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Abstract − Stability of shock absorbers with thin-multilayered 
rubber-metal elements (TRME) of flat, circular shape is 
considered in this work. TRME packages that are used as 
vibration isolators usually work under heavy compressive loads, 
which may lead to buckling failure. 
Next, formulas for package design are derived: the dependence of 
the critical force on geometry of layer, on mechanical properties 
of material of elastomeric layers, on packages end-fixity 
conditions. The dependence of mechanical modules of elastomeric 
on the compressive load level is taken into account. The obtained 
solutions are compared to experimental data of other authors. 
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variational method. 

I. INTRODUCTION

Rubber (natural and synthetic) as construction material has a 
number of valuable properties: high elasticity, resistance to 
environmental influences, good dynamic characteristics [1], 
[2]. Laminated elastomer is the anisotropic elastic element of 
alternating thin layers of rubber and metal (or hard plastic) 
assembled by gluing or vulcanizing in a package of three or 
more layers having a large load carrying capacity (more than 
30 MPa) in normal to the layer direction and higher compliance 
(0–80 % of relative deformation) in the transversal direction. 
This allows to obtain structures, which have axial compression 
stiffness that is several orders greater than shear stiffness. 
Packages of thin-layered rubber-metal elements (hereinafter 
referred to as TRME) are successfully used as vibration 
isolators, shock absorbers, compensating devices, bearings, 
joints, etc. [1], [3]. In practice TRME packages of different 
geometrical form are used: flat of various shapes, cylindrical, 
conical, etc. Elastomeric layer is considered to be thin if its 
width/thickness ratio is much more than 10. Multilayered 
packets of TRME have extensive use in almost all spheres of 
engineering and construction (joints and bearings for various 
applications, support of engineering structures, vibration and 
shock absorbers etc.). In flat-type packages working under 
significant compressive loads, the buckling of the middle layers 
of packet is observed, i.e. package loses buckling stability, 
which leads to decrease of performance capabilities of packages 
and their failure. Buckling has shear instability form (the layers 
are shifted sidewise), rather than bending (as in the classical 
theory of rods stability). This occurs because of TRME stiffness 
under axial compression and bending stiffness are in several 
orders greater than the shear stiffness. 

Gent A. N. considers the stability of structures with thick 
rubber layers (with the shape factor ≈1) based on the classical 
Timoshenko theory of rods [3]. This approach and the main 
position of Gent’s work was later used by many authors [5], [6], 
but further investigations show that application of these 
solutions to thin rubber-metal elements leads to significant 
errors [2], [4]. Many successive works deal with TRME 
package buckling stability [7]−[9], the method of bending 
stiffness calculation based on the assumption that middle 
surface of elastomeric layer remains flat under deformation was 
elaborated.  

When designing TRME packages, it is necessary to have an 
analytical expression (preferably in a simple manner) to 
calculate the critical external load taking into account TRME 
geometric parameters, scheme of external load imposing and 
method of TRME packet fastening, as well as mechanical 
properties of materials to improve their operational 
characteristics and increase permissible rate of compressive 
loads.  

In this study all factors mentioned above are taken into 
account for the example of critical force calculation for the flat-
type TRME of circular shape (Fig. 1). 

II. ANANALYTICAL DECISIONS FOR THE MATHEMATICAL 
MODEL OF ТRМЕ PACKET 

In studies mentioned above it is assumed that: 
nonelastomeric layers are nondeformable, external forces are 
conservative, elastomeric and nonelastomeric layers are rigidly 
connected to each other, the deformation of each individual 
TRME is linear. Besides that, the assumptions are introduced 
that the elastomeric material layer is volumetrically 
incompressible and its mechanical properties are not dependent 
on the rate of external loading. But there is no argumentation 
for applicability domain of the assumptions listed above and 
estimation of their influence on numerical value of the critical 
forces. In this paper the methodology of calculation of the 
critical force for TRME package buckling taking into account 
the weak compressibility of elastomeric layers and shear 
modulus dependence on the load level (which were not 
considered in the works [2]), is discussed. For example, the 
stability problem of a circular-type, flat TRME package under 
axial compression between two flat parallel plates with force P 
is considered. In Fig. 3 the forms of loss of stability of TRME 
device under axial compression are shown; because the 
compression and tension stiffness are much greater than share 
stiffness, the considerion of buckled shape includes share 
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deformation (Fig. 3c). TRME package (of thickness H = hcN) 
consists of N individual identical sections. Each section 
(thickness hc = he + h0) consists of nondeformable metal plate 
(thickness – h0) and is vulcanized to an elastomeric layer 
(thickness − he and sectional area − F), deformation of which is 
considered small. When calculating the shear stiffness of 
elastomeric element Ky of shear force Py scheme of simple share 
is applied; for bending stiffness T calculation − scheme in which 
metal plates are rotated in respect to each other, relative to the 
axis of symmetry. 

