
Applied Computer Systems doi: 10.1515/acss-2015-0017

___ 2015/18

33

Analysis of RDF Syntaxes for Semantic Web

Development

Yevgeny Gryaznov1, Pavel Rusakov2

1,2 Riga Technical University, Latvia

Abstract – In this paper authors perform a research on

possibilities of RDF (Resource Description Framework) syntaxes

usage for information representation in Semantic Web. It is

described why pure XML cannot be effectively used for this

purpose, and how RDF framework solves this problem.

Information is being represented in a form of a directed graph.

RDF is only an abstract formal model for information

representation and side tools are required in order to write down

that information. Such tools are RDF syntaxes – concrete text or

binary formats, which prescribe rules for RDF data serialization.

Text-based RDF syntaxes can be developed on the existing

format basis (XML, JSON) or can be an RDF-specific – designed

from scratch to serve the only purpose – to serialize RDF graphs.

Authors briefly describe some of the RDF syntaxes (both XML

and non-XML) and compare them in order to identify strengths

and weaknesses of each version. Serialization and deserialization

speed tests using Jena library are made. The results from both

analytical and experimental parts of this research are used to

develop the recommendations for RDF syntaxes usage and to

design a RDF/XML syntax subset, which is intended to simplify

the development and raise compatibility of information serialized

with this RDF syntax.

Keywords – Semantic Web, RDF, graph, syntax, XML.

I. INTRODUCTION

World Wide Web development can be divided into three

main periods: Web 1.0, Web 2.0 and Web 3.0 [1], [2]. The

first “version” of Web is mainly static from the user`s point of

view. It is almost not possible to affect information on a Web

page, because only webmaster was able to change information

on a page by modifying contents directly. Web 2.0 opened

new possibilities for Web interaction: dynamic and interactive

Web pages. In this generation of Web users can add, edit or

even delete information on a given Web page in a convenient

manner using simple control elements like menus, buttons,

text editor areas etc. [1], [3]. The design of a Web page itself

is user-friendly and intuitive.

Semantic technologies give new perspectives for World

Wide Web development. Semantic Web – Web 3.0 – is a

product of injection of semantic technologies in existing Web.

It is not an entirely new Web, rebuilt from scratch, but an

integration of a well-known and developed “mechanical” Web

2.0 technologies and semantic tools. Such tools are intended to

improve the following aspects of Web usage [4]:

1. Data integration. Data from different sources (from any

sources in a perfect case) can be integrated in a whole in

order to get a largest possible content and fuller

knowledge base, so knowledge search and/or processing

can give a better result.

2. Resource discovery and classification. Improvement of

effectiveness of search engine can be achieved by

applying algorithms based on knowledge processing

techniques from the one side, and appropriate knowledge

representation and storage tools from the other side.

3. Knowledge automatic (intelligent) processing and

exchange [5], [6]. Application of knowledge-oriented

data processing and storage tools is important for

deployment of intelligent agent system over the Web.

Such agents can substitute user`s activity in specific Web

routines like information collection on a specific topic, e-

shopping and such time-consuming tasks like trip

planning.

The goal of this research is to analyze and compare existing

RDF syntaxes based on XML to specific RDF syntaxes, and to

propose a solution for better RDF/XML syntax usability in

context of Semantic Web.

This paper is organized as follows. The second section

describes RDF framework with an example and explains the

need in RDF syntaxes. In the third section RDF syntaxes are

being analyzed and compared by multiple factors. The fourth

section introduces an experiment to compare syntaxes by

parsing/serialization performance parameter. In the fifth

section authors describe their proposed RDF/XML syntax

improvement and give recommendations on other syntax

usage. The final sixth section is a conclusion on this work, a

comparison table and research highlights are given.

II. RDF FRAMEWORK AND SYNTAXES

RDF framework is a simple but powerful tool for

formalizing data (e.g. metadata, knowledge-like data). It is

only an abstract model, which describes how to break data into

small units and tie them together to make a machine-

processable copy of data. RDF implementations

(serializations, syntaxes) will be discussed later in this section.

