modelling and Simulation (UKsim’2010). – Los Alamitos: 
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IEEE Conference Publication Service, March 24-26, 2010. – p.186-190 
(IEEE CS Digital Library, Scopus, Compendex).   

2. Merkuryeva, G., Vecherinska, O. Randomness modelling in supply chain 
simulation// The 1st International Conference on Intelligent Systems, 
Modelling and Simulation (ISMS’2010). – Los Alamitos: IEEE 
Conference Publication Service, January 27-29, 2010. – p.128-133 (IEEE 
CS Digital Library, Scopus, Compendex). 

3. Merkuryeva, G., Vecherinska, O., Hatem, J. Statistical input data analysis 
for supply chain simulation// RTU 50th International Scientific 
Conference. – Riga: Publishing House of RTU, October 12-16, 2009. – 
p.33.-38 (EBSCO, CSA/ProQuest, VINITI RAN). 

4. Merkuryeva, G., Napalkova, L., Vecherinska, O. Simulation-Based 
Analysis and Optimisation of Planning Policies over the Product Life 
Cycle within the Entire Supply Chain// The 13th IFAC Symposium on 
Information Control Problems in Manufacturing. – Oxford: “IFAC 
Publishers”, June 3-5, 2009. – p.580-585 IFAC-PapersOnLine. 

5. Merkuryeva, G., Vecherinska, O. Development of Simulation-Based 
Switching Algorithm for Inventory Management in Multi-Echelon Supply 
Chain// The 7th WSEAS International Conference on System Science and 
Simulation in Engineering. – Venice: WSEAS Press, November 21-23, 
2008.– p.399-404. 

6. Merkuryeva, G., Vecherinska, O. Simulation-Based Approach for 
Comparison of (s, Q) and (R, S) Replenishment Policies Utilization 
Efficiency in Multi-echelon Supply Chains// The 10th International 
Conference on Computer Modelling and Simulation 
(EUROSIM/UKSim’2008). – Cambridge: IEEE Computer Society, April 
1-3, 2008. – p.434-440 (Scopus, Compendex, CS Digital Library). 

7. Merkuryeva, G., Vecherinska, O. Simulation-based Analysis of 
Optimality Gap Between Replenishment Policies in Supply Chains// RTU 
48th International Scientific Conference. – Riga: Publishing House of 
RTU, October 11-13, 2007. – p.41-49 (EBSCO, CSA/ProQuest, VINITI 
RAN). 

8. Merkuryeva, G., Timmermans, S., Vecherinska, O. Evaluating the 
‘Optimality Gap’ between Cyclic and Non-cyclic Planning Policies in 
Supply Chains// The 6th International Conference on Production 
Engineering (PE’2006). – Wroclaw: Publishing House of Wroclaw 
University of Technology, December 7-8, 2006. – p.155-162 (CiteSeerX). 

 
The obtained results have been utilised within the following research projects: 
1) Specific targeted research project NMP2‐CT‐2006‐032378 ECLIPS 

“Extended Collaborative Integrated Life Cycle Supply Chain Planning 
System” of the EU funded Sixth Framework Programme. RTU 
coordinator and leader: Dr.habil.sc.ing., Prof. Y. Merkuryev. 2006 - 2009. 
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2)  “Simulation-based optimisation using computational intelligence” (a 
research grant from the Latvian Council of Science). Project leader: 
Dr.habil.sc.ing., Prof. Y. Merkuryev. 2009 - 2012. 

 
The scientific importance of the procedure and algorithm developed in the 

doctoral thesis is approved by the Certificate of Significant Academic 
Contribution issued by MÖBIUS Ltd. in the scope of the task “Switching 
methodology based on a set of supply chain parameters” within the ECLIPS 
project. Within this project the author of the thesis has participated with 
presentations at ten workshops in Riga, Gent, Paris and Brno and is a co-author 
of three deliverables. 

Structure of the thesis 
The doctoral thesis consists of introduction, 5 chapters, conclusions, 

bibliography and 1 appendix. The thesis contains 143 pages, 43 figures and 20 
tables. The bibliography contains 113 entries. The thesis is structured as 
follows: 

Introduction motivates the research, formulates the research aim and tasks, 
defines the research object and subject, describes research methods used in the 
thesis, and explains scientific novelty, practical use and approbation of the 
thesis. 

Chapter 1 “Analysis of the supply chain planning process under 
uncertain conditions” discusses the planning task within supply chain 
management under uncertainty. Planning processes and their models are 
analysed as well. An overview of the planning methods for complex systems 
and simulation-based planning possibilities is provided. The problem of 
planning methods analysis within product life cycle is formulated with the 
possibility of performing switching between different planning alternatives.  

Chapter 2 “Optimality analysis within supply chain planning” analyses 
the concept of optimality gap and describes its essence. As a result, optimality 
gap concept is introduced within the analysed problem. The characteristic of the 
main effects of the influencing factors is discussed. The optimality estimation 
approach is proposed for simulation of planning policies for multi-echelon 
supply chain. The simulation-based alternative comparison methods are 
analysed; the analysis is supplemented with a case study of statistical 
comparison methods utilisation in a planning task.  

Chapter 3 “Development of the two-phase supply chain planning 
procedure” introduces the simulation-based procedure for optimality gap analysis 
between cyclic and non-cyclic planning methods that combine several phases 
within themselves. Switching algorithm based on the analysis of the confidence 
interval is executed within the procedure introduced. Besides, the input data 
analysis and their utilisation possibilities within simulation are discussed, in order 
to choose an appropriate approach to modelling the normally distributed demand.  
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 Chapter 4 „Sensitivity analysis algorithm within the task” overviews the 
sensitivity analysis concept and overall technology to define the simulation based 
problem within research task. Moreover, optimality gap analysis procedure is 
extended with sensitivity analysis phase. The implementation of the simulation-
based sensitivity analysis allows one to determine the possible values of the 
influencing factors, at which the opportunity to change the planning alternatives 
has to be analysed. This provides the switching rule introduction.   

