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Abstract – In this paper, a simple wavelet-neuro-system that 
implements learning ideas based on minimization of empirical 
risk and oriented on information processing in on-line mode is 
developed. As an elementary block of such systems, we propose 
using wavelet-neuron that has improved approximation 
properties, computational simplicity, high learning rate and 
capability of local feature identification in data processing. The 
architecture and learning algorithm for least squares wavelet 
support machines that are characterized by high speed of 
operation and possibility of learning under conditions of short 
training set are proposed. 
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I. INTRODUCTION 

Nowadays computational intelligence systems are widely 
used to solve a large class of problems associated with 
information processing, which is provided in different forms, 
from simple tables “object-property” to complex 
multidimensional non-stationary stochastic time series. 
Systems of computational intelligence, such as artificial neural 
networks, neuro-fuzzy systems and wavelet systems have a 
high processing speed, universal approximation properties, 
identification of local features [1]–[7]. 

However, the existing approaches for their training require 
large volumes of training data set, wherein the volume of the 
original training data set should be at least two orders bigger 
than the number of estimated parameters of such systems. 
Unfortunately, this situation does not always occur, especially 
in solving practical tasks. In many practical problems, for 
example, medical diagnostics, forecasting of financial indices 
etc., the volume of training data set is quite insufficient for 
constructing and training the effective system of 
computational intelligence. 

The solving of problems in such a situation using 
conventional identification theory methods [8] is not effective, 
for which reason the method based on empirical risk 
minimization was proposed by V. N. Vapnik [9]–[12] and a 
support vector machine was designed based on this method. 

Traditional support vector machine is a computational 
system that minimizes the empirical risk, but from viewpoint 
of practical implementation it is a sufficiently complex 
system, because it is related to the solving of nonlinear 
programming task at each step apart from high dimension with 
constraints in form of inequalities. Thus, in such a case the 
idea was wonderful; however, its implementation in on-line 
mode was not successful [2]. 

Therefore, at the beginning of this century, modification of 
this system has been proposed, called LS-SVM (least squares 
support vector machine) [13]. Here principal conditions were 
changed in such a way that it was necessary to solve a 
quadratic programming problem with equality constraints at 
each step, and it had already created the preconditions for the 
neural network implementation of this approach. But still, this 
machine was quite complicated and therefore further attempts 
were made to improve, firstly, speed, to simplify computing 
implementation and, secondly, to reduce training sample 
volume. 

Based on fuzzy SVM [14], [15], the wavelet least squares 
support vector machine was proposed and compared with all 
previous variants – it had improved approximation properties, 
but, as a result, numerical implementation had become more 
difficult [16], [17]. The basis of LS-SVM was radial basis 
function network [18], where radial basis functions were 
replaced by multidimensional wavelet functions. For 
simplification of software implementation, by reducing the 
number of tuning parameters and increasing the speed we have 
proposed to use wavelet-neuron as the basic architecture [19]–
[21] that has improved approximation properties and high 
operation speed. However, the disadvantages of wavelet-
neuron are connected with its learning algorithms that do not 
allow tuning all parameters under a small data set. 

Alternative to learning based on optimization is the learning 
based on memory that is based on the concept “neurons in the 
data points” [18]. The most typical representative of neural 
networks with such learning is General Regression Neural 
Network (GRNN); however, it solves a task of interpolation 
instead of approximation that essentially complicates its usage 
in noisy data processing. 

Therefore, the development of sufficiently simple wavelet-
neuro-fuzzy systems is advisable. Such systems implement 
learning based on empirical risk minimization and are oriented 
to information processing in on-line mode. Wavelet-neuron 
that has improved approximation and extrapolation properties 
can be used as a basic element of such systems. 

II. WAVELET-NEURON ARCHITECTURE 

Let us consider the wavelet-neuron architecture, shown in 
Fig. 1. As seen, wavelet-neuron is quiet close to the standard 
n-input formal neuron, but instead of tuning synaptic weights 
it contains wavelet-synapses niWSi ,,2,1,  , where the 
tuning parameters are not only synaptic weights, but all 
parameters of adaptive wavelet activation functions 

))(( kxiji  [21]. 
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When input vector  

  Tn kxkxkxkx )(,),(),()( 21    

is fed to the wavelet-neuron input (here ,2,1k  is 
current discrete time) its output can be written in the form 
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Fig. 1. Wavelet-neuron. 
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where )(kw ji  is synaptic weight, ))(( kxiji  is wavelet 
activation function. 