RDF defines a minimal unit of interconnected information: a

triple (Fig. 1). A triple is an oriented two-node graph, where

two nodes represent subject and object, and the oriented edge

is a predicate – a relationship between the subject and the

object. Note that the edge is always oriented from subject to

object, so it is always possible to infer the role of a node.

Predicate (also called a property) can be used for indicating

any type of relationship between two nodes. Looking from a

global perspective, RDF doesn`t predefine any relationship

types, it is being done by a developer of a system, which uses

RDF. A triple also called a sentence or a fact, because it states

something that is always true. The reason why RDF is

DE GRUYTER

OPEN

Applied Computer Systems

___ 2015/18

34

necessary and why just XML is not used, is the fact that

information and knowledge is dedicated to many different

domains. It means that in case of XML developers must

design specific XML dictionaries for each domain. RDF

allows using a unified way, independent form for a particular

domain. But XML can be used as a format for writing down

RDF graphs [7], [8]. [9] contains detailed information on

XML. RDFS and OWL are another level of abstraction, but

not syntaxes, so they are not discussed in this paper.

Fig. 1. RDF minimal information unit: a triple.

An example of RDF usage is given for better understanding.

Let us have a simple relational database for scientific papers.

The information in the database should be available over the

Web, but imagine that the Semantic Web is already working.

It is necessary to send and receive data in RDF format (it does

not matter in which RDF syntax, because it is still RDF in any

case) and map them into relational form. Additional

information on mapping can be found in [10]. This scenario is

used because it is easier to understand what information is

shown in RDF form after looking at that same information

written down in a convenient relational table form.

There are four tables in the database: PAPERS (Table I),

AUTHORS (Table II), REVIEWS (Table III) and

REVIEWERS (Table IV).

TABLE I

PAPERS TABLE IN DATABASE

ID Name Published File

001 Water data
storage

2011-12-22 001.PDF

002 Cipher attacks 2012-05-14 002.PDF

TABLE II

AUTHORS TABLE IN DATABASE

ID Name Surname Faculty

001 Evalds Morozovs DITF

002 Anita Bekereja DITF

TABLE III

REVIEWS TABLE IN DATABASE

ID Paper Mark Text

001 001 7 …

002 001 9 …

TABLE IV

REVIEWERS TABLE IN DATABASE

ID Name Surname Faculty

001 Erika Eglite DITF

002 Edmun Kurpni DITF

Let us assume that the database also has additional tables to

represent many-to-many relationships between AUTHORS

and PAPERS tables, between REVIEWS and REVIEWERS

tables. The resulting RDF graph is marked as "1" in Fig. 2.

Note that for space saving purpose information is shown only

about the first paper (ID=001) with one author, and

information about the second review is not shown, and other

shortenings are marked with “…”. The information displayed

with a graph in Fig. 2. is about the paper with ID=001, its

author, reviews and corresponding reviewers.

As you can see, the information on a particular topic is

displayed with an oriented graph. It may look frustrating for a

human, but it is easy to process with a computer program

(using inferencing techniques) making possible automatic data

processing. Being a processable data, it can be converted into

a human-readable form by using name substitution or

displaying it with tables. Any RDF graph consists of triples, so

the given in the example one consists of them too. Each two

adjacent nodes connected with an oriented edge make a triple.

For example, a sentence or the fact “author`s name is Evalds”

has a corresponding triple in the given graph:

“Authors/ID=002” – “Authors#Name” – “Evalds”. Complex

sentences can be displayed using multiple triples.

Fig. 2. RDF graph that shows information about particular scientific paper, its

author, reviews and reviewers.

