Optimal Control of Pantograph-Catenary Systemsusing
MatL ab

An.Matvejevs', Al.M atvejevs®

Probability Theory and M athematical Statistics Department
Engineering M athematics Depar tment

Riga Technical University, Latvia

Abstract

This paper continues research of the pantograph-catenary system started in
previous papers [1,2] and presented in the First International Conference on
Railway Technology [3] . The main purpose of the study is to use the computer to
optimize pantograph-catenary system of a high-speed train by reducing power
consumption when basic parameters of pantograph and catenary (contact
network) are changing in time randomly.

A linear model of pantograph-catenary system is considered where the upper
and lower blocks of pantograph and catenary are modelled using lumped masses,
springs and shock absorbers. Input and output system signals are measured when
the train moves. These signals are processed by parametric identification
algorithms to determine current values of the system matrices. State matrices are
used in the Riccati equation to calculate controller coefficients. Adaptive
controllers provide dynamic stability of the system when its parameters are
changing in time and random external perturbations are present.

Keywords: pantograph-catenary system, Riccati equation, mechanical multibody
system, parametric identification, controller, adaptive pantograph.

1 Introduction

Since October 1964 when first high-speed railway line with 210 km/h speed was
commissioned in Japan have gone nearly 50 years. Many of high-speed rail
problems have been resolved successfully during this time period. In coming
years experts from leading industrialized countries (Japan, France and others)
plan to increase train speed to 500 knvh. At the same time scientists have
identified those problems that need to be addressed to further enhance progressin
this area [4]. In the following block diagram (Figure 1) the solution of these
problems will be investigated by modelling with computer technology. As can be



seen from the structure, one of the main problems is the study of models with
time-varying parameters of the main components of this high-speed rail system.

In present paper some results about dynamic characteristics of above
mentioned block-scheme components with time-changing parameters, pantograph
and catenary, are considered.

In contrast to previously published results on pantograph-catenary system

[5, 6] we present results about the system with optimal control methods based on
parameter identification and adaptive control algorithms. These methods of
dynamic systems were investigated by the authors for various purposes [1, 2],
[7,8].
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Figure 1. Computer simulation of service reliability for high-speed trains

In this paper parameters of pantograph-catenary model vary randomly in time,
and the system is periodically subjected to external perturbations.

Recorded input and output signals of the system during it functioning in real
time provide information about system states. These signals are processed using
parametric identification algorithms, which include the following main tasks:

- measurement of input and output signals of the system at agiven time interval;

- calculation of state vector of pantograph model;

- calculation of parameters current values of the system mathematical model;

- calculation of active pantograph controller parameters for every time interval
where the state vector of pantograph and the mathematical model parameters are
calculated;

- correction of pantograph controller coefficients when the model parameters and
the state vector are changing at agiven time interval.



Solutions of parametric identification problem for the system by means of
pantograph state vector allow to caculate coefficients of adaptive controller
based on the Riccati equation [2]. Created on these principles adaptive controller
guarantees optimal dynamic characteristics of the pantograph-catenary system
both in case of parameters random changes in time and in case of external
disturbances (drums) on the system.

Based on Matlab/Simulink simulation results of the developed control
algorithms for pantograph-catenary system with time-varying parameters confirm
effectiveness of the system compared to other methods of solving the problem
using for example a second-order diding mode control scheme [5].

2 Mathematical model of the system with varying
parameters

2.1 Catenary mathematical model with time-varying parameters

Catenary mathematical model is usually represented by the 2nd order differential
equation with time-varying parameters[1, §] :

M, (02 (t)+C Oz +K 1)z ) =Q(t), 1.1
where
Z (t)— amplitude of i-th modal component,

M, (t) —mass of i-th modal component,

C, (t) — damping coefficient of i-th modal component,
K (t) — stiffness coefficient of i-th modal component,
Q (t)—forcing function of i-th modal component.