The different analytical wavelet functions can be used as 
activation functions, but for adaptive tuning of wavelet neuron 
we use an adaptive wavelet activation function which was 
proposed in [22], [23] and has the form 

    2)(exp)()(1))(( 22 ktktkkx jijijiiji    (2) 

where   )()()()( kkckxkt jijiiji  ; )(kc ji  is a center 
parameter of adaptive wavelet function; )(kji  is a width 
parameter of adaptive wavelet function; )(kji  is a shape 
parameter of adaptive wavelet function. 

Tuning parameter ji  allows changing the shape of an 
adaptive wavelet activation function during the training 
process of network, and, as a result, for 0ji  we obtain 
Gaussian function, and when 1ji  we obtain wavelet-

function “Mexican Hat”, and when 10  ji – hybrid 
activation function. 

Figure 2 shows the adaptive wavelet activation function 
with different parameters   and  . 
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Fig. 2. Adaptive wavelet activation function: а – 1, 1;    b – dashed line 

0.3, 1.5;   , solid line 0.6, 0.5;    c - 0, 1   . 

The learning task is to find synaptic weights )(kwji , centers 
)(kc ji , widths )(1 kji

  and shape parameters )(kji  of 
adaptive wavelet activation function on each k -th iteration, 
which optimizes the learning criterion. 

III. LEARNING ALGORITHM FOR ALL WAVELET-NEURON 

PARAMETERS 

When the training data set is sufficiently large, as learning 
criteria we can use the conventional squared error function in 
the form 
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where )(ky  is a reference signal. 
Introducing some denominations in the form 
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where 0 1   is a forgetting factor, 
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w
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Easy to see that for 1  method (4), (5) has stochastic 
approximation properties of adaptive identification algorithm 
of Goodwin-Ramage-Caines [24], and for 0  the learning 
method – the popular Widrow-Hoff learning algorithm. 

As can be seen, the use of the modified quasi-Newtonian 
learning algorithm does not complicate numerical realization 
of tuning all parameters of wavelet-neuron and provides an 
increased convergence rate. 

IV. WAVELET-NEURON LEARNING ALGORITHM BASED ON 

EMPIRICAL RISK MINIMIZATION 

In the case when we have a short data set, the proposed 
learning algorithm (4), (5) cannot tune all parameters of a 
network. Thus, the methods based on empirical risk 
minimization are more effective in this situation. 

Introducing the )1( nh – vector of adaptive wavelet 
activation functions 
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(6) 

and corresponding to it synaptic weights vector of wavelet-
neuron 

 T
hnnlihh wwwwwwww ),,,,,,,,,,,( 1212111  , (7) 

we can rewrite formula (1) in the form 

 ))(()(ˆ kxwky T . (8) 

The learning of wavelet-neuron using a least squares 
support vector machine is connected with the optimization of 
criterion in the form 
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with regard to constrains in the form of N  linear equations 

 )())(()( kekxwky T    (10) 

where 0  is a regularization parameter. 
Optimization of criterion (9) without constrains (10) leads 

to expression 
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(where )( nhnhI   identity matrix) that coincides with 
least squares ridge-estimates (biased estimates). 

For taking into account constraints (10), let us introduce the 
Lagrange function 
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(here )(k  – N  indefinite Lagrange multipliers) and 
system of Karush-Kuhn-Tucker equations 
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where )1(0  NN


 is a vector that consists of zero 

elements. 
Solution of system (13) can be written in the form 
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or in the matrix form 
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(here NNI  –  )( NN   is an identity matrix) or 



Information Technology and Management Science  
 

2014 / 17 ___________________________________________________________________________________________________________ 

22 

 NNNNNN Y )I( 1  (16) 

(here ))}(())(({ qxpxT
pqNN  , Np ,,2,1  ; 

Nq ,,2,1   from it follows 

 NNNNNN Y11 )I(    . (17) 

Then an output signal of wavelet-neuron can be written in 
the form 

 )())(()()(ˆ
1
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. (18) 

As can be seen from neuromathematical point of view (the 
neural network learning theory) and theory of support vector 
machines (empirical risk minimization), the proposed wavelet 
least squares support vector machine based on wavelet-neuron 
is more simple in the implementation, has high speed of 
operation and requires short volume of a training data set. 