Chapter 5 „Approbation of the developed procedure on multi-echelon 
supply chain model” presents the developed procedure and algorithm 
approbation on supply chain planning problem solving. Here, the three-echelon 
supply chain and business cases are analysed based on the supply chain of 
chemical industrial company. The actual results of the procedure, as well as 
improvement possibilities are analysed.  

Results and conclusions of the thesis  
Bibliography 
Appendixes 
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SUMMARY OF THESIS CHAPTERS 
Chapter 1. Analysis of the supply chain planning process under uncertain 
conditions  

Chapter 1 presents an overview of materials that cover thesis investigation 
areas and analysis of the main problems. Here, the solving of planning problem 
in supply chain management under uncertainty is emphasized, planning and 
management process is described, and simulation-based planning possibilities 
are discussed. Planning approaches and methods are overviewed based on the 
product life cycle, and research problem is formulated.  

In the chapter, a supply chain is defined as a complex system that has four 
characteristic features: integrity, divisibility, relations between elements and 
their organisation. The changes within one of the supply chain elements affect 
the whole supply chain and impact the inventory of materials and products, as 
well as supply chain total costs and service level. Supply chain complexity 
mainly is influenced by the number of echelons, the number of elements in each 
echelon, structure of the material and information flows, as well as by 
integration level and information availability and management mentioned in 
various researches [4, 12, 19]. The goal of any supply chain is to create suitable 
flexible environment for a company in order to respond to the alterations of 
customers’ desires. These problems are solved within one of supply chain 
management branch – supply chain planning. Planning processes and their 
decisions in supply chains can be divided according to the: 

• length of planning horizon – operational, tactical and strategic planning; 
• investments profitability; 
• plan implementation complexity; 
• functional features of planning tasks – material, production, distribution 

and sales planning; 
• forms of collaborative planning – vertical and horizontal control 

coordination; 
• direction of planning processes – upstream and downstream planning.  

In Fig. 1 the appropriate planning processes are connected to the main 
stages of supply chain, i.e. procurement, production, distribution and sales - that 
are linked to the factors described above as well. The strategic planning aspects 
were not taken into account during this research, the emphasis is put on the 
tactical planning and its management.       

According to the existing planning processes in supply chain the new 
approaches need to be developed and used in order to facilitate and improve 
planning processes in the specific supply chain. Researches in this field are 
based on the specified models development and analysis using appropriate 
methods, i.e.: 
• Analytical models concern dynamic and stochastic environments, and 
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usually are presented by Markov chains, Petri nets or queueing models. 
• Simulation models provide an analysis of complex dynamic and stochastic 

processes. 
• Optimisation models are mostly deterministic, i.e. MILP, optimisation 

algorithms using computational intelligence and metaheuristics. 
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Figure 1. Planning processes in supply chain 
Supply chain is a dynamic system, where regular changes of the processes 

influence both the entire set of actions in supply chain and its planning and 
improvement. Sources of uncertainty involve all types of nondeterministic 
constrains, changes and fluctuations in supply chain internal and external 
processes. Researches that cover investigation of production and inventory 
management systems analyse different sources of uncertainty, i.e. customer 
demand, lead and production times, processes’ quality and profit [20]. But the 
changes in products and technologies on the market appear with growing speed, 
less information is analysed during planning process, which, as a result, causes 
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more penalties [10]. Additionally, uncertain lead time of the processes due to 
production idle time and product defects is investigated [31].  

Supply chain is described as a large scale system with hierarchical decision 
structure, different input data and operations randomness, as well as dynamic 
interaction between its elements where the modelling methodology is useful for 
decision making in supply chain. This methodology enables to design supply 
chains with higher performance and identify and implement innovations in 
management strategies [21].        

The utilisation of the analytical models in comparison with simulation ones 
makes difficult or impossible solving the problems of multi-echelon supply 
chain, complex systems and large queuing models. Usually, analytical 
techniques are used under conditions of dynamic and deterministic demand, but 
simulation provides a test environment for analytical solutions and allows 
modelling and optimising planning decisions under demand variability and 
uncertain conditions. These are commonly known benefits associated with 
simulation technology, e.g.: 

• Simulation and optimisation possibilities for complex systems with 
stochastic elements.  

• Possibility of alternative systems comparison with the aim to find 
appropriate solution. 

• Possibility to tend toward improving of system understanding by 
analysing interaction of system functions. 

Four simulation types for supply chain analysis: system dynamics, 
spreadsheet simulation, discrete-event dynamic systems simulation and business 
games – are distinguished within supply chain simulation area [14]. Different 
researches have concluded [1, 16] that discrete-event systems simulation is 
powerful tool to work with complex stochastic systems. A combination of 
simulation technique and spreadsheets is used to define supply chain model 
structure and the values of parameters. 

Within the thesis, the simulation technique is used to analyse and compare 
multi-echelon supply chain planning methods in the inventory management 
context and within product life cycle. During the product life cycle the time 
moments when transitions between phases take place are called switching 
points. The variability of product demand defines the product life cycle separate 
phases, as well as switching point from one life cycle phase to another, 
accordingly from one planning policy to another (see Fig.2). Importantly, supply 
chain product demand is dynamic and variable; however it is stable during 
maturity phase of the product life cycle.                 
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Figure 2. Switching points based on product life cycle 
Within product life cycle supply chain planning is based on the continuous 

review and periodic review policies that have non-cyclic and cyclic behaviour 
accordingly. In case of cyclic planning, further POR, that is used during stable 
demand (Fig.2.), the constant order intervals are implemented for all product 
units, parameters Ri – cycle length and Si – maximal stock level are determined. 
But, in non-cyclic planning (further ROP), order intervals are variable within 
planning horizon and for constant parameters si – re-order point and Qi – order 
quantity. In this case, the fixed inventory level is determined by taking into 
account product demand changes. This triggers constant order initialisation for 
inventory replenishment, and the order time varies. When the stock level 
reaches the fixed point reorder level (si), a replenishment order is placed. Here, 
order quantity (Qi) is fixed. LT denotes the lead time interval starting with order 
initialization and finishing with order arriving and stock level increasing by Qi. T 
represents the time period between orders, whose length varies from one cycle 
to another for this system [27]. 