As far as RDF is an abstract model, it is possible to use

graphs to display RDF semantic data in a more human-

readable form than specific syntax, but the problem is to store

and process a graph with a computer. It is a purpose RDF

syntaxes are designed for. RDF syntax is a specific data

format to serialize, store and exchange RDF graphs. There are

Papers/
ID=001

rdf:Type

Papers

Papers#ID

1

Papers#Name

«Water data
storage»

Papers#Published

2011-12-
22T19:14:23

+02:00

rdf:Type

xsd:dateTime

Papers#File

http://
university.res

ources/
pp681532 PapAut#ref-aut

Authors/
ID=002

Reviews/
ID=001

Reviews#Paper

Reviews#Paper

Reviews/
ID=002

Authors#ID
1

Authors#Name

«Evalds»

Authors#Name

«Morozovs»

Authors#Faculty

«DITF»

rdf:Type

Reviews

Recenzijas#Mark

7

rdf:Type

xsd:integer

Reviews#Text

Http://
university.res

ources/
rc988345

RevPA#ref-aut

Reviewers/
ID=001

RevPA#ref-aut

Reviewers/
ID=002

rdf:Type

Reviewers

Reviewers#Name

«Mara»

...

...

...

...

...

...

Authors

rdf:Type

ObjectPredicateSubject

Applied Computer Systems

 ___ 2015/18

35

many syntaxes of different types, so classification is needed to

understand types and corresponding syntaxes. First of all,

syntaxes are binary or text-based. The first ones are both

storage-effective and processing-effective. But they cannot be

read by a human without a special tool. The examples of

binary syntaxes are HDT [11] and Thrift [12]. Text-based

syntaxes are both machine-processable and human-readable

(using only a plain text editor). Text-based syntaxes are

divided into XML-based, JSON-based and specific syntaxes.

While XML and JSON syntaxes are dictionaries of these two

formats, specific syntaxes are designed to be only RDF graph

serializations. They are free of XML or JSON-specific

nuances and are simpler to understand. This is why specific

text-based syntaxes are chosen as an etalon (or standard).

This paper is dedicated to XML syntaxes, so binary and

JSON syntaxes are not being discussed, but XML and specific

syntaxes are being analyzed, to compare them and make a

conclusion on which syntaxes should be used for a particular

purpose. Syntaxes which are being discussed in this paper are:

1. XML-based: RDF/XML [13], TriX [14], RXR [15], Grit

[16], Treetriples [17].

2. Specific text-based: Turtle/TriG [18], N-Triples [19] and

N-Quads [20].

Each syntax`s specific nuances are being discussed in the

next section, making a comparative analysis.

III. COMPARATIVE ANALYSIS OF RDF SYNTAXES

In order to find out how appropriate syntaxes are for RDF

graph serialization purposes, a comparative analysis is needed.

In this section authors explain which factors are chosen and

explain how each syntax conforms to that factor. The analysis

is organized as follows: authors explain a particular factor

first, and then analyze each syntax according to that factor.

The factors are:

1. Understandability to a human.

2. Syntax shortenings.

3. Graph identifiers and multiple graph serialization in a

single file.

4. Support for containers and collections.

5. Reification and blank nodes.

6. Suitability for XML tools and technologies.

Note that in the examples full URIs of resources are not

used, just shortened simple names.

A. Understandability to a Human

This factor shows how fast and easy RDF information

(written using a particular syntax) can be read. It is important

because text-based syntaxes are designed to be human-

readable. Despite this factor being subjective, other authors

use it to compare syntaxes [21], [14] and conclude that

RDF/XML is harder to understand than TriX or Turtle. It

cannot be measured, but it is possible to compare similar

syntactic constructions from different syntaxes. To make

comparison as objective as possible, an etalon for a single

triple is defined: <subject> <predicate> <object>. This choice

is based on information from a book [10], report [21], research

[14], RDF specification documents [22], [23], and latest

tendencies (Turtle syntax). Concluding that information,

syntax should be as close to RDF abstract syntax as possible,

so it doesn`t obscure a corresponding graph.

RDF/XML has a structure different from the etalon,

because it defines a tree-like structure, while the etalon

prescribes the triple`s elements on a single level. In

RDF/XML an object is a child element of a predicate element,

and the predicate element is a child of a subject element. In

case of a typed literal as object value, different syntactic

construction is being used: object literal is written without any

tags, but predicate`s element has an attribute indicating

literal`s type (XML types can be used as well). The example is

shown in Fig. 3. It describes the following information: “A

[scientific] paper has an author who is 27”. Note that in the

given example author object is also a subject from the point of

view of the second fact (“author`s age is 27”).

