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Influence of Material Internal Stresses on the
Coefficient of Friction
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Abstract — The aim of this paper is to do an analytical research
of internal stresses, which occur in contact of two rough surfaces.
Research mainly has been done analytically and is based on the
formulas described by von Mises yield criteria. As we can see
from the obtained results, it’s possible to find a coefficient of
friction by using von Mises yield criteria. To get more precise
values of the coefficient of friction, it is necessary to take into
account also surface geometry and adhesion forces between the
contacting surfaces. This will be done in further research works.
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. INTRODUCTION

If we speak about friction force, we generally speak about
material surface deformation in the direction of motion. The
deformation arises already in the static contact, when there is
no any movement, because two surfaces have the surface
roughnesses, which are deformed when the contact takes
place. When the motion starts, these surface roughnesses get
deformed again. Deformation nature is really complex,
because it can be just elastic or occur in combination with
plastic deformations. Anyway, the amount of deformation is
closely related to the properties of material and particularly
depends on internal stresses, which are persistent under
surface. In a simple case we can find the coefficient of friction
by simply dividing tangential stresses by normal ones. By
doing so, we will get the relation between both stresses and
also their relation to the coefficient of friction.

I1. ANALYTICAL RESEARCH

When doing research on friction forces between surfaces, it
is always necessary to research internal stress fields, which
originate from relative movement of two rough contacts.

There are many researches available, where the authors
have described the states of internal stresses, when just normal
forces are applied. Such cases are really simple ones, but in
case with friction there are not only normal forces, but also
tangential forces involved.

As allocation of surface roughness heights has a random
nature, exact internal stress calculations are complex and we
can find only approximate values. Even when we can find
approximate values, these values can show us a relation
between tangential and normal stresses.

To be able to determine the relation of stresses, firstly we
must find stresses which arise during the contact of two
spherical surfaces.
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Fig.1. Stress zone allocation when two spherical surface heights are in
contact.

As it is shown in Fig. 1., total normal force and total
frictional force T = f-P in line of X axis are applied to
contact height and a is radius of stress zone. Such stress zone
allocation scheme can be seen besides each surface height.
Stress components for such case are:

o, =0 +df (1)
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where the first relation is for normal forces P(x,y), and the
second — for tangential forces T(x,\y). To assist stress
calculations we treat contact as contact of two spheres and
they are making a contact area, which has a predefined radius
a.

As stated in A. Dinniks work [1], we can describe stresses
in surface contact at plane when z = 0, in direction of X, Y and
Z axis with the following formulas and with relation to normal
forces:
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Txy = Tyz = Tzx = 0 (6)

where: P — load to contact, x — coordinate.

To find stresses, which are caused by tangential forces, we
can use formulas, which are described by M. Korovcinski [2]
in relation to tangential stresses in direction to X and Y axis:

T _ _ 3P mxf(utd)
Ox = 2ma?  8a )
T _ _ 3P 2nfux
Oy = 2ma? 8a )
T _ 3P , x2
Tyz = " 2ma? 1- a? (9)

O =Ty, =Tz =0 (10)

When we speak about material capability to resist against
deformations and about long service life, quite often we refer
to the theory of Huber — Mises — Henky, which takes into
account three main stresses and also gives us the relations
between the yield strength at tensile, shearing or compressive
loadings. As stated in this theory, hypothetically plastic
deformations arise only when potential energy of the shaped
body reaches certain critical boundary, which can be
determined for each material.

In general form we write this relation as equivalent stress in
the following way:

2 2
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(11)
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And the sum of stresses on each axis can be found with with
help of formula (1). For Z axis according to formula (10) the
stress will consist only from component, which is raised from
normal forces. Graphically these stresses can be seen in Fig.
2.
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Fig. 2. Comparison of stresses for each axis and coefficient of friction is
taken as f =0.5. 500 N force is used as load P.
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As we want to look on stresses general without load, we
will divide the equivalent stress by the load in the center of
surface roughness height:

ZTL'aZ\/(D‘x—o‘y)z+(0'y—o‘z)2+(o‘z—0'x)2
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Thus we are getting a relative equivalent stress, whose
numerical value is not affected by the amount of applied load,
which we are using for calculations. The obtained results
graph can be seen in Fig. 3.:
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Fig. 3. Relative from load independent equivalent stress.

