
Applied Computer Systems doi: 10.1515/acss-2015-0014

___ 2015/18

15

A Prototype of Description Language for the

Two-Hemisphere Model

Konstantins Gusarovs1, Oksana Nikiforova2, Maris Jukss3
1,2 Riga Technical University, Latvia, 3 McGill University, Canada

Abstract – Nowadays, it is a modern trend to develop a CASE

tool for system modelling with an ability to transform models

defined in different notations and also to generate a program

code. However development of such a tool often involves

experimentation with transformation algorithms that may

require changes to the source model structure. Since CASE tools

are basically used to represent a model in diagram’s form,

implementing experimental changes in a modelling tool can

require additional effort. In order to solve this problem, authors

propose a way of describing the two-hemisphere model using

Domain Specific Language. This paper covers the language’s

syntax as well as provides an example of the two-hemisphere

model defined with its help.

Keywords – Two-hemisphere model, Domain Specific

Language, system modelling, Extended Backus–Naur Form.

I. INTRODUCTION

In the last 10 years business process modelling has become

one of the most popular trends in software development [1].

Models are being used in various stages of software

development process [2], however, most often they are being

applied at the initial business analysis process. Usually, the

system model is organized as a set of diagrams where specific

notation is defined for each diagram thus specifying diagram’s

syntax and semantics. Various types of notations were

developed over the last decade and researchers seem to be

concentrating their efforts in developing new notations as well

as appropriate transformations in order to use those models in

practice [1]. Continuous improvement of the transformation

method can require several changes to the source models,

however, before introducing such changes it is often necessary

to perform various experiments in order to determine if the

change proposed will result in actual method’s improvement.

Since many CASE tools are using graphical notation

representing models in a diagram form, such experimentation

can require additional work in order to introduce a method of

creating diagrams with enriched notation.

In order to solve this problem, i.e., necessity to enrich the

notation without introducing too many changes into the CASE

tool, it is possible to use various methods that will enable

experimentation on existing models in order to enrich them.

Usually, the CASE tool consists of several isolated

components: model editor, model repository, model validation

module, transformation editor and transformation repository

[3]. In order to change a model’s notation and perform

transformation tests it is not necessary to apply changes to all

of those modules. It is possible to achieve results only by

changing the model repository as well as transformation

repository. In cases when models are stored using one of the

plain text based formats, e.g., XML, it is possible to achieve

the result by manually changing the model’s structure.

However, this approach cannot be used in case when the

model is stored using binary formats. Even the model stored in

XML file can be hard to modify by human – it could have

complex structure and a single element of the model could be

represented by several locations of the file. In order to solve

this problem authors propose to use Domain Specific

Language (DSL) for model description that can be modified

with minimal effort, demonstrate the ability to develop such

language for the two-hemisphere model and apply it to the

two-hemisphere model based approach.

 The paper is structured as follows. Domain specific

languages are described in the second section. The two-

hemisphere model driven approach is described in the third

section. The proposed domain specific language is described

in the fourth section. The fifth section covers the technologies

used by authors for language development, and the sixth

section provides an example of the two-hemisphere model

defined with the help of the proposed language. Finally, the

seventh section contains authors’ conclusions as well as

covers several areas of the future work.

II. DOMAIN SPECIFIC LANGUAGES

In comparison to General Purpose Languages (GPL)

Domain Specific Languages are specialized for describing

concrete problem domain/domain of knowledge [4], [5]. DSLs

usually trade the generality of the programming language in

favor of expressiveness in a limited area. Use of a domain

specific language enables additional verification, analysis and

optimization possibilities that would be harder to achieve

using GPL [5]. In case of business modelling it is possible to

define Extensible Markup Language (XML) as a general

purpose language and its dialects as a DSL – while general

XML offers more flexibility and can be used to describe any

information (in this case a model), its specific dialect is more

expressive and describes problem domain more effectively.

While the development of DSL can offer additional benefits

it could be costly and the resulting language should be able to

cover all the development costs [5]. It is worth developing one

when its potential users have more domain knowledge and less

programming expertise which applies to business modelling.

While working on the improvements of the two-hemisphere

model driven approach authors of this paper have defined the

necessity for such a language since continuous development

also includes changes to a metamodel that have to be

DE GRUYTER

OPEN

Applied Computer Systems

 ___ 2015/18

16

evaluated. As a result it is vital to have a way of representing

the two-hemisphere model and its new features in a human

readable form that can be rapidly integrated into the model

and transformation repositories in order to perform tests and

an analysis. Since the two-hemisphere model itself is a set of

diagrams, it is quite a time-consuming task to implement

experimental features in a functional model editor.