Taking the frequency of oscillations for the i-th component of the model by
o,(t) (o;(t) =% ), and the damping factor with respect to other model

parameters by &, (t), Equation (1.1) takes the form [1]:
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For a given shape and vibration frequency of catenary signals time response
for every component is defined by Equation (1.2), and the output signal of the

entire catenary model is equal to the sum of all M, (t) components.

2.2 Pantograph mathematical model with variable parameters

Mathematical model of passive pantograph is defined by 2nd order differential
equation with time-varying parameters[1] :
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where
y, (t) —displacement of the head,

y, (t) —displacement of the frame,
Y, (t) — displacement of the vehicle roof,
F. (t) — contact force acting on the pantograph head,

F,(t) — permanent lifting of static force.

Assuming equation (1.3) with constant coefficients m, M, w, and u, Laplace
Transform can be applied with zero initial conditions for Y, Y, and F . Asa

result, we receive

(MS* +us+W)Y, +F, = (us+Ww)Y;
(MS* + (U+V)s+(W+t,))Y; = (Us+W)Y, (1.4)

According to Equation (1.4), transfer function of the pantograph can be found.
Evaluating Y,/ X, and Y, / X, weobtain
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where

A=Mms' +(Mu+mu+v))s’ +(M(w+K, ) +mw+t_)+u(u+v)—u?)s’ +
(U+V) (W+K,) +u(w+t ) —2um)s+((w+t ) (w+K,) - w).

The model (1.5) and (1.6) of two-mass system is a system of two degrees of
freedom [1]. Although the actual pantograph is much more complicated, this
model is sufficient to represent dynamic characteristics of the pantograph system
with two degrees of freedom.

To analyse pantograph’s dynamic characteristics, specific (nominal)
parameters of passive pantograph should be used. A block diagram of passive
pantograph is shown in [1]; the parameters for this version are as follows:



K, =178.58kg/m, w=178.59kg/m, u=3.57kg-sec/ m,
t =34287.3kg/m, v=21.43kg-sec/m, m=1.11kg-sec’/ m,
M =1.66kg -sec’/ m.

Further analysis of the system provides a pantograph with one degree of
freedom defined by the following transfer function (1.5):
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2.3 System “pantograph-catenary” model with variable
parameters

System software MATLAB/Simulink allows simulating dynamic systems with
time-varying parameters. We illustrate this by example of catenary dynamic
characteristics with time-varying parameters modeling by Equation (1.2).

This simulation includes the following steps.

a) representation the system model with time-varying parameters to the model

with constant parameters;
b) formation the transfer function for the system with given (nominal) values
of the coefficients (M, C, K, Q) in Equation (1.1);

¢) to form of the corresponding S-function in MATLAB / Simulink based on
the original transfer function, which provides changing of the coefficients
intime in the desired range of frequencies and amplitudes;

d) to add necessary subfunctions of random variations in amplitudes of the

simulated output signal to the S-function ;

e) to sudy of the dynamic system under external disturbances at different

time intervals of operation.

f) to create the combined pantograph-catenary system with time-varying

parameters.

The research block-scheme of the catenary dynamic model with time-varying
parameters is shown in Figure la. The transfer function of the catenary (upper
photo in the Figure 1a) and transfer function of the pantograph (bottom photo in
the Figure 1a) are represented. From the graphics in Figure 1b one can conclude
that both devices are unstable.



1

<]

e
E]
=
=
]
=
=

=

L+ TMEVaring TF-Catenaninum) ]
—y — L}

'™
Ll

L TIMEV arging- TF-Catenangden)
Subtract!

==

o
=

o

i+ TIME\arying-TF-F antographinum)

. | TIMEVarging- TF-Fantograph{den) L
Sine Waved ’_:ubtracﬁ S

=1

\_‘

Step!
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Similarly, dynamic model of passive pantograph with time-varying parameters
was developed (Figure 2);
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The transient response of the catenary (upper photo in the Figure 2b) and the
transient response of the pantograph (bottom photo in the Figure 2b) are
represented, would be conclude that this system is unstable too.