In the supply chain planning process, only one, cyclic or non-cyclic plan, is 
typically implemented in supply chain stages, both production and inventory. 
The cyclic planning methods can be defined as subset of non-cyclic methods, 
where cyclic one is determined as non-optimal. Its total costs are higher than 
total costs of non-cyclic plan. From the management point of view, the cyclic 
plan is preferred when the non-cyclic one has more complex realisation that can 
be less effective in practice. In Fig. 3 the possible dynamics of the costs changes 
based on the product demand is presented, where non-cyclic costs are depicted 
with straight lines, but cyclic costs – with striped ones. By planning cyclically, 
the long-term benefits are highlighted and reached if demand variability is 
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insignificant. The benefits can exceed inventory and setup costs minimisation by 
reducing handling cost and time, planning and administration costs, buffer 
inventories, as well as the complexity of the detailed planning [7].  
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Figure 3. Costs change dynamics depending on the product life cycle and 
demand 

After evaluation of all aspects analysed in this chapter: supply chain 
complexity and its management tendencies, different sources of uncertainty, 
product life cycle observation and features of planning methods – there is a need 
to create a procedure for optimal planning policy selection. The switching point 
has to be determined when it is possible to replace the multi-echelon non-cyclic 
planning with the cyclic one. It means that the developed procedure checks the 
possibility of using a cyclic plan within multi-echelon supply chain. 

The main conclusions are as follows: 
- the increase in supply chain planning process complexity within product 

life cycle shows the need of planning procedure improvement;     
- simulation model with its ability to analyse stochastic elements ensures 

holistic view on the supply chain and is able to present significant supply 
chain features especially in many echelons; 
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- switching between different planning methods is not analysed sufficiently 
and as a result has no algorithm that propose the mechanism for the 
evaluation of switching point between planning methods.        
 

Chapter 2. Optimality analysis within supply chain planning  
In Chapter 2 the optimality gap concept is analysed and its essence is 

described. As a result, it is introduced in the context of the described problem. 
Optimality gap is usually utilized in optimisation tasks (see Fig.4a). In mixed 
integer programming it means the difference between the best known solution 
and the worst example of the best possible solutions calculated as absolute or 
relative value [26]. In optimisation tasks, for example, sample average 
approximation method, optimality gap is used as a termination point for the 
optimal solution searching algorithm [15, 25]. In the linear programming this 
concept is utilized in the sensitivity analysis of models in order to define the 
intervals of the equation coefficients values whose changes do not influence 
found optimal solution [28]. Optimality gap is used in the model validation to 
estimate the solution quality and approve that provided solution is an 
appropriate candidate for optimal solution.  

In the thesis, optimality gap is the ratio of the investigated alternatives – 
planning methods – estimations that determines the difference and significance 
of the compared alternatives (see fig.4b). 

Additional costs of cyclic solutions or ACCS criterion [6] is introduced in 
order to compare supply chain cyclic and non-cyclic planning methods. ACCS is 
determined as a relative ratio between total costs of POR and ROP cases, 
i.e. 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃  and 𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅 :  

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃 −𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅
𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅

 (1) 

Based on the theoretical comparison and previous researches, the ACCS is 
characterised with positive values.    

The following performance measures are used to compare planning 
alternatives: 

• ACCS average value and its confidence interval;  
• The averages and variances of the cyclic and non-cyclic solution cost; 
• The confidence interval of the costs difference between solutions. 

Simulation-based experiments approve the critical importance of the 
coefficient of demand variation (CODVAR) and its affect on additional costs of 
cyclic planning solution [23]. The coefficient is defined as a ratio between 
demand standard deviation 𝑠𝑠𝑖𝑖  and average demand  𝑥̅𝑥𝑖𝑖  of the product i estimated 
in percentage:  

 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖  % = 𝑠𝑠𝑖𝑖
𝑥𝑥̅𝑖𝑖
∗ 100% (2) 
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The more customer demand fluctuates, the more coefficient of demand 
variation increases. In situations like that, the benefit of non-cyclic planning 
appears – a more flexible planning than using the cyclic one. 
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Figure 4. The interpretation of the optimality gap within optimisation 
tasks (a) and comparison of planning alternatives (b) 

 
In the thesis the set of the factors’ significant effects is analysed that 

influences the bounds of optimality gap, i.e. capacity utilization (CAP), number 
of supply chian echelons and periods, setup and lead times and different type of 
costs. A detailed summary of practical researches [5, 6, 7, 8] that describes 
different  factors and the significant effects of their interaction is given in 
Table 1.     

Table 1 
Characteristic of the factors significant effects  

Effect Factors Description of effects 

M
ai

n 
ef

fe
ct

s CODVAR ACCS increases as CODVAR increases because of the reduction 
of non-cyclic solution costs.  

CAP Higher capacity utilization results in larger ACCS values.  
The effect is less strong than that of CODVAR for ACCS. 

In
te

ra
ct

io
n 

ef
fe

ct
s CODVAR and CAP 

 

Higher CAP makes stronger CODVAR effect to ACCS. Both 
factors combination makes it difficult to determine a solution 
close to lower bound.  

Setup time and 
CAP 

Lower setup times have the effect similar to higher levels of 
CAP. The effect of setup times is greater at the higher CAP 
level.  

CODVAR and time 
between orders 

The larger order intervals at small CODVAR result in lower 
ACCS values.  

C
om

bi
ne

d 
ef

fe
ct

s Ordering cost, 
holding cost and 

CODVAR 

The interaction effect of ordering cost and holding cost becomes 
more significant with the increase of CODVAR that results in the 
increase ofACCS value.  

