3rd International Conference on Competitive Materials and Technology Processes

> Miskolc-Lillafüred, Hungary October 6-10, 2014

BOOK OF ABSTRACTS

Edited by László A. GÖMZE

ic-cmtp3 Copyright C2014 by IGREX Engineering Service Ltd. All rights reserved. No part of this publication must be reproduced without a written permission from the copyright holder.

3rd International Conference on Competitive Materials and Technology Processes Book of Abstracts Miskolc-Lillafüred, Hungary October 6-10, 2014 Edited by: Prof. Dr. László A. GÖMZE

Citation of abstracts in this volume should be cited as follows: <Author> (2014) <Title>. In L.A. Gömze (Editor) 3rd International Conference on Competitive Materials and Technology Processes, Miskolc-Lillafüred, Hungary, pp.

> ISBN 978-963-12-0334-9 Published in Hungary – Igrex Ltd. Igrici, Hungary Printed in Hungary – Passzer 2000 Ltd, Miskolc, Hungary

PREFACE

The competitiveness is one of the most important component of our life and it plays key role in efficiency both of organizations and societies. The more scientific supported and prepared organizations develop more competitive materials with better physical, mechanical, chemical and biological properties and the leading companies are applying more competitive equipment and technology processes.

The aims the 3rd International Conference on Competitive Materials and Technology Processes (**ic-cmtp3**) and the Symposiums **is-icbm1** and **is-icm1** are the followings:

- Promote new methods and results of scientific research in the fields of material, biological, environmental and technology sciences;
- Change information between the theoretical and applied sciences as well as technical and technological implantations.
- Promote the communication between the scientist of different nations, countries and continents.

Among the major fields of interest are innovative materials with increased physical, chemical, biological, medical, thermal, mechanical properties and dynamic strength; including their crystalline and nano-structures, phase transformations as well as methods of their technological processes, tests and measurements. Multidisciplinary applications of material science and technological problems encountered in sectors like ceramics, glasses, thin films, aerospace, automotive and marine industry, electronics, energy, construction materials, medicine, biosciences and environmental sciences are of particular interest.

In accordance to the program of the conference **ic-cmtp2**, and Symposiums **is-icbm1** and **is-icm1** more than **350** inquires and registrations from different organizations were received. Finally more than **240** abstracts were accepted for presentation. From them **12** are PLENARY lectures, and **112** ORAL presentation. Scientists and researchers have arrived to Miskolc-Lillafüred (Hungary) from **41** countries of Asia, Europe, Africa, North and South America.

In this book are presented abstracts from more than **700** authors and co-authors.

Prof. Dr. László A. Gömze *chair, ic-cmtp3*

CONTENTS

Plenary lectures	9
Session 1. Advanced Materials for Bio- and Medical Applications	21
Session 2. Advanced Materials for Extreme Applications	48
Session 3. Advanced Nanomaterials with Predesigned Properties	73
Session 4. Biomaterials Derived Ceramics and Composites	84
Session 5. Glasses, Coatings and Related Materials	94
Session 6. Hetero-Modulus and Hybrid Materials	111
Session 7. Light-Weight Metals and Alloys	120
Session 9. Membranes and Catalysts	129
Session 10. Minerals for Environmental and Medical Application	138
Session 11. Nanomaterials for Environment and Health	149
Session 12. Novel Synthesis and Processing Technology	161
Session 13. Phase Diagram as a Tool of Materials Science	189
Session 14. Polymer Derived Ceramics	202
Session 15. Processing and Properties of Silicate Ceramics	210
Session 16. Testing and Characterization of Materials – Methods, Equipment and Errors	219
is-icm1. The 1st International Symposium on Innovative Construction Materials	241
is-icbm1. The 1st International Symposium on Innovative Carbon Based Materials	267

is-icm1

The 1st International Symposium on Innovative Construction Materials

Performance Characteristics of Waste Glass Powder Substituting Portland Cement in Mortar Mixtures

Patricija Kara¹, László J Csetényi² and Adorján Borosnyói³ patricija.kara@rtu.lv

 ¹Department of Building Materials and Products, Institute of Materials and Structures, Riga Technical University, Riga LV1658, Latvia
²Concrete Technology Unit, School of Engineering, Physics and Mathematics, University of Dundee, Dundee DD1 4HN, United Kingdom
³Department of Construction Materials and Engineering Geology, Budapest University of Technology and Economics, 1111 Budapest, Hungary

In several countries, waste glass causes environmental concerns as quantities stockpiled exceed recycling in the packaging stream. Being amorphous and having relatively high silicium and calcium contents, glass is pozzolanic or even cementitious, when finely ground. Reducing particle sizes typically to less than 100 μ m may give control over the alkali-silica reaction in concrete, therefore making this material a possible substitute to Portland cement. Such use may moderate the problem of dumped waste glass and reduce CO₂ emissions into the atmosphere by decreasing the proportion of cement in unit volume of concrete produced.

In present work, soda-lime glass cullet (flint, amber, green) and special glass cullet (fluorescent lamp tube glass waste cullet and incandescent light bulb borosilicate glass waste cullet) were ground into fine powders in a laboratory planetary ball mill for 30 minutes. CEM I 42.5N Portland cement was applied in mortar mixtures, substituted with waste glass powder at levels of 20% and 30%. Characterisation and testing of waste glass powders included fineness by laser diffraction particle size analysis, specific surface area by nitrogen adsorption technique, bulk and particle density by picnometer and chemical analysis by X-ray fluorescence spectrophotometry. Heat of hydration of cement pastes and workability of fresh mortars were also determined. Compressive and flexural strength, volume stability, early age cracking and drying shrinkage tests were performed to observe the influence of waste glass powder substitution for Portland cement on physical and engineering properties of mortar mixtures.

Keywords: waste glass powder, cement substitution, characterisation