If the data are fed sequentially, the process of wavelet least 
squares support vector machine learning should be organized 
in on-line mode. When a pair )1(),1(  NyNx  is fed to the 
input of wavelet-neuron, expression (18) can be written in the 
form 

 )())1(()1())(()()(ˆ
1

xNxNkxkxy
TN

k
 








 


 (19) 

or in the matrix form 
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or 
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where 
,)),1(())2(()),1(())1(((1  NxxNxx TT

N 
TTT NxNx )))1(())((  . 

Using (21) we can write 
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Using the Frobenius formula for a block matrix in the form 
[25] 
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we can write 
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Further, it is easy to compute )1( N –th Lagrange 
multiplier using an expression in the form 
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Further, using the Sherman-Morisson formula for matrix 
inversion we can rewrite the learning algorithm in the final 
form 

 































).(1)1(

,
1

1
1

1

1
1

1

1
11

1
11

NN
T
N

NNN
T
N

NN
T
NNNN

NN

YKN

K






 (24) 

V.  RESULT OF SIMULATION 

To demonstrate the effectiveness of the proposed wavelet 
least squares support vector machine, the practical problem of 
time series forecasting, which describes the average monthly 
temperature in Kharkiv, Ukraine, was solved [26]. Time series 
consisted of 24 points and, thus, a training sample contained 
16 points and 8 points were taken as a testing sample. 

Values )(),1(),2( kxkxkx  were taken as prehistory for 
the forecasting )1( kx  value. Initial value of shape parameter 
of the adaptive wavelet activation function was taken 1 . 
As forecasting quality criterion we used a mean squared error 
(MSE). 

Fig. 3 shows the results of time series forecasting based on 
wavelet-neuron with different learning algorithms. As can be 
seen in Fig. 3a, the curves of the actual values (a dashed 
curve) and forecast ones (a solid curve) are close enough. 
Fig. 3b shows the results of forecasting using the wavelet-
neuron and gradient learning method with a constant step, and 
Fig. 3c shows the results of wavelet-neuron and the proposed 
learning algorithm (4) and (5). 
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Fig. 3. (а) Result of wavelet-neuron with the proposed learning algorithm 
based on SVM-criterion. 
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Fig. 3. (b) Results of wavelet-neuron with a gradient learning algorithm with a 
constant step. 
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Fig. 3. (c) Results of wavelet-neuron with a learning algorithm of all-
parameters (4), (5). 
 

Table I provides the comparison of results of time series 
forecasting using the wavelet-neuron with different 
approaches to learning. 

TABLE I 

THE RESULT COMPARISON OF TIME SERIES FORECASTING 

Neural network / Learning algorithm 

Num. of input 
/ Num. of 
activation 
function 

MSEtrn MSEchk 

Wavelet-neuron / Proposed learning 
algorithm based on SVM-criterion 

3/8 (on-line) 0.0063 0.0306 

Wavelet-neuron/ Gradient learning 
algorithm with a constant step

3/8 (10 epoch) 0.000093 0.3186 

Wavelet-neuron/ Proposed learning 
algorithm of all-parameters (4), (5) 

3/8 (10 epoch) 0.0374 0.0572 

 
As it can be seen, the wavelet neuron with a gradient 

learning algorithm shows the best result on a training set, but 
such a system has the worst prediction abilities. The wavelet-
neuron with learning algorithm (4), (5) is not able to train all 
parameters of the system because of a small data set. Thus, as 
can be seen from experimental results, the proposed approach 
provides the best quality of forecasting in comparison with 
similar approaches due to a special learning algorithm that is 
able to process information in both off-line and on-line modes.  

VI. CONCLUSION 

The wavelet least squares support vector machine based on 
wavelet-neuron was introduced and investigated. The 
proposed wavelet least squares support machine has such 
advantages as computational simplicity due to the wavelet-
neuron architecture, small number of tuning parameters, high 
speed operation thanks to the use of the second order learning 
algorithms and the possibility of on-line information 
processing. 