An analysis of the existed researches shows that comparison and choice of 
planning policies previously was applied for production planning in one-echelon 
supply chains by different heuristics utilisation. 
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To determine the efficiency of any planning policy or method, in the thesis 
different techniques are grouped in four general approaches, i.e. theoretical 
optimality proof by costs comparison, optimality evaluation from the 
complexity perspectives, optimality evaluation by implementation guaranty, and 
optimality evaluation through simulation experiments. Theoretical optimality 
proof supposes [3, 7, 9, 23, 24] existence of the lower bound of average cost 
over feasible policies used to determine the best solution. Optimality evaluation 
from the complexity perspectives is based on estimation of the number of 
iterations or computational times [2, 22, 23] of solving method. Additionally, 
expert conclusions are used to compare the alternatives [23, 24]. But, 
simulation-based experiments allow planning alternatives estimating and 
decision about appropriate policy implementation in conditions of demand 
variability and other uncertainties that are closely related to the multi-echelon 
supply chain dynamics and its stochastic performance. Moreover, simulation-
based sensitivity analysis allows learning possible effects of supply chain 
factors on optimality gap influencing.  

Here, optimality estimation apporach is based on the supply chain 
simulation using alternative planning methods (see, Fig.5), designed to receive 
performance measures estimates at different values of input parameters and 
factors. The comparison of planning alternatives is presented in separate step as 
significant and decisive for optimality gap estimation.     

Simulation model of 
alternative 1 

Simulation model of 
alternative 2 

Comparison 
of planning 
alternatives

Planning alternative 1 A set of performance 
measures

Estimation of
optimality gap 

Planning alternative 2

A set of input parameters

A set of input parameters

A set of influenced 
factors 

A set of performance 
measures

 
Figure 5. Simulation-based optimality gap estimation    

Three sets of methods for simulation-based comparison of alternatives are 
analysed in the research, i.e., simple comparative analysis, graphical comparison 
and statistical comparison [18]. Statistical comparison methods, i.e. hypothesis 
tests and confidence intervals, are used under uncertainty. Both methods 
combination provides an objective comparison of the models performance 
measures. The difference between average values of performance measures is 
estimated by confidence interval, but alternative statistical hypotheses are used 
to check the significance of the estimated difference. For example, if the 
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estimated confidence interval with assumed level of confidence includes zero 
value, the conclusion about non-significant difference between average values 
of the analysed alternatives is made (see Fig.6a). 

a)

b)

c)

µPOR-µROP = 0

determined congidence interval  
 

Figure 6. The position of confidence interval regarding zero point 

Moreover, the confidence interval and its quantitative bounds characterize 
the uncertainty of modelling outcomes. It is desirable to have a small interval 
with high confidence that ensures more useful and meaningful models 
comparison. The width of the confidence interval with a given level of 
confidence is affected by the number of observations and the output data 
variance. Variance reduction techniques are used to reduce the width of the 
confidence interval within simulation [16]. 

Two statistical techniques are used for simulation of comparable systems 
[13]: independent sampling and correlated sampling, where the second method 
is also called the CRN (common random number) method. In the last case the 
equal string of random numbers is used to simulate both systems within one 
replication. In practise, the utilisation of this technique decreases the variation of 
the estimated difference and provides an accurate estimation of the difference 
value at the defined sample size.   

Methods based on the confidence interval estimation for statistical 
comparison of two alternatives, i.e. Welch and pared-t confidence intervals, 
require the independence of the model outputs between alternative samples and 
normally distributed data within each sample. When using the paired-t method, 
the analysed samples cannot be independent, but equal sizes of both samples are 
required. The utilisation of the common random numbers is possible. But, 
Welch method allows working with different sizes of samples with an 
assumption that there is no correlation between output data of planning 
alternatives. The number of degrees of freedom and their calculation process 
differs for these methods.     

In the case of planning alternatives comparison, the confidence interval 
between the two means of the average total costs at the defined level of 
significance 𝛼𝛼 is  
 P[(𝑥̅𝑥POR − 𝑥̅𝑥ROP ) − hw ≤ μPOR  − μROP  ≤ (𝑥̅𝑥POR − 𝑥̅𝑥ROP ) + hw] = 1 − α, (3) 

where (μPOR  − μROP  ) - the difference between mean values of total costs 
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of the alternatives; (𝑥̅𝑥POR − 𝑥̅𝑥ROP ) - the difference between average values of 
total costs of the alternatives; hw - the half-width of the confidence interval.  

Here, half-width hw of the paired-t confidence interval is calculated by 
formula (4):  

 ℎ𝑤𝑤 = t(n−1,α /2)∗𝑠𝑠(POR −ROP )

√n
, (4)  

where s(POR −ROP ) - standard deviation for average total costs difference that 
estimates true standard deviation σ(POR −ROP ); n - the number of replications; 
t(n−1,α/2) – Student’s t distribution value for α/2 level of significance and degree 
of freedom n-1; 

But, half-width hw of Welch confidence interval is calculated by 
formulae (5): 

 ℎ𝑤𝑤 = t �df ,α/2 ��
sPOR

2

NPOR
+ sROP

2

NROP
, (5)  

where df - degree of freedom, NPOR un NROP - the number of replications for 
comparative POR and ROP planning alternatives and  sPOR

2  un sROP
2 −

 corresponding sample variance. 
A case study is done to investigate the utilisation of statistical comparison 

methods for planning alternatives analysis, where three-echelon supply chain is 
simulated using cyclic and non-cyclic planning methods (Fig.7).  

DS1 S2 S3P1 P2 P3S0

 

Figure 7. The structure of simulated supply chain 

The coefficient of demand variation is set as follows CODvar=30%. The 
performance measure is average total costs of period. 20 simulation replications 
are performed for each alternative. The level of significance is set as α = 0,05. 
The paired-t confidence interval method, Welch confidence interval method 
with equal and unequal samples sizes, as well as t-test for comparison of 
averages of two independent samples are employed. Relative standard error 
values of both samples are 𝑠𝑠𝑥𝑥̅%𝑃𝑃𝑃𝑃𝑃𝑃 = 0,18%  and 𝑠𝑠𝑥𝑥̅%𝑅𝑅𝑅𝑅𝑅𝑅 = 0,35%, which 
shows the appropriate accuracy of analysed data. The critical and de facto 
values of the t-test are tcrit = 2.05 and tfact = 17.41, accordingly. As tfact > tcrit, the 
difference between period average costs values of planning alternatives is 
determined as significant. The same conclusion is made after confidence 
interval methods utilisation, based on hypotheses testing and confidence interval 
of analysed alternatives costs difference estimating. At the equal samples sizes, 
the length of the paired-t confidence interval is smaller (see Table 2). 
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           Table 2 
Numerical estimates of the case study  

 
The confidence interval methods are useful for estimation and comparison 

of performance measures of supply chain planning methods based on 
simulation. The common random number implementation and equal samples 
sizes limit the choice of the possible confidence interval to use. 