Considering this, authors decided that it is worth

implementing a DSL language for describing the two-

hemisphere model.

In order to develop a domain-specific language it is

necessary to define the basic element of the problem domain

and create their appropriate representations using a chosen

syntax. After all the basic constructs are defined, validation

and semantical rules have to be developed thus finalizing the

DSL’s design. Depending on DSL’s syntax it is possible to

express it using different notations. For example, when a

domain-specific language is XML based, it is possible to

specify it using XML schemas [6]. Text based DSL can be

described using Extended Backus-Naur Form (EBNF) [7].

Authors of this paper are using the latter approach for the

syntax definition.

In case of Model-Driven Software Development (MDSD)

the graphical model itself is usually considered the domain

specific language [1]‒[5] so there are very few related works

on the topic. Authors consider that this is happening due to the

large amount of purely-theoretical researches in this area.

There are very few model-driven approaches having a tool

supporting the transformations proposed by their authors since

the development of such a tool is a task requiring a lot of

effort. There is also existing a risk connected to such a

development of such a tool – in case the initial theories and

proposed approaches fail to prove being correct it would

require rewriting of the tool’s code. This is proven also by the

experience of authors in the development of the CASE tool

supporting model transformations for the two-hemisphere

model driven approach which is described in the next section.

III. THE TWO-HEMISPHERE MODEL DRIVEN APPROACH

The two-hemisphere model was first presented by Oksana

Nikiforova and Marite Kirikova in 2004 [8]. The first attempt

to transform the two-hemisphere model into a Unified

Modelling Language (UML) class diagram required the use of

the intermediate model, i.e., the UML sequence diagram, in

order to gain the results. Later the approach was improved by

Oksana Nikiforova and Natalia Pavlova in 2008 [9] by using

the UML communication diagram as well as enriching the

resulting UML class diagram with more elements.

Several versions of a tool, named BrainTool, supporting the

two-hemisphere model driven approach were developed in

Riga Technical University in 2012 [10] and 2013‒2014 [11]

further improving transformation algorithms, eliminating the

necessity for the intermediate results as well as introducing

new result of the transformation – the UML sequence

diagram, and enriching resulting models with additional

information. During the development of both initial and

following versions of the BrainTool the model itself was

improved and enriched with additional information (e.g.,

single performer of the external process – see the next

paragraph which was changed to many) which resulted in a

change of metamodel and caused large amount of the model

editor. Another problem that authors encountered was the

inability to prove that the changes to metamodel would

actually be useful before implementing those in the tool itself.

This means that the tool has to support the new untested

metamodel in order to test it. All this leads to the large amount

of work to be done in order to simply test some theories. As a

result of the lessons learned during the tool development,

authors state that another way of model representation is

required. The requirements for this way of representation are

the following:

 It should be possible to change the metamodel with the

least effort that graphical representation incorporates.

Graphical representation is easy to read but even a small

change of it requires several changes in both the model

repository (in order to store the new information) and the

model editor (in order to make it editable).

 The model representation should be easy to read and

conceive by a human thus keeping the advantages of the

graphical model representation.

 It should be possible to change the metamodel without

changing the tool itself so the actual tool would receive

only the tested changes thus eliminating the necessity of

code rollbacks if some improvement fails to prove its

worth.

As a result authors have made a decision of using the text-

based DSL for model representation.

Fig. 1. Notation of the two-hemisphere model.

The two-hemisphere model consists of two models used in

the transformation process serving as a source for the

produced UML class and sequence diagrams. The overall

model structure is presented in Fig. 1. Graph G1 in Fig. 1 is

referred as the process model and consists of the process

nodes connected with data flows. The data flows in turn are

representing information exchange between those processes

and are linked with the concepts of the concept model (Fig. 1,

Graph 2). Each of the concepts can be described by its name

and attributes, where an attribute consists of the name and

Applied Computer Systems

 ___ 2015/18

17

type. It is worth mentioning that in addition to using primitive

types (e.g., integer, string etc.) it is possible to set the

attribute’s type to one of the concepts as well as define

cardinality of the attribute – defining if it is referring to a

single appropriate object’s entry or array. In turn each of the

processes in the process model can be defined as an internal or

external process. The main difference between internal and

external processes is a restriction on incoming/outgoing data

flows – external processes can only produce or accept them

whilst internal process both consume and produce

information. It is possible to define one or more performers for

a process.