REFERENCES 
[1] K.-L. Du and M. N. S. Swamy, Neural Networks and Statistical 

Learning London: Springer-Verlag, 2014. http://dx.doi.org/10.1007/978-
1-4471-5571-3  

[2] S. Haykin, Neural Networks. A Comprehensive Foundation Upper 
Saddle River, N. J.: Prentice Hall, 1999. 

[3] J.-S. R. Jang, “ANFIS: Adaptive-network-based fuzzy inference systems,” 
IEEE Trans. on Syst. Man. and Cybern., vol. 23, issue 3, pp. 665–685, 
1993. http://dx.doi.org/10.1109/21.256541 

[4] J.-S. R. Jang, C. T. Sun, and E. Mizutani. Neuro-Fuzzy and Soft 
Computing: A Computational Approach to Learning and Machine 
Intelligence, N. J.: Prentice Hall, 1997. 

[5] O. Nelles, Nonlinear System Identification, Berlin: Springer, 2001. 
http://dx.doi.org/10.1007/978-3-662-04323-3 

[6] E. Uchino and T. Yamakawa, “Soft computing based signal prediction, 
restoration and filtering,” in Intelligent Hybrid Systems: Fuzzy Logic, 
Neural Networks and Genetic Algorithms, Da Ruan Eds., Boston: 
Kluwer Academic Publisher, 1997, pp. 331–349. 

[7] Ye. Bodyanskiy and O. Vynokurova, ”Hybrid adaptive wavelet-neuro-
fuzzy system for chaotic time series identification,” Information 
Science, n. 220, pp.170–179, 2013. 

[8] L. Ljung, System Identification: Theory for the User, N.Y.: Prentice-
Hall, 1999. 

[9] C. Cortes and V. Vapnik, “Support vector networks,” Machine Learning, 
n. 20, pp.273–297, 1995. http://dx.doi.org/10.1007/BF00994018 

[10] V.N. Vapnik and A.Ya. Chervonenkis, Pattern Recognition Theory 
(Statistical Learning Problems), М.: Nauka, 1974. (in Russian) 



Information Technology and Management Science  
 

2014 / 17 ___________________________________________________________________________________________________________ 

24 

[11] V. N. Vapnik and A. Ya. Chervonenkis, Empirical Data Dependencies 
Restoration, М.: Nauka, 1979. (in Russian) 

[12] V. N. Vapnik, The Nature of Statistical Learning Theory, N. Y.: 
Springer, 1995. http://dx.doi.org/10.1007/978-1-4757-2440-0 

[13] J. A. K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, and 
J. Vandewalle. Least Squares Support Vector Machines, Singapore: 
World Scientific, 2002. 

[14] S. Abe and D. Tsujinishi, “Fuzzy Least Squares Support Vector 
Machines for multiclass problems,” Neural Networks, n. 16, pp. 785–
792, 2003. 

[15] Ch.-F. Lin and Sh.-D. Wang, “Fuzzy Support Vector Machines,” IEEE 
Trans. on Neural Networks, n. 13, pp. 646–671, 2002. 

[16] S.M. Pandhiani and A.B. Shabri, “Time Series Forecasting Using 
Wavelet-Least Squares Support Vector Machines and Wavelet 
Regression Models for Monthly Stream Flow Data,” Open Journal of 
Statistics, n. 3, pp. 183–194, 2013. 

[17] D. Kumar, R. K. Tripathy and A. Acharya, “Least squares support vector 
machine based multiclass classification of EEG signals,” WSEAS 
Transactions on Signal Processing, vol. 10, pp. 86–94, 2014. 

[18] D. Zahirniak, R. Chapman, S. K. Rogers, B. W. Suter, M. Kabrisky and 
V. Pyati, “Pattern recognition using radial basis function network,” in  
Application of Artificial Intelligence Conf., Dayton, OH, 1990, pp. 249–260.  

[19] T. Yamakawa, “A novel nonlinear synapse neuron model guaranteeing a 
global minimum – Wavelet neuron,” in Proc. 28th IEEE Int. Symp. On 
Multiple-Valued Logic, Fukuoka, Japan, IEEE Comp. Soc., 1998,  
pp. 335–336. 

[20] Ye. Bodyanskiy, O. Vynokurova, and O. Kharchenko, “Hybrid cascade 
neural network based on wavelet-neuron,” Information Theories and 
Application, vol. 18, no. 4, pp. 335–343, 2011. 