The main conclusions are as follows: 
- ACCS criterion is applicable for estimating the difference between costs of 

cyclic and non-cyclic methods. This ratio is defined as optimality gap;   
- external factors and parameters influence the difference of performance 

measures. The choice of planning method can be made to realise based on 
the factors and parameters changeable values as a decision making critical 
point;   

- simulation provides an opportunity to make a decision about 
implementation of certain planning method based on the hypotheses testing 
according to the confidence interval calculation. The paired-t confidence 
interval method is defined as appropriate for utilisation within the 
discussed problem.    
 

Chapter 3. Development of the two-phase supply chain planning procedure  
In this chapter the procedure for optimality gap analysis between cyclic and 

non-cyclic planning policies is described. The developed procedure consists of 
these steps: 

• presimulation quantitative analysis of parameters and external factors of 
planning alternatives, i.e. cyclic and non-cyclic plan; 

• simulation of supply chains with alternative plans; 
• analysis of the simulation models performance measures; 
• decision making about efficient policy utilisation; 
• production rule generation to support planning decisions. 
In the presimulation step, the values of simulation initialisation and models 

influencing factors and input parameters are determined by analytical-quantitative 
calculus utilisation. The parameters of the cyclic and non-cyclic alternatives are 
calculated in order to determine safety stocks at the desired service level. 
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Simulation warm-up period and the number of replications are taken into account 
to adjust the accuracy of models and to work with confidence intervals.  

Simulation is used as an experimental approach in the task of planning 
alternatives comparison. In parallel, models of the cyclic and non-cyclic planning 
are run that have previously defined performance measures as an output. 

A comparative analysis of the results is performed after simulation. ACCS 
criterion estimates indicate practical effectiveness of the alternative plans and 
preferable switching moment from one plan to another.  Inventory levels and 
reached service levels of planning policies are analysed within this step as well. 
As a result, decision about preferable planning alternative is made.    

The aim of production rules is to control planning processes of product life 
cycle based on the set of supply chain influencing parameters values. The sets of 
analysed factors values are combined to scenarios. The defined set of production 
rules forms the switching rule that allows automatically selecting the appropriate 
planning alternative within predefined scenarios.     
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Figure 8. Simulation-based procedure of optimality gap analysis 
 
The research procedure (Fig.8) of the optimality gap analysis provides: (1) a 

set of simulation initialisation parameters and models input parameters definition; 
(2) a set of influenced factors scenarios definition; (3) simulation of the 
alternative models at the determined values of parameters and factors; (4) a 
comparative analysis of performance measures using confidence interval method; 
(5) analysis of ACCS criterion value and its change; (6) choice of the 
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recommended planning method; (7) production rule definition and adjusting. 

Estimates of models 
performance measures

Presimulation step:

Supply chain simulation 
models with alternative 
planning methods realisation

 significance 
level α  

Paired-t confidence interval for 
two planning methods comparison

    Mean cost difference interval µ(POR-ROP) 
belongs to confidence interval

ROP policy

ACCScr value

ACCS ≤ ACCScr ? 

+ -

Phase 2:
ACCS analysis

POR policy

Phase 1: 
Comparison 
of planning alternatives 

POR policyPOR policy

Models influenced factors
Simulation inicialisation parameters   
Models input parameters

 
Figure 9. Two-phase switching algorithm 

Furthermore, a comparative analysis of the simulation models performance 
measures and choice of the planning methods are made by, the so-called 
switching algorithm (see Fig.9.).  Against the point estimation, the paired-t 
confidence interval is used to estimate the difference between sample means of 
alternative plans performance measures. By analysing the paired-t confidence 
interval value, the defined hypotheses about non-significant difference between 
alternatives are assumed or rejected. If the hypothesis is not rejected, the cyclic 
plan is chosen. Otherwise, if the hypothesis about two alternatives non-significant 
difference at the defined level of significance is rejected, but confidence interval 
is situated on axle’s right side according to zero (see Fig.6), ACCS analysis 
compares it with ACCScr values and performs the choice of appropriate 
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alternative. Here, ACCScr determine the relative difference that according to 
expert opinion is considered optimal. For example, in literature it is defined as 
ACCScr = 4.7% [7].   

In practice, CRN utilisation and relative standard error estimation limit the 
large variation of models output data sets [16]. When the confidence interval 
contains zero value, the analysis of ratio between interval negative and positive 
parts is preferable. It allows a deeper analysis of the decision about cyclic plan 
implementation, if the alternative difference is non-significant. The valid hwcr 
value determines the allowed variance from average value of the difference and is 
defined as ℎ𝑤𝑤𝑐𝑐𝑐𝑐 = 𝑘𝑘 ∗ (𝑥̅𝑥𝑃𝑃𝑂𝑂𝑂𝑂−𝑅𝑅𝑅𝑅𝑅𝑅), where coefficient k=1.05. For the further 
analysis criterion A is introduced: 

 𝐴𝐴 = �𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛 �
𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝 −𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛

∗ 100%,  (6) 

where aneg – maximal negative value of confidence interval, apos  – maximal 
positive value of confidence interval. 

No difference exists between cyclic and non-cyclic methods when the 
confidence interval is symmetric to zero value and, accordingly, A = 50%. The 
smallest relative difference is estimated, the largest part of the interval lies in the 
positive side. It means that the probability that cyclic costs outperform non-
cyclic ones increases. 