Using this notation it is possible to identify the main

elements of the model in order to create appropriate DSL

constructions for the element representation. Such elements

are process, concept and data flow. The two-hemisphere

model driven approach states that the system can be described

using several different process models but only one common

concept model is present. Using this information it is possible

to define the final DSL element – process model. As described

in the following section this minimal set of four basic

elements is enough to define two-hemisphere models with the

help of DSL.

IV. THE TWO-HEMISPHERE MODEL DOMAIN SPECIFIC

LANGUAGE

 As defined in the previous section the two-hemisphere

model DSL language contains four elements: concept, process,

data flow and process diagram. Before describing these

elements it is necessary to introduce three special syntax

constructions used in later definitions. These constructions are

presented in Fig. 2.

Fig. 2. Common DSL constructions.

String is used to represent character sequences and its

syntax corresponds to a string literal syntax in the Java

programming language. It is a sequence of Unicode

characters enclosed in double quotation marks with escape

sequences for specific characters – such as tabulations, line

breaks etc.

Identifier is used to name the elements of the two-

hemisphere model and its syntax corresponds to the identifier

syntax in various programming languages (e.g., Java, C,

Pascal etc.) with the exception of underscore symbol not being

allowed. Identifier consists of Latin letters and numbers

and should start with a letter.

Glue is a special token that has no specific semantical

meaning but is used in the two-hemisphere model element

definition when the element’s internal structure is being

described. Glue is one of the following words: “WITH”,

“AND”. Both words have the same meaning in a parsing

context but can be used in order to increase the expressiveness

of the model definition.

The next element of the DSL language describes the

concept and its attributes. EBNF definition of this element is

presented in Fig. 3.

Fig. 3. Concept definition in the proposed DSL language.

Concept definition starts with keywords “DEFINE

CONCEPT” and consists of one or more concept field

definitions. Concept field is either its name, description,

comment for it or one of the concept attributes. For each of the

attributes its name and type have to be defined. It is also

possible to define appropriate attribute’s cardinality which can

take one of the following values: “SINGLE”, “ARRAY”,

“COLLECTION”. Concept definition is terminated by

keyword “END CONCEPT”. In case there are multiple concept

name, description or comment definitions parsing error is

being triggered. In case when the concept’s name is not

defined it is assigned automatically in a form “Concept X”

where X is an auto-incremented number starting from 1.

cardinality = 'SINGLE' | 'ARRAY'

 | 'COLLECTION';

cardinal_def = 'HAVING' cardinality

 'CARDINALITY';

type = identifier;

concept_id = identifier;

attribute_name = string;

name_def = glue 'NAME' string;

description_def = glue 'DESCRIPTION'

 string;

comment_def = glue 'COMMENT'

 string;

attribute_def = glue 'ATTRIBUTE'

 attribute_name '('

 type ')' [cardinal_def];

concept_param = name_def

 | attribute_def

 | description_def

 | comment_def;

concept = 'DEFINE CONCEPT'

 concept_id

 concept_param*

 'END CONCEPT';

character = any Unicode character

 except '\' and '"';

escape_sequence = '\b' | '\t' | '\n' |

'\f'

 | '\r' | '\"' | '\'';

string_character = character

 | escape_sequence;

string =

 '"' string_character* '"';

identifier_letter = 'A' – 'Z' | 'a' – 'z'

digit = '0' - '9';

identifier_letter_or_digit =

 identifier_letter

 | digit;

identifier = identifier_letter

 identifier_letter_or_digit*;

glue = 'WITH' | 'AND';

Applied Computer Systems

 ___ 2015/18

18

Description of the process in the proposed DSL language is

similar to a concept definition and starts with keyword

“DEFINE PROCESS”. Possible fields in a process definition

include process type definition (i.e., internal/external), one or

more performers definition and name definition. If there are

several name, type, comment or description definitions,

parsing error is being triggered. When the process name is not

defined it is being assigned automatically in the way similar to

the automatic concept name assignment. Process definition

ends with keyword “END PROCESS”. EBNF definition of a

process element is shown in Fig. 4.

Fig. 4. Process definition in the proposed DSL language.

EBNF definition of a data flow element is shown in Fig. 5.