Dynamic model of the pantograph-catenary system with time-varying

parameters with controller (active pantograph) is shown in Figure 3a. The
transient response of this system with controller (Transfer Funl) without
changing of its parameters is shown in Figure 3b. This system is also unstable.
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Plots of the transient responses of the system with the three types of changing
rate of the parameters as function of time are shown in Figure 4a, b, c. With alow
rate of change of parameters the system loses its steady state already at 15
seconds (Figure 4a). With the increased rate of change of the parameters of the
loss of stability occurs more rapidly (Figure 4b, at 7 sec.). At even higher rates of
parameter change buckling occurs at 3 seconds (Figure 4c). At certain ratios of
time-varying system parameters in it the resonant vibration processes are
discovered.
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3 Pantograph-catenary system based on parametric
identification and adaptive control

Simulation results of pantograph-catenary system with time-varying parameters
which contains controller with constant parameters in the control loop confirm
that this system does not have the required stability.



To provide required dynamic characteristics of the system in its real driving
conditions in electric systems adaptive controller algorithms were developed
based on parametric identification methods to estimate current values of the
system parameters. Based on the model estimated parameters and current values
of state vector, controller coefficients are calculated, which guarantee the
required dynamic characteristics of the system in each input and/or output time
interval.

Block diagram of the pantograph-catenary model with time-varying
parameters containing adaptive controller is shown in Figure 5.

Blocks that calculate adaptive controller coefficients are presented in the lower
part of the scheme:

1) memoryl, memory2 —to check system input and output signals;

2) Matrix Concatenate — to calculate system matrices in state space and

matrices of the Riccati equation;

3) Logica Operatorl — to calculate matrices in state space based on
pantograph state vector;

4) Kq — to caculate vector of current values of the system adaptive
controller;

5) Environment Controller — to prepare adaptive controller algorithm.

To evaluate dynamic characteristics of the pantograph-catenary system, which
block diagram is shown in Figure 5, special program "ADAPPANCAT" in
MATLAB was developed, which implements all above mentioned algorithms for
the system with time-varying parameters where various external (shock)
perturbations action on the system simultaneously. (Footnotes explain using
functions and parameters).

The following conclusions can be made based on the studying of different
examples of pantograph-catenary model with time-varying parameters.

1) Simulation results show effectiveness of the controller adaptive settings
(Kigr) @ong with random variations of the pantograph-catenary model
parameters as well as random external (shock) perturbations acting in the
system.

2) Transient response of pantograph-catenary system as well as system
response to external shock perturbation (shown in Figure 6) confirms high
efficiency of pantograph-catenary adaptive system.

3) BODE diagram of pantograph-catenary adaptive system represents that the
system operates steadily in time changing random parameters (Figure 7).

4) Adaptive controller effective response to random variations of system
parameters and external perturbations should be mentioned also.
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Figure 5. Scheme of the pantograph-catenary model with adaptive controller
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Table 1 shows controller coefficients for 10 consecutive cycles of random
system parameters and random shock perturbations. (External pressure is
specified in Newtons at a nominal value of Tdl = 3.1N).
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Table 1. Adaptive adjustment of the controller coefficients with varying system
parameters and initial forcing Td1

4 Conclusons

Mathematical models of pantograph-catenary adaptive system whose parameters
vary randomly in time and the system is acted by external shock disturbance led
to the following conclusions:

a) the model adequately reflects dynamic characteristics of real pantograph-
catenary autonomous systems used in modern electric trains moving at high
speeds (200 knmvh and more);

b) evaluation of time-varying system parameters should be done in real time
based on measurement data of system input and output and further
implementation in parameter identification algorithms (using pantograph
computing device);

) based on estimates of current values of system parameters (obtained by solving
the parametric identification problem) optimal values of controller coefficients

are calculated using Riccati equation;

d) system adaptive controller provides the necessary dynamic and accuracy

characteristics of the system with random changes in system parameters and
external shock impacts during the operation;



e) elaborated programs, which implement basic algorithms of measurement data,
parametric identification and adaptive corrector, do not impose special

requirements for pantograph computer in train.
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