Within the procedure of the optimality gap analysis, i.e. in calculus of 
ACCS and paired-t confidence interval, normally distributed demand is 
assumed. Moreover, the fluctuations of the demand from inessential to decision 
influenced are taken into account, which leads to the obtaining of demand 
negative values in the distribution generation phase. This requires an analysis of 
the input data modelling approaches and methods with the aim to choose 
suitable method within simulation modelling under uncertain conditions. A 
comparison of input data modelling methods based on simulation researches 
context and input data availability is given in Table 3.        

Table 3 
Comparison of the input data modelling methods  

Method Advantages Disadvantages 
Theoretical 
distribution 
choice 

Data representation in compact mode. 
Smoothing of sample data. Generation 
of the values outside a sample range. 

No theoretical distribution fits a sample data. 
 

Empirical 
distribution 
construction  
 

Utilisation when no theoretical 
distribution fits the data. 

Irregular distribution composition for small 
data samples. Impossible generation of values 
outside the range of data. Inconvenience to 
incorporate large data set in simulation. 

Trace data 
utilisation 

Efficiency in model validation. Reproduction of only historical behaviour. 

Bootstrapping Usefulness for a small sample of data. Data outside the range of the trace generation 
impossibility. 

Expert 
estimations 

Utilisation when input data points are 
not available. 

Lack of accuracy. 
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Within the research, the normal distribution is used, based on the customer 
demand historical data analysis. If the coefficient of demand variation is 
sufficiently large (e.g. CODVAR=1), the random generation of the demand 
negative value does not allow to correctly use normal distribution for customer 
demand generation in simulation model. To deal with normally distributed 
demand within the research, the following techniques are investigated [17]: 

• iterative transformation of normally distributed demand, 
• introducing truncated normal distribution, and 
• utilisation of alternative distribution. 

Iterative transformation of normally distributed demand that exclude 
receiving of the demand negative values is made by this formula (Ms EXCEL):  

 𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑖𝑖−2 + 𝑥𝑥𝑖𝑖−2 ∗
𝑥𝑥𝑖𝑖−2
𝜇𝜇
∗ (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥𝑖𝑖−2 − 𝑥̅𝑥𝑖𝑖−2) ∗ ( 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖−2
− 1)),  (7) 

where 𝑥𝑥𝑖𝑖  and 𝑥𝑥𝑖𝑖�  –the point estimate of the demand transformed distribution and 
its average value in iteration i, accordingly; µ – mean value of the normally 
distributed demand; 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖−2 – coefficient of demand 
variation, accordingly, for normal and transformed in the iteration i-2 
distribution. The received average and standard deviation values of the 
iteratively transformed distribution (Fig.10) match theoretical distribution, but at 
CODVAR=1 de facto value of χ2

de facto exceeds the critical value χ2
Crit, i.e. 

χ2
de facto > χ2

Crit. 

 
Figure 10. Probability density function of the transformed normal 

distribution with CODVAR = 1 

Truncated normal distribution parameters μ and σ are calculated in the 
MathCAD v.13 software using formulas (8) – (10): 
 𝜇𝜇𝑒𝑒 = 𝜇𝜇 + 𝑐𝑐𝑐𝑐 1

√2𝜋𝜋
𝑒𝑒𝑒𝑒𝑒𝑒⁡(− 1

2
(𝜇𝜇
𝜎𝜎

)2), (8) 

 𝜎𝜎𝑒𝑒2 = 𝜎𝜎2 − 𝜇𝜇𝑒𝑒(𝜇𝜇𝑒𝑒 − 𝜇𝜇), (9) 

 𝑐𝑐 = 1
1−𝛷𝛷(−𝜇𝜇𝜎𝜎)

, (10) 

where c – rationing multiplier; μ – sample mean of truncated normal distribution; 
μe – sample mean of initial normal distribution; σ2 – sample variance of truncated 
normal distribution; σe

2 – sample variance of initial normal distribution. The 
different values of the average and standard deviation for initial normally 
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distributed demand and truncated one are received. That is why, CODVAR values 
of the distributions are not equal. Probability density functions of two normal 
distributions with CODVAR equal to 0.5 and 1, and the truncated distribution are 
illustrated in Fig.11. Wasted area in the left from zero (i.e. truncated point) grows 
as the negative demand area of the normal distribution grows when the CODVAR 
tends towards 1 and more. In these cases, it could become impossible to find 
parameters for a corresponding truncated normal distribution. Moreover, the 
truncated normal distribution has to be constructed as an empirical distribution. 
This makes the input modelling phase time and capacity consuming.  

 
Figure 11. Probability density functions of normal distribution with 

different parameters representations 
 
Parameters μL and σL of alternative lognormal distribution [32] are calculated 

when the parameters μ and σ for normal distribution are known.  
 𝜇𝜇𝐿𝐿 = 𝑒𝑒𝜇𝜇+𝜎𝜎2 2� ; (11) 

 𝜎𝜎𝐿𝐿2 = 𝑒𝑒2𝜇𝜇+𝜎𝜎2(𝑒𝑒𝜎𝜎2 −1) .                      (12)  
But, formulas (X13) un (X14) allow calculating the values μ and σ for 

normal distribution, if the parameters of lognormal distribution μL and σL are 
known:  

 𝜇𝜇 = ln 𝜇𝜇L − (σ2/2) ;  (13)       

 𝜎𝜎 = �ln(1 + (σL/𝜇𝜇L)2). (14) 

The lognormal distribution can be chosen for modelling randomness in 
supply chains, because as a standard theoretical distribution commonly 
represented in simulation software, satisfies the normality condition and does not 
have the areas of negative values. But, lognormal distribution operates with small 
values of parameters, that is why the original normal distribution parameters need 
to be scaled and accordingly converted during simulation.  

The main conclusions are as follows: 
- provided procedure of the optimality gap analysis allow analysing of two 

planning alternatives in order to determine switching point between them;  
- switching rule supports the automatical decision making process based on 

the changes of influenced factors;    
- investigated iterative transformation of normally distributed demand 
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provides the unchangeable distribution parameters values and is assumed 
as more suitable for simulation as it helps to avoid generation of 
distribution negative values.  
 