Data flow fields are enclosed between keywords “DEFINE

DATA FLOW” and “END DATA FLOW” and may contain

name, description, comment definitions as well as a definition

of a concept that is assigned to a data flow. Similarly to

concept and process definitions, duplication of name,

comment and description fields is not allowed however the

data flow definition introduces additional restrictions –

processes and concepts used in it should be defined. In case

when the name is not present, it is automatically generated.

Fig. 5. Data flow definition in the proposed DSL language.

The last DSL’s element is the definition of a single process

model. Its EBNF definition is shown in Fig. 6. It features the

same basic fields and rules applied to them as the previously

described elements – name, comment and description. Field

specific to this elements is a reference to a defined process. If

parser is unable to find the referenced process, an error occurs.

Data flows are not being included in the process model

definition since it is possible to identify those using processes

included in the process model. If it is impossible to define data

flow’s adherence to a single process diagram (i.e., the

processes it connects belong to different process models), an

error is triggered.

Fig. 6. Process model definition in the proposed DSL language.

V. IMPLEMENTATION DETAILS

After defining the proposed DSL’s structure authors

analyzed the possibilities to implement its parser in order to

use it in the improvement of the two-hemisphere model driven

approach. Since language syntax is defined using EBNF

notation it would be possible to create a recursive descent

parser [7], however, current state of art in a parser

development allows to use tools that are able to generate the

parser’s code using the rules defined in a syntax similar to

EBNF [12], [13]. Authors have chosen to use the ANTLR tool

[13] that allows generating Java code for parsing defined

grammar rules. The main reason for choosing this tool was the

fact that it produces Java code – the last version of the

BrainTool [11] was developed using Java. ANTLR uses

grammar rules that are defined in a notation similar to EBNF.

The example of ANTLR’s rules, that correspond to the

identifier construction, is shown in Fig. 7.

Fig. 7. Identifier construction defined in ANTLR.

process_type = 'INTERNAL' | 'EXTERNAL';

process_id = identifier;

process_type_def = glue 'TYPE'

 process_type;

performer_def = glue 'PERFORMER' string;

process_param = name_def

 | description_def

 | comment_def

 | process_type_def;

process = 'DEFINE PROCESS'

 process_id

 process_param*

 'END PROCESS';

data_flow_id = identifier;

concept_ref_def = glue 'CONCEPT'

 concept_id;

dataflow_param = name_def

 | description_def

 | comment_def

 | concept_ref_def;

data_flow = 'DEFINE DATA FLOW'

 data_flow_id

 'FROM' process_id

 'TO' process_id

 dataflow_param*

 'END DATA FLOW';

process_model_id = identifier;

process_ref_def = glue 'PROCESS'

 process_id;

process_m_param = name_def

 | description_def

 | comment_def

 | process_ref_def;

process_model = 'DEFINE PROCESS MODEL'

 process_model_id

 process_m_param*

 'END PROCESS MODE';

fragment

IdentifierLetter

 : [a-zA-Z]

 ;

fragment

IdentifierLetterOrDigit

 : [a-zA-Z0-9]

 ;

Identifier

 : IdentifierLetter

 IdentifierLetterOrDigit*

 ;

Applied Computer Systems

 ___ 2015/18

19

One of the main advantages over the raw EBNF notation is

a possibility to use character classes similar to the ones used in

regular expressions. Java code generated by the ANTLR tool

contains the class that implements observer pattern and should

be extended in order to process grammar constructions that

appear in a source code being parsed. For each grammar

construction ANTLR creates two methods called

enterGrammarConstruction and

exitGrammarConstrution that will be invoked when

the parser begins and finishes specific grammar construction

processing. Examples of such methods generated for

process_type construction are shown in Fig. 8.

Fig. 8. Observer methods generated by ANTLR.

In order to transform DSL specification of a two-

hemisphere model it is necessary to extend ANTLR’s

generated observer class and override its methods responsible

for appropriate model element processing. As a result new

element can be added to a model by performing steps: 1.

define new ANTLR grammar rule; 2. define parsing logic in

observer class.

This way it is possible to rapidly change the model notation,

test it and analyze the results gained. It is not necessary to

change the model editor and possible to perform experiments

on a two-hemisphere model by changing its metamodel using

fewer actions than it would be when using the CASE tool. As

it was already stated, CASE tool consists of model editor,

model repository, model validation module, transformation

editor and transformation repository [3]. DSL language

combines the first three elements into a set of grammar rules

and parsing process observer that can be changed with less

effort comparing to the tool with a graphical interface.