 

 
Fig. 1. Examples of multilayer elastomeric structures: 

a) flat, rectangular, b) flat, circular. 
 

 
Fig. 2. Scheme of compression of a TRME section. 

III. MODELS OF TRME PACKAGE 
Based on Timoshenko beam model, the critical force was 

derived in [2] for scheme a) and c). In paper [2] the loss of 
stability of TRME package with the square section of rubber 
layer and fixed end point is discussed; in particular, Euler 
buckling with share contribution. The condition of stability and 
the critical force for this case is: 
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Shear stiffness of the elastomeric layer Ky, determined from 
pure shear scheme, and bending stiffness T without accounting 
of elastomeric layer low compressibility is: 
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where: G – shear modulus of the elastomer; Ix – axial moment 
of inertia of the cross section of element of the TRME package; 
Ф – shape factor; γ – empirical coefficient; Fl – loaded surface 
area of the block; Ff  – free surface area.  

 
Fig. 3a. Loss of stability of TRME device under axial compression: Euler 
buckling. 

 
Fig. 3b. Loss of stability of TRME device under axial compression: pure shear 
buckling. 

 

 
Fig. 3c. Loss of stability of TRME device under axial compression: Euler 
buckling with share contribution. 

The dependence (1) gives acceptable results for elastomeric 
layers with a shape factor 1–2 (or b/he < 5), small deformations 
(< 10–15 %) and for specific axial load Pz/F till 5–10 MPa [3]. 

Presented articles task is to determine the critical axial 
compression force for small and middle (15–60 %) 
deformations domain with thin layers (b/he > 10) and high 
specific axial loads (Pz/F > 10 MPa). In this case instead of 
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stiffness (2) to substitute shear Ky and bending T, stiffness is 
calculated accounting to weak compressibility of elastomeric 
layer and the loading level effect on the shear modulus of the 
elastomeric material.  

IV. MATHEMATICAL MODELS OF SIMPLE TRME LAYER 
Flat, circular TRME is considered in cylindrical coordinate 

system r, φ, z (Fig. 1). 
 
 

 
Fig. 4. Scheme of shear for TRME section. 

 
 
 

 
Fig. 5. Scheme of bending for TRME section. 

. 
 
Shear stiffness of the precompressed thin elastomeric layer 

Ky that is determined from pure shear scheme (Fig. 4) is 
calculated using the formula: 
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∆ − axial deformation of the elastomeric layer (Fig. 2).  
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This dependence is confirmed by shear deformation 
experiments on the preloaded TRME [7], [8]. Flat circular 
TRME is considered in cylindrical coordinates. Required 
dependences “Pz – Δ” and “M – β” (“axial force − 
displacement” and “bending moment – rotation angle”) are 
defined by means of the Ritz’s method, minimizing the 
additional strain energy [7], subject to the weak compressibility 
of elastomer, assuming that metal layers are nondeformable 
either (or may undergo only a plane tensile strain): 
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Here: K and μ – accordingly, bulk modulus and Poisson ratio 

of elastomeric layer, σ – average stress (called specific 
hydrostatic pressure S). Stress state of the elastomeric layer is 
determined by the superposition of shear stress on the 
hydrostatic pressure [7], [8]. Stress components must satisfy the 
equilibrium equations and boundary conditions for the 
components of stress on the elastomeric layer, where loading is 
set. 