Chapter 4. Sensitivity analysis algorithm within the task  
The character of the influencing factors changes is important in supply chain 

control within the product life cycle that influences the selection of implemented 
planning policies methods. Moreover, simulation based sensitivity analysis 
implementation in the developed procedure (Fig.8) and its realisation enables 
determining possible values of influenced factors which have to integrate in 
switching rules and to analyse the possibility of changing the planning policy.  

Within the research, the problem of sensitivity analysis is formulated as 
follows. The choice between two planning alternatives A = <Apor, Arop> has to be 
made by taking into account certain situations of selection and the features of 
planning alternatives. The set of different factors F = <f1,f2,...,fn > influences the 
advantage of one or another alternative in every situation. Two simulation models 
M = <Mpor, Mrop>are available to model planning policies and solutions. This 
provides the opportunity to calculate total average costs, ACCS and others criteria 
values that are define as performance measures of the simulation models K = 
<k1,k2,...,kn >. By determining the problem with input-output function, the input 
data vector F= [f1,f2,...,fn] accordingly influences output data vector 
K = [ k 1 , k 2 ,..., kn] =[k1(f1,f2,...,fn), k2(f1,f2,...fn),..., kn(f1, f2,..., fn)]. 

To provide sensitivity analysis, the investigated factors need to be 
determined to estimate the system reaction on the factors alteration. During 
investigation of the systems without analogues, all its input factors can be 
checked to determine the factors whose changes influence the values of 
performance measures. Within the research, an analysis of the factors influenced 
the supply chain planning policy choice is performed, where the set of analysed 
factors is created of the factors that have major influence within the researches of 
other specialists.  

The sensitivity analysis component and its collaboration with planning 
procedure phases are depicted on generalized scheme (see, Fig.12). The 
component of planning of experiments manages the experimental plan generation, 
if the set of influenced factors is not defined, and provides the input data during 
optimality gap analysis procedure realisation. In cases, when the set of possible 
performance measures influencing factors is not known, the OAT (one-at-time) 
method is implemented. This method utilisation allows determining the individual 
influence of each factor on the simulation model realisation. OAT method is used 
during optimality gap analysis procedure as well, where by changing each 
parameter with the predetermined step the switching rule is defined.  

The integration of this method with sensitivity indexes investigation allows 
estimating the system sensitivity to the changeable factors, analysing the 
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influence of factors between each other, ordering of the factors based on the 
sensitivity index, as well as extracting inessential factors. The used sensitivity 
index is calculated by formula [11]: 

 𝑆𝑆𝑆𝑆𝑓𝑓 = 𝐾𝐾𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 −𝐾𝐾𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝐾𝐾𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

, (15) 

where Kfmax and Kfmin are the models output values according to the maximal and 
minimal values of input factor.  

Sensitivity analysis of 
performance measures

Comparison 
of indexes 

Probability 
analysis

Comparison of 
performance measures of 

alternatives

Paired-t method 
for average total 

costs analysis

Planning of experiments

OAT method
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Alternative planning 
methods

Models 
created in 

ProModel env

Figure 12. A general scheme of sensitivity analysis for optimality gap 
analysis procedure  

Besides an analysis of indexes, the possibility of using probability indicators 
based on factors values is analysed in the research. This enables analysing each 
experiment within one set of factors values, to determine the probability of 
decision change as compared to the decision based on the analysis of all 
experiments within a separate set.       

To present sensitivity analysis, LHS (Latin Hypercube) method is 
approbated to estimate the set of influencing factors. This method is useful when 
the limitation on experimental time exists that directly is depended on experiment 
amount. This method allows covering the same range of the factors values by 
smaller amount of experiments comparing with OAT method. To achieve the goal 
of the research, i.e. to develop optimality gap analysis procedure and define 
production rules, it is hard to adjust and interpret the LHS received results for the 
investigated problem. That is why, the OAT method has to be used repeatedly.          

Based on the results of sensitivity analysis problem investigation, in the 
thesis the sensitivity analysis algorithm is developed in order to determine the set 
of influenced factors and scenarios. The utilisation of probability indicator of 
switching decision change is prescribed in the component of planning alternative 
choice, when the decision about used planning policy is made based on the 
particular values of the factors. If the set of influenced factors is known in the 
beginning, manipulations with the predefined set of factors are made within the 
sensitivity analysis component.  

The main conclusions are as follows: 
- sensitivity analysis unit is implemented in the scope of optimality gap 

analysis procedure to define a set of factors influencing the choice of 



28 
 

planning method; 
- the set of influenced factors and planning of the experiments realisation 

allows switching rule generation; 
- the OAT experimental planning method is suitable to achieve the aim of the 

optimality gap analysis procedure.  
 

Chapter 5. Approbation of the developed procedure on multi-echelon supply 
chain model  

The developed procedure is applied to the three-echelon supply chain 
model and the model of European chemical industrial company’s supply chain, 
where in parallel cyclic and non-cyclic submodels are run (see, Fig.13). 

 

Figure 13. Supply chain three-echelon simulation model 

Within analytical calculus the input data and planning factors values are 
defined, i.e. demand average value and its standard deviation, order lead times 
with its standard deviation, setup times, holding, ordering and other costs, as 
well as decision variables for cyclic and non-cyclic planning alternatives that 
firstly can be optimised.  

In this case, the two influenced factors are determined, i.e. coefficient of 
demand variation (CODvar) with the main influence, and coefficient of lead time 
variation (LTvar). Both factors vary between 0.1 and 1 with the step 0.1. As the 
main performance measure the period average total costs are chosen. 
Additionally, the average inventory level and service level could be analysed. 

For the procedure approbation on three-echelon supply chain the 
ACCScr=4.7% is set, but for chemical industrial company the ACCScr value is 
revised and increased till 8%. In Fig. 14, the average difference of period average 
total costs based on the determined factors and received form simulation is 
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illustrated. The costs of cyclic planning policy are higher than those of non-cyclic 
at all CODvar values, but the analysed difference increases as the values of 
factors increase. Within each planning method, the gradual increase in LTvar 
factor is observed.  