As we are interested in relation of stresses to the coefficient
of friction, it is necessary to calculate tangential and normal
stresses separately. For such calculations we will use formulas
of stresses which were formulated by N. Belajev [3]. Total
tangential stress in shear can be found in the following way:

T, = ;\/(ax - ay)z + (o, — 02)2 + (0, —0,)? (13)

Total normal stress can be determined by:

Oy = ;(ax +o0, + JZ) (14)
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Fig. 4. Comparison of tangential and normal stress when the coefficient of
friction is taken as f =0.25. 500 N force is used as load P.
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As we can see in the graphs from Fig. 3, normal stress has
negative values, which can be explained by the applied load
which acts towards inside of material. If we speak about
tangential stress graph, we can see that this stress changes
merely in comparison to the normal stress within contact area
in relation to radius a.

To make a comparison for both stresses and to understand
the nature of these stresses it is usefull to use relative
coefficient, which we can obtain by dividing tangential stress
by normal stress as follows:
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n

(15)

Actually this relative coefficient theoretically is equal to the
coefficient of friction f, but as we have already used the
coefficient of friction in stress calculations, we can’t call it a
coefficient of friction. Represantive graph of this coefficient is
shown in Fig. 5, where absolute stress values are used for
calculations.
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Fig. 5. Tangential and normal stress relation coefficient k;. Calculations were
done at f = 0.25.

With the help of integration we can find the mean values of
coefficient k; in relation to the coefficient of friction. Mean
values are shown in Table 1.

TABLE |
MEAN VALUES OF COEFFICIENT K1
f ky
0.00 -2.88243
0.25 -1.45298
0.50 -1.83028

As we can see from the mean values, there is no linear
correlation between both tangential and normal stresses and
the coefficient of friction, because ki values did not change
linearly according to the linear changes of the coefficient of
friction. The reason for this could be simplified calculation of
total normal stress (see formula 14). To check this, we will

divide tangential stress by von Mises defined equivalent stress
(see formula 11) as follows:

T
k2= n
Oekv

(16)

The results for the newly defined coefficient k. can be seen
graphically in Fig. 6:
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Fig. 6. Tangential and equivalent stress relation coefficient k,. Calculations
were done at f = 0.25

The graph shows us a clearly asymmetric nature of k; which
can be explained in the following way: when contact is in
sliding friction one side of the contact will experience tensile
loads, when the opposite side will have compressing loads.

Again by using integration we found the mean values, which
are shown in Table 2:

TABLE Il
MEAN VALUES OF COEFFICIENT K,
f ky
0.00 0.334594
0.25 0.325911
0.50 0.315672

As we can see from mean values of ko, these values are quite
similar and probably it is because the shape of the contact
hasn’t changed, so these mean values now mainly are
changing by changing materials or contact geometry.

I1l. CONCLUSIONS

In this paper we took a look on calculations of internal
stresses within the contact area, by using different values of
coefficient of friction. As we saw from the results, there is a
certain relation between the coefficient of friction and internal
stresses. This means that there is a possibility to calculate the
coefficient of friction by taking into account contact geometry
and material internal stresses. But for exact calculation of the
coefficient of friction we need to use different calculation
formulas, because in the current ones the coefficient of friction
itself is used as input data.
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As we can see from graphs, all curves are asymmetrical,
which can be explained by material properties (in this case we
used steel in analysis) to resist against tensile stresses. Also
these asymmetric results conform to experimental results,
which were obtained by Hamilton — Goodman [4].

Most of the used formulas are intended for calculations of
internal stresses not vice versa, so for analytical analysis we
had to define coefficient of friction by ourselves. After
analytical research of stress relations, and with the help of two
newly defined coefficients ki and ko we can now proceed with
further research on influence of internal stresses on the
coefficient of friction and find different ways to calculate
tangential forces by using probability theory .
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Didzis Rags, Andris Kamols, Oskars Linins. Materiala iek§&jo spriegumu ietekme uz berzes koeficientu