In the case of bending (load scheme is given in Fig. 5) for the 
stress distribution in the middle layer of flat TRME, the 
hypothesis is applied [8]: 
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With regard to this, the equation of equilibrium in the volume 

of the elastomeric layer will be satisfied if: 
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Boundary conditions for stress on the free surface of the 
elastomeric layer are: 
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Taking into account the boundary conditions, equations for 
stress functions are chosen: 









−=

b
r

b
rCr 3

3

1 cos),( ϕϕσ , 

2 3( , ) ( , ) coszz
rr C S r C
h

σ φ φ φ= + . 

 

Constants C1, C2, C3 are found by minimizing of the 
functional (4) of additional energy. 
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The dependence “M – β” and, hence, bending stiffness is 
defined from the equation: 

( )
2

2

0 0
2

2

0 0

cos sin d d

cos d d .

b

zz rr

b

zz

M r r

r r

π

π

= − σ φ−σ φ φ =

= − σ φ⋅ φ

∫ ∫

∫ ∫
 

Bending stiffness of elastomeric layer with accounting of 
elastomeric layer weak compressibility is:  

(6) 
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Bending stiffness T1 without accounting of elastomeric layer 
low compressibility (K → ∞) is:  
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Dependences (6) and (7) may be used in the case of the 
precompressed TRME at low axial deformation under 
preloading. In case of average deformation the dependence may 
be obtained from (6) using the delta method of integration 
[8],[10]: 
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Bending stiffness without accounting of elastomeric layer 
low compressibility is:  
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In the case of axial compression (load scheme is given in Fig. 
2) “Pz – Δ” dependence is defined the same way. “Pz – Δ” 
dependence accounting low compressibility of elastomer is:  

 

12

2 2

2
2e e
e

21
3 1 231 1

2 11 1
33 3

z

G
FG b b GKP GG Gh h h K

KK K

−   −    ∆    = + +     ++ +           

.        (10) 

“Pz – Δ” dependence without elastomeric layer low 
compressibility taken into account is:  
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Dependences (10), (11) are used in the case of low axial 
deformation. In case of average deformation “Pz – Δ”, 
dependence taken into account of elastomeric layer low 
compressibility, is obtained using the delta – method of 
integration [7], [8]: 
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“Pz – Δ” dependences without accounting of elastomeric 
layer low compressibility are:  
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V. MATERIAL MODEL OF ELASTOMER 
Results of experiments on thin TRME compression [2], [9] 

show that at relatively small strains (up to 10–15 %), specific 
loading (Pz/F) may reach 200 MPa. The dependence of the 
"force-displacement" has highly nonlinear character, indicating 
that the mechanical modules of elastomer depend on the level 
of specific compressive strength even in small deformations 
area. In experimental studies it is shown that shear and bulk 
modulus of elastomeric layer G and K depend on the intensity 
of the specific loading if S = Pz/F is more than 5 MPa [9]. 

In order to take into account load intensity influence on 
"force − displacement" dependence and on the critical force, it 
is proposed to substitute the values G(S) and K(S) instead of 
modules G and K. For thin, flat elastomeric layers it can be 
assumed with sufficient accuracy that S = Pz/F (where F − the 
area of plane layer). This approach allows calculation of G(S) 
and K(S) from the volumetric “tension – compression” 
experiments with accuracy up to the assumption of small 
deformations. Due to the lack of experimental data, it is 
proposed in [9] at first approximation to assume that the 
dependence of G(S) and K(S) has the same type: 

,1)()( βSKSKGSG +=≈  (14) 
where β − empirical coefficient is defined from experiment on 
pure volumetric compression. 
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These equations (6)–(14) using (1) allow to estimate critical 
force for large values of specific external compressive load. The 
order of critical buckling force calculation: in accordance with 
(1), (2) the preliminary force is defined; for this Pz hydrostatic 
pressure S and displacement Δ in accordance with (10), (12), 
(14) are defined; depending on Δ value bending and shear
stiffness (T, Ky) are defined using equation (6), (8), (3); (14);
received T and Ky are substituted in (1) and Pcr is calculated. If
necessary, calculation is repeated till the coincidence of
received and previous critical forces.