VI. APPLICATION OF THE PROPOSED DSL FOR A SIMPLE

EXAMPLE OF THE TWO-HEMISPHERE MODEL

In order to demonstrate proposed capabilities of DSL

authors present a simple two-hemisphere model that

corresponds to an abstract use case of adding entry into the

database. It contains a single concept that describes a structure

of the entry being added and a single process model with three

processes: receive entry from user, validate it and save in a

database. This model created by the latest version of the

BrainTool is shown in Fig. 9 and an appropriate DSL

definition of the same model is presented in Figure 10.

While sharing the same information as the graphical two-

hemisphere model, DSL definition is significantly larger and

might be harder to read. However, DSL syntax modification

requires less effort than graphical notation modification.

Another information that is currently missing from the

proposed DSL but is present in CASE tool supporting the two-

hemisphere model driven approach, is information on element

geometry – this information is not vital for model definition

and transformation and is only required for displaying the two-

hemisphere model.

Fig. 9. Example of the two-hemisphere model.

Fig. 10. DSL definition of the sample model.

void enterProcessType(@NotNull

 THMLParser.ProcessTypeContext ctx);

void exitProcessType(@NotNull

 THMLParser.ProcessTypeContext ctx);

DEFINE CONCEPT News

 WITH NAME "News"

 AND ATTRIBUTE "title"(string)

 AND ATTRIBUTE "body"(string)

END CONCEPT

DEFINE PROCESS EnterNews

 WITH NAME "Enter news"

 AND PERFORMER "UI"

 AND TYPE EXTERNAL

END PROCESS

DEFINE PROCESS ValidateNews

 WITH NAME "Validate news"

END PROCESS

DEFINE PROCESS SaveNews

 WITH NAME "Save news"

 AND PERFORMER "database"

 AND TYPE EXTERNAL

END PROCESS

DEFINE DATA FLOW EnteredNews FROM EnterNews

 TO ValidateNews

 WITH NAME "news"

 AND CONCEPT News

END DATA FLOW

DEFINE DATA FLOW ValidatedNews FROM

 ValidateNews TO SaveNews

 WITH NAME "validated news"

 AND CONCEPT News

END DATA FLOW

DEFINE PROCESS MODEL ValidateAndSaveNews

 WITH PROCESS EnterNews

 AND PROCESS ValidatedNews

 AND PROCESS SaveNews

END PROCESS MODEL

Applied Computer Systems

 ___ 2015/18

20

VII. CONCLUSION AND FUTURE WORK

This paper presents the DSL language developed for

representing a two-hemisphere model. The proposed language

allows representing the model in a text form using specific

syntax that is described in the paper using EBNF notation. The

proposed DSL allows a two-hemisphere model definition and

its validation based on semantic rules. While the proposed

domain-specific language allows the definition of the two-

hemisphere model it stores no information on model element

geometry that is currently being stored by the BrainTool.

However, the proposed DSL can be modified in a rapid way

which is usable in both model and its transformation

improvement enabling more experimentation possibilities than

the graphical notation of the model. The proposed DSL

language provides wide possibilities for future use and

experimentation. The future work that the authors are planning

could include DSL enrichment with additional elements that

are currently missing from it. It is possible to define syntax

constructions for representing the geometry data for the

elements being defined, thus allowing the usage of DSL as the

main way of storing the two-hemisphere model. In this case it

would be possible to integrate the DSL into the before

mentioned BrainTool CASE tool.

Another direction of the future work includes the two-

hemisphere model and its transformation improvement using

capabilities of the proposed language. In order to enable this, it

is necessary to integrate the proposed DSL into the BrainTool.

Since the proposed solution combines model repository, model

editor and model validator and produces Java language objects

compatible with the BrainTool’s implementation, all the

changes made to the transformation modules would mainly

consist of actual improvements to the approach.

It is also possible to enrich the proposed DSL with

constructions that will support UML artefacts such as a class

diagram or a sequence diagram. Such an enrichment of the

language proposed will allow its usage in other tools and

approaches and will increase the contribution of this research.

To sum up, the proposed way of the two-hemisphere model

definition has the following advantages over the XML model

description used in the BrainTool: it is easy to modify the

metamodel enriching the two-hemisphere driven model

approach with new capabilities, models can be edited without

necessity to use graphical CASE tool; large amount of

experimentation with different model elements is enabled.

As a final conclusion authors would like to state that the

main goal – to create a new way of two-hemisphere model

representation that will allow to easily modify its metamodel

and test new features – was reached. The authors plan to

widely use the proposed DSL in their future research in the

model-driven software development area.