 
Figure 14. The average difference of period average total costs based on the 

influencing factors (the test model) 
Based on the procedure results, the summary table is created (see Table 4) 

that represents the trend of ACCS criterion changes based on the influenced 
factors values. Based on it, the switching rules with production rules are created. 
The analysis of factors influence to performance measures allows adjusting the 
critical values of the criterion. In case when the LTvar value changes at the same 
CODvar, ACCS value does not change essentially, but the largest value of 
ACCS is estimated at the constant LTvar value. In Table 4 with grey colour the 
factors values are marked where estimated ACCS value does not exceed the 
ACCScr and decision about cyclic planning (POR) is made, in other cases the 
non-cyclic planning utilisation is introduced. By analysing the developed 
algorithm, the hypothesis H0 is not rejected at the CODvar = 0.1, and it is 
conclude that there is no significant difference between two planning policies. 
Due to that, the implementation of cyclic planning is preferred. At the 
CODvar = 0.2, hypothesis H0 is rejected, but H1 is assumed where the 
conclusion about significant difference between planning policies is made and 
estimated with ACCS criterion. At this CODvar the ACCS value lies in the 
interval ACCS ∈ [2.62%; 2.82%] with average value ACCSvid = 2.73% that not 
exceed critical value ACCScr = 4.7%. Based on this analysis, the decision about 
cyclic planning utilisation is made. At the higher CODvar values the hypothesis 
H1 is assumed as well, but ACCS values overtake its critical value that is why 
starting with CODvar = 0.3 the non-cyclic planning is advisable for realisation.     
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Table 4 

ACCS criterion estimation based on values  
of influencing parameters (the test model) 

 
Switching rules with production rules are generated for the developed in 

the thesis procedure with the aim to manage switching algorithm for supply 
chain on the set of values of influenced factors. In Table 5, a list of production 
rules, i.e. switching rule for three-echelon supply chain is depicted.    

Table 5 
Production rules for three-echelon supply chain model 

 
The influence of production rules on product life cycle is analysed by 

calculating total costs of the different product life cycle scenarios. As influence of 
LTvar factor is insufficient, it is taken as constant for this analysis. The forecasted 
costs for different scenarios are presented in Table 6. Based on the developed 
procedure, the switching is recommended at the CODvar = 0.3. The total costs 
depend on the product life cycle where the maximal difference of costs between 
all analysed product life cycle scenarios is 11 505 € at the relative ratio of the 
maximal and minimal costs equal to 3.5%. This analysis shows the ability to 
reestimate the ACCScr value based on the product life cycle structure.    



31 
 

 
Table 6 

Switching moment influence on total costs  
for different product life cycle scenarios

 
 

The developed procedure is applied to the multi-echelon supply chain model 
that represents chemical industrial company. In this model the difference between 
planning methods costs increases, but ACCS values decrease. A conclusion is 
made about cyclic planning utilisation even at the CODvar=1. But, hypothesis H0 
is not rejected up to CODvar=0.25 and the diffecence between planning methods 
is not sufficient. At the higher CODvar values the ACCS criterion is estimated 
that does not exceed ACCSmax = 3.85% during the experiments.     

The main conclusions are as follows: 
- the supply chain structure and features substantially influence the results of 

the planning analysis; 
- the critical value of the estimated criterion has to be defined based on the 

expertise of analysed supply chain and prospects;  
- during the approbation, the analysis of planning methods utilisation based 

on the total costs of the product life cycle proved to be  useful.   
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RESULTS AND CONCLUSIONS OF THE THESIS 
The multi-echelon supply chain optimality gap analysis procedure for 

planning alternatives is developed. The aim of the procedure is to determine the 
switching point between planning alternatives. It is based on the simulation, as 
appropriate technique, utilisation. The developed procedure provides the control 
mechanism for switching, as a result, the product life cycle management in the 
supply chain improves.    

The procedure is based on the switching algorithm for planning methods 
where decision making is based on the statistical comparison process and ACCS 
criterion analysis. The analysis of optimality gap allows improving of planning 
process and supporting flexible choice of planning method. Switching rule is 
generated to realise automatic switching between planning methods. It is based on 
the costs comparison algorithm influenced by supply chain parameters like 
coefficients of demand and lead time variation.   

Based on the tasks of thesis the results are the following: 
- Optimality gap analysis procedure is developed. It is aimed at analysis of 

multi-echelon supply chain planning methods in stochastic environment. 
The research is based on the analysis of optimality interval utilisation task 
within supply chain management field.  

- Simulation-based switching algorithm for supply chain planning alternatives 
based on their comparison is developed. It is applied in real supply chain 
planning problem and allows smooth switching from one planning 
alternative to another within product life cycle.  

- Based on the results of switching algorithm, the optimality gap analysis 
procedure is extended with switching rule that is based on the set of 
production rules and provides the choice of planning method according to 
the specific factors influencing the system. 

- Within the research, modelling methods of stochastic demand are 
investigated to work with a large range of demand variability, as well as 
simulation-based methods of statistical comparison of alternatives are 
analysed. 

- Sensitivity analysis of factors influenced supply chain performance 
measures is performed as well as their main effects are analysed to run 
simulation experiments and create a switching rule. 
The research ends with the developed procedure approbation where models 

based on the supply chains of chemical industrial companies are analysed. 
During the approbation, conclusions are made that the supply chain structure 
and features substantially influence the results of the planning analysis, but the 
critical value of the estimated criterion should be defined based on the expertise 
of the analysed supply chain. 

The developed procedure can be adapted to the simulation-based 
alternative comparison in other industrial sectors. 
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Based on the research results, possible ways for the improvements can be 
the following: a) a comparative analysis of planning methods based on the full 
product life cycle; b) an analysis of before- and after switching planning issues 
to avoid unforeseen downtimes; c) increasing the number of alternatives and 
their features within optimality gap analysis procedure; d) improvement of 
sensitivity analysis for a more careful generation of switching rule. 
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