VI. NUMERICAL EXAMPLES

The results of critical force calculation for flat rectangular 
TRME package with typical in industrial application 
dimensions are presented below. Plots of buckling force 
dependence on the number of sections in packet are given for 
TRME, which is presented in [2]. For thin, layered packages 
experimental critical force is much greater than the calculated 
in accordance with conventional equations (1) and (2). 

In Fig. 6 the critical buckling force plots for sample with 
brass bonded layers are given; layer dimensions: b = 27.5 mm, 
he = 1.0 mm, ho = 0.1 mm, section height hc = he + ho = 
1.10 mm, Φ = 27.5, TRME package height H = hcN + ho, where 
N – number of sections. Mechanical properties of elastomers: 
G = 1.17 MPa, K = 2760 MPa, μ = 0.49936, β = 0.001.  

Fig. 6. Plots of critical force dependence on the number of sections with 
he = 1 mm:  − in accordance with equations (1) and (2), − in 
accordance with (8), (12), (3), (1),  − in accordance with (8), (12), (3), 
(1), taking into account (13). 

Fig. 7. Plots of critical force dependence on the number of sections with 
he = 0.5 mm:  − in accordance with equations (1) and (2), − in 
accordance with (7), (11), (3), (1),  − in accordance with (6), (10), 
(3), (1) and (13). 

In Fig. 7 critical buckling force plots are presented for the 
sample of the same material with the same b and ho, but 
he = 0.5 mm, hc = 0.6 mm, shape factor Φ = 55. 

Specific load in all cases is more than 100 MPa. It is seen 
from the plots how critical force value depends on the 
thickness of elastomeric layers and on the number of 
sections. 

VII. CONCLUSION

This work presents the methodology of the buckling force 
calculation for thin-layered rubber-metal packages widely used 
as vibroisolators, shock absorbers, and compensation devices. 
Such devices usually carry a very large load and should be 
checked for buckling. Three approaches are discussed: 
conventional, taking into account the thickness of elastomeric 
layers, taking into account the thickness of elastomeric layers 
and changing of the elastomeric mechanical properties (shear 
and bulk modules) depending on pressure. The results of 
numerical examples show, that when the number of layers in 
package increases, the critical force value becomes closer. Each 
type of TRME demands an individual approach. 
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Vladimirs Gonca, Egons Lavendelis, Māris Eiduks. Multislāņu gumijas-metāla amortizatora stabilitāte 
Šajā darbā apskatītas daudzslāņu gumijas – metāla plakanu elementu paketes (TRME), kas tiek pielietotas kā vibrāciju izolatori pie bīdes un kompresijas 
slogojumiem dažādās mašīnbūves nozarēs, kā arī celtniecības konstrukcijās. Vibrāciju izolatoriem paredzētajās TRME paketēs pie ass virziena spiedes slogojuma 
galvenā bīstamība saistās ar iespējamību zaudēt garenvirziena stabilitāti. Pielietojot Timošenko matemātisko modeli, ņemot vērā šķērsspēku, tiek sastādīts 
matemātiskais modelis TRME pakešu garenvirziena stabilitātes pētīšanai ass virziena spiedē. Ņemot vērā: slāņu skaitu, ģeometriskās īpašības, iestiprināšanas veidu, 
mazās un vidējās elastomēru slāņu garenvirziena deformācijas − iegūti analītiskie vienādojumi TRME pakešu kritiskā spēka noteikšanai. Pielietojot dažādu autoru 
eksperimentālos rezultātus, tiek ņemta vērā elastomēra fiziskā nelinearitāte – atkarībā no bīdes moduļa un elastomēra tilpuma moduļa atkarības no hidrostatiskā 
spiediena elastomērā. Iegūtās analītiskās atkarības sniedz iespēju projektēt TRME paketes ar to dažāda veida iespējām stiprināšanai, nodrošinot garenvirziena 
stabilitāti nepieciešamajā darba slodžu diapazonā. Analītiski izteiktie TRME pakešu stinguma raksturlielumi pie bīdes, izlieces un garenvirziena spiedes iegūti ar 
Ritca metodi, pielietojot pievienoto deformāciju potenciālās enerģijas minimuma principu. Pētījuma rezultāti tiek salīdzināti ar teorētiskiem un eksperimentāli 
iegūtiem rezultātiem no citu autoru darbiem. 
 
 