ACKNOWLEDGMENT

The research presented in the paper is supported by Latvian

Council of Science, Project No. 342/2012 "Development of

Models and Methods Based on Distributed Artificial

Intelligence, Knowledge Management and Advanced Web

Technologies".

REFERENCES

[1] W.P.M. van der Aalst, “Business process management: A

comprehensive survey,” ISRN Software Engineering, vol. 2013, 2013.

http://dx.doi.org/10.1155/2013/507984
[2] M. Brambilla, J. Cabot, M. Wimmer, Model-Driven Software

Engineering in Practice. 1ed. USA: Morgan & Claypool Publ., 2012.
[3] A. Kleppe, J. Warmer, W. Bast, “MDA Explained: The Model Driven

Architecture – Practise and Promise, Addison-Wesley, 2003, 170 p.

[4] L. Benoît, C.-E. Jitia, E. Jouenne, “DSL classification,” OOPSLA 7th
workshop on domain specific modeling. 2007.

[5] M. Mernik, J. Heering, A. M. Sloane, “When and how to develop
domain-specific languages,” ACM Computing Surveys, vol. 37(4),

pp. 316–344, 2005. http://dx.doi.org/10.1145/1118890.1118892

[6] W3C XML Schema [Online]. Available:
http://www.w3.org/XML/Schema [Accessed: Oct. 6, 2015].

[7] D. Grune, C.J.H. Jacobs, Parsing Techniques – a Practical Guide. Ellis
Horwood, Chichester, England, 1990.

[8] O. Nikiforova., M. Kirikova, “Two-hemisphere model Driven

Approach: Engineering Based Software Development,” in Scientific
Proc. of CAiSE 2004 (the 16th Int. Conf. on Advanced Information

Systems Eng.), pp. 219–233, 2004.
[9] O. Nikiforova, N. Pavlova, “Development of the Tool for Generation of

UML Class Diagram from Two-hemisphere model,” in Proc. of The 3rd

Int. Conf. on Software Eng. Advances. Mannaert H., Dini C., Ohta T.,
Pellerin R. (Eds.), IEEE Computer Society, CPS, pp. 105–112, 2008.

http://dx.doi.org/10.1109/icsea.2008.37
[10] O. Nikiforova, K. Gusarovs, O. Gorbiks, N. Pavlova, “BrainTool. A

Tool for Generation of the UML Class Diagrams,” in Proc. of the

Seventh Int. Conf. on Software Eng. Advances, Mannaert H. et al. (Eds),
IARIA ©, Lisbon, Portugal, November 18-23, 2012, pp. 60-69 (Scopus)

[11] O. Nikiforova, L. Kozacenko, D. Ungurs, D. Ahilcenoka, A. Bajovs, N.
Skindere, K. Gusarovs, M. Jukss, “BrainTool v2.0 for Software

Modeling in UML,” Scientific Journal of RTU: Applied Computer

Systems, Grundspenkis J. et al. (Eds), vol. 16, 2014, pp. 33–42.
http://dx.doi.org/10.1515/acss-2014-0011

[12] The LEX & YACC Page [Online]. Available:
http://dinosaur.compilertools.net/ [Accessed: Oct. 8, 2015].

[13] ANTLR [Online]. Available: http://www.antlr.org/ [Acc: Oct. 8, 2015].

Konstantins Gusarovs received the Master degree

in Computer Systems from Riga Technical
University, Latvia, in 2012. He is Java developer in

Forticom Ltd.

His current research interests include object-oriented
software development and automatic obtaining of

program code.
E-mail: konstantins.gusarovs@gmail.com

Oksana Nikiforova received the doctoral degree in
information technologies (system analysis, modeling

and design) from Riga Technical University, Latvia,
in 2001.

She is presently a Professor with the Riga Technical

University. Her current research interests include
object-oriented system analysis and modelling,

especially the issues on Model Driven Software
Development.

E-mail: oksana.nikiforova@rtu.lv

Maris Jukss is a third year PhD student at the

Modelling, Simulation and Design Lab in the School
of Computer Science at McGill University, Canada.

His current research interest is efficient and usable

model transformations.
E-mail: maris.jukss@mail.mcgill.ca

http://dx.doi.org/10.1155/2013/507984
http://dx.doi.org/10.1145/1118890.1118892
http://dx.doi.org/10.1109/icsea.2008.37
http://dx.doi.org/10.1515/acss-2014-0011