[21] Ye. Bodyanskiy, N. Lamonova, I. Pliss, and O. Vynokurova, “An 
adaptive learning algorithm for a wavelet neural network,” Expert 
Systems, vol. 22, no. 5, pp. 235–240, 2005. 
http://dx.doi.org/10.1111/j.1468-0394.2005.00314.x 

[22] Ye. Bodyanskiy, I. Pliss, and O. Vynokurova, “Flexible neo-fuzzy 
neuron and neuro-fuzzy network for monitoring of time series 
properties,” Scientific J. of Riga Technical University. Information 
Technology and Management Science, vol. 16, pp. 47–52, 2013. 

[23] Ye. Bodyanskiy, O. Vynokurova, E. Yegorova, “Radial-basis-fuzzy-
wavelet-neural network with adaptive activation-membership function” 
Int. J. on Artificial Intelligence and Machine Learning, no. 8 (II),  
pp. 9–15, 2008. 

[24] G. C. Goodwin, P. J. Ramadge, and R. E. Caines, “A globally convergent 
adaptive predictor,” Automatica, vol. 17, no. 1, pp. 135–140, 1981. 
http://dx.doi.org/10.1016/0005-1098(81)90089-3 

[25] F. R. Gantmacher, The Theory of Matrices AMS, Chelsea Publishing: 
Reprinted by American Mathematical Society, 2000. 

[26] Data Market – the open portal to thousands of datasets [Online]. 
Available: http://datamarket.com/en/data/set/1loo/#!ds=1loo!1n6s=2qi. 
2ql.2qn&display=line&title=Average+monthly+temperatures+across+th
e+world+(1701-2011)&s=8gd 

 
Yevgeniy Bodyanskiy. In 1971 he graduated with honor from Kharkiv 
National University of Radio Electronics. In 1980 he defended the Ph.D. 
Thesis. In 1984 he took an academic title of Senior Researcher. In 1990 he 
defended the Doctor Thesis (Dr.habil.sci.ing.). In 1994 he took an academic 
title of Professor. Since 1974 he has been working at Kharkiv National 
University of Radio Electronics. In 1974-1976 he was a Researcher; in the 
period of 1977-1983, he was a Senior Researcher; in 1986-1991 he was a 
Scientific Head of Control Systems Research Laboratory; in 1991-1992 he 
was a Fellow Researcher. Since 1992 he has been a Professor of the Artificial 
Intelligence Department KhNURE, Scientific Head of Control Systems 
Research Laboratory KhNURE. He has more than 600 scientific publications, 
including 40 inventions and 12 monographs. Research interests include hybrid 
systems of computational intelligence: adaptive, neuro-, wavelet-, neo-fuzzy-, 
real-time systems, including problems connected with control, identification, 
forecasting, clustering, diagnostics, fault detection in technical, economical, 
medical and ecological objects. 
E-mail: bodya@kture.kharkov.ua. 
 
Olena Vynokurova. In 2002 she graduated with honor from Kharkiv 
National University of Radio Electronics. In the period of 2002-2005, she 
undertook the postgraduate study in the Artificial Intelligence Department. In 
2005 she defended the Ph.D. Thesis. In 2007 she took an academic title of 
Senior Researcher. In 2012 she defended the Doctor Thesis (Dr.habil.sci.ing.). 
Since 2002 she has been working at Kharkiv National University of Radio 
Electronics. Since 2014 she has been a Chief Researcher of the Control 
Systems Research Laboratory and since 2013 she has been a Professor of IT 
Security Department at Kharkiv National University of Radio Electronics. She 
has more than 120 scientific publications, including 2 monographs. Research 
interests include evolving hybrid systems of computational intelligence: 
wavelet neural networks, hybrid wavelet neuro-fuzzy systems, identification, 
forecasting, clustering, diagnostics, fault detection in technical, economical, 
medical and ecological objects. 
E-mail: vinokurova@kture.kharkov.ua.  
 
Oleksandra Kharchenko. She is a Master Student at Kharkiv National 
University of Radio Electronics. Her major field of research is hybrid neuro-
fuzzy systems for data mining problems. 
She has 10 scientific publications. Research interests include evolving hybrid 
systems of computational intelligence: wavelet neural networks, hybrid 
wavelet neuro-fuzzy systems, forecasting, clustering in technical, economical, 
medical and ecological objects. 
E-mail: kharchenko.alexandra@gmail.com.  