ST pétijuma mérkis ir izpétit materidla ick$gjo spriegumu ietekmi uz berzes koeficientu, lai péc tam varétu iegiit berzes koeficienta aprékina formulas, ar kuru
palidzibu varétu aprekinat berzes koeficientu, izejot no materiala Tpasibam un tas virsmas geometrijas parametriem. Spriegumu ietekme uz berzes koeficientu tika
pétita, aprekinot iek$€jos spriegumus uz katru asi un péc tam izrékinot summaros tangencialos un normalos spriegumus. Aprékinu pamata tika izmantotas labi
zinamas Mizesa spriegumu sakaribas un spriegumu tenzors. Veicot $o analitisko pétijumu, tika iegiits apstiprinajums spriegumu ietekmei uz berzes koeficientu,
ka arf iegiits aptuvena tangencialo un normalo spriegumu attieciba kontakta. Rezultatu grafiskie att€lojumi principa sakrit ar citu autoru eksperimentalajiem
pétijumiem, kuros ir izteikts spriegumu lauku nesimetrisks novietojums. Lai gan pétijumu laika analitiski tika noteiktas materiala iek$gjo spriegumu attiecibas un
to vertibas, tomér ir janem véra fakts, ka aprékinos tika pienemtas berzes koeficienta vértibas, kas nozimé to, ka péc $im sakaribam, berzes koeficientu nevar
rekinat, jo izejas datos ir tas pats berzes koeficients. Tadél turpmakaja pétijuma gaita ir ieteicams lietot citas sakaribas, kuras lautu aprékinat berzes koeficientu
tikai no materiala un ta virsmas geometrijas parametriem.

Junsuc Pare, Anapuc Kamose, Ockape Jlunnnbsm, Biausinne BHyTPeHHHX HANPsKEHUWH MaTepuaa Ha KOG GuuMeHT TpeHns.

OTo HccIeoBaHHE HANPABICHO HA M3yYeHHE BIMSHUE BHYTPEHHHX HANpPsUKEHHIH MaTephalia Ha KOd(D(HUIMEHT TPeHHs IS TOro, YTOOBI HOIYYHTh (GOPMYIIBI
pacdera Ko3(HUIIEHTa TPEHNS B 3aBUCUMOCTH OT CBOIMCTBA MaTepuaja M T€OMETPHYECKHX ITapaMeTpOB IIEpOXOBATOCTH MOBEPXHOCTH. BimsHne BHYTpeHHNX
HanpsDKeHHiT ObIIO U3yueHa pacIunTas BHYTPEHHHX HANPSKEHHH Ha KaXLYI0 OCh M OTOM PAacUIUTAs CyMMAapHBIX KacaTelbHbIX U HOPMAIbHBIX HANPSHKSHUH.
HMccnenoBanne OCHOBaHbI Ha XOPOIIO M3BECTHOH TEOPMH COOTHONIEHHS Museca. B 3TOM aHanIMTHYECKOM HCCIEIOBAHMM OBUIO NOATBEP)KICHO BIIMSHHE
BHYTPEHHHUX HaNpsDKEHUH Ha KO(QQUIMEHT TPEeHWs, a TakKe IMONydeHBl NMpPHOIM3HUTENbHBIE COOTHONICHHS KacaTelbHBIX W HOPMAIBHBIX HANPSHKEHHI B
KOHTaKTe. B rpaduyeckoM BapuaHTe pPe3yNbTaT COBMNANAET C PEe3yNbTaTaMH, IOIYYEHHBIMH JAPYTMMH aBTOPAMH SKCHEPMMEHTANbHO, B KOTOPBIX MO
HaNpPsDKEeHUIT MMEIOT acCHMMETPUYHOE pachpeenieHre. XOTS BO BpeMs AHATUTHYECKUX HCCIENOBAHHI OBbUIM ONpENENeHbl COOTHOLICHHS BHYTPEHHHX
HaNpsHKeHHUH, OIHAKO MBI JJOJDKHBI IPUHUMATh BO BHUMaHHUE TOT (haKT, 4TO B pacyeTax ObUIM NMPUHSATHI 3HAYEHHS KO3 (PHIMEHTa TpeHUs. DTO 03Ha4aeT TO, 4TO
B 9THX COOTHOIIEHHSAX KOI(Q(DUIHEHT TPEHHS He MOXKET OBITh BEIYHCIICH, TOCKOJIbKY B Ka4€CTBE BXOAHBIX NAHHBIX MPHHAT TAKOH ke KOIQGUIIMEHT TPeHHUSL.
IostoMy, B JaNbHEHIINX UCCIEIOBAHMIX PEKOMEHIYeTCS MCIOJIb30BaTh APYrHe (POPMyYIIbI COOTHOLICHHSX, KOTOPbIE MO3BOJSIOT BEIYHCINTH KOI(DGUIHEHT
TPEHHs U3 TaPaMETPOB IIEPOXOBATOCTH MOBEPXHOCTH.
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