 
Jevgeņijs Bodjanskis, Jeļena Vinokurova, Aleksandra Harčenko. Uz wavelet neironiem balstītā minimālo kvadrātu atbalsta vektoru mašīna 
Atbalsta vektoru mašīnas (SVM), kuru arhitektūra sakrīt ar RBFN un GRNN, sinoptiskie svari tiek noteikti, risinot nelineārās programmēšanas uzdevumu, bet 
aktivācijas funkciju centri tiek noteikti pēc principa „neironi datu punktos”, kas pēc savas būtības ir dažādu neironu tīklu savdabīgs hibrīds, kuru apmācība 
bāzējas uz optimizāciju un atmiņu. Neskatoties uz vairākām SVM-tīklu priekšrocībām, no skaitļošanas viedokļa to apmācība ir pietiekami sarežģīts process, jo 
tas ir saistīts ar lielu dimensiju nelineāro programmēšanu. Tāpēc, kā SVM alternatīva, tika piedāvātas mazāko kvadrātu atbalsta vektoru mašīnas (LS-SVM), kuru 
apmācība vienkāršojas līdz lineāro vienādojumu sistēmu risināšanai, ko ir daudz vienkāršāk izskaitļot un var realizēt on-line režīmā. Klasiskais SVM wavelet 
analogs ir atbalsta vektoru wavelet mašīna (WSVM), kurā daudzdimensiju aktivācijas kodolu funkcijas ir aizvietotas ar adaptīvām viendimensijas wavelet 
funkcijām. Neskatoties uz to, ka WSVM piemīt vairāk iespēju, salīdzinot ar klasiskajām SVM, to aprēķinu apmācība ir saistīta ar pietiekami sarežģītu procedūru 
realizāciju, kas, loģiski, ierobežo to iespējas pielietošanai reāla laika uzdevumu risināšanai. Sakarā ar to kļūst aktuāla pietiekami vienkāršo wavelet neironu 
sistēmu izstrāde, kas balstās uz empīriskā riska minimizēšanu un orientējas uz informācijas apstrādi on-line režīmā. Kā šādu sistēmu bāzes elementu mēs 
pieņemam wavelet neironus, kam raksturīgas  augstas aproksimācijas īpašības, vienkāršība, ātra apmācība un iespēja atklāt datos paslēptās saites. 
 
Евгений Бодянский, Елена Винокурова, Александра Харченко. Машина опорных векторов наименьших квадратов на основе вэйвлет-нейрона 
Своеобразным гибридом различных нейронных сетей, обучение которых основывается как на оптимизации, так и на памяти, являются машины 
опорных векторов (SVM), архитектура которых совпадает с RBFN и GRNN, синаптические веса определяются в результате решения задачи 
нелинейного программирования, а центры активационных функций устанавливаются по принципу «нейроны в точках данных». И хотя SVM-сети 
обладают целым рядом несомненным преимуществ, их обучение с вычислительной точки зрения представляется достаточно трудоемким, поскольку 
связано с решением задач нелинейного программирования высокой размерности. В связи с этим в качестве альтернативы SVM были предложены 
машины опорных векторов наименьших квадратов (LS-SVM), обучение которых сводится к решению систем линейных уравнений, что гораздо проще 
с вычислительной точки зрения и может быть реализовано в онлайн режиме. Вэйвлет-аналогом традиционной SVM является вэйвлет машина опорных 
векторов (WSVM), в которой многомерные ядерные функции активации заменены одномерными адаптивными вэйвлет-функциями. И хотя WSVM 
обладает большими возможностями по сравнению с традиционными SVM, их обучение с вычислительной точки зрения связано с реализацией 
достаточно сложных процедур, что, естественно, ограничивает их возможности для решения задач реального времени. В связи с этим представляется 
целесообразной разработка достаточно простых вэйвлет-нейро-систем, реализующих идеи обучения, основанного на минимизации эмпирического 
риска и ориентированных на обработку информации в online-режиме. В качестве базового элемента таких систем нами принят вэйвлет-нейрон, 
характеризующийся высокими аппроксимирующими свойствами, простотой, высокой скоростью обучения и возможностью выявлять скрытые 
зависимости в обрабатываемых данных. 