Fig. 3. RDF/XML triples syntax (fragment).

Fig. 4. RDF graph.

RXR syntax differs from the RDF/XML syntax, and is

more conforming to the etalon: each element of a triple is

placed on the same level under the <triple> XML tag. Each

element has its own named XML tag. According to RXR

documentation, triples cannot be included into each other, like

in RDF/XML. A developer must explicitly use a resource`s

URI in each triple. For example, a graph from Fig. 4 can be

written in only the way shown in Fig. 5.

Trix syntax is similar to RXR, but only one tag <uri> is

used for all elements in a triple. So that the role of an element

is defined only by its position, unlike RXR, where both

position and tag are used for this purpose.

Grit syntax derived hierarchical triple structure from

RDF/XML. It means that object resource is being placed as an

attribute value inside predicate tag, and the predicate tag is a

child element of subject, see Fig. 6.

The last XML syntax called Treetriples has triples structure

identical to Grit (or RDF/XML in case of shortenings used),

but names of subject, predicate and object are <s>, <p> and

<o>.

Non-XML syntaxes better suit the readability factor,

because they almost perfectly correspond to the etalon.

Notation-3 and Turtle are similar syntaxes, because Turtle is

a simplified version of the first. In Fig. 7 you can see that its

triple syntax is like RDF abstract syntax, the only difference is

the enclosing. Other non-XML syntaxes are identical to the

<rdf:Description rdf:about="Paper">

 <author>

 <rdf:Description>

 <age rdf:type="Age">

 27

 </age>

 </rdf:Description>

 </author>

<rdf:Description>

Paper hasAuthor 27ageAuthorAuthor

Applied Computer Systems

 ___ 2015/18

36

syntax mentioned above, except TriG which is an extended

version of Turtle and N-Triples/N-Quads which are

simplified versions. TriG has the same syntactic constructions

Turtle has, but also allows serializing multiple named RDF

graphs into one file. N-Triples is minimalistic syntax: each

triple must be on a separate line and enclosed with a dot, no

shortenings are allowed. N-Quads is an extended version of N-

Triples, but instead of triples it uses quads: 4-tuples, where

additional element can be used to specify the graph`s name.

Fig. 5. RXR triples syntax (fragment).

Fig. 6. Grit triples syntax (fragment).

Fig. 7. Turtle triples syntax (fragment).

B. Syntax Abbreviations

This factor is not only a part of human readability, but also

a part of machine-processability. First of all, shortened syntax

takes less space on a storage drive or of an exchange channel.

The second aspect is that more complex syntactic

constructions may lead to higher computer resource usage.

The first shortening is omitting common subject or

predicate resource. Notation-3, Turtle and Trig allow

grouping triples with common subject and/or predicate by

omitting the subject and/or the predicate.

RDF/XML allows grouping only by subject. RXR, TriX,

Treetriples, N-Triples and N-Quads do not have any

shortenings of this kind.

The next shortening is specific to RDF/XML syntax: empty

property (predicate) element. It means that a subject

resource can be written as property tag attribute value. In this

case the predicate element does not have an enclosing tag.

Property attribute is another RDF/XML specific

shortening. It allows placing property as attribute name in the

subject`s <Description> element, and object`s resource as

attribute`s value. It is possible only if the object is string

literal.

Prefixed Names allows giving alias for a common URI

string. For example: authors is the same as

http://university.papers/DB/Authors, so there is no need to

write full URI like

http://university.papers/DB/Authors#ID=001, but short form

with a prefix can be written: authors:ID=001. The XML

standard defines this kind of prefixed names as QNames [24].

Therefore, it has a restriction on element and attribute names:

QNames cannot be used for names. It means that XSD or

RelaxNG schema cannot be used to describe this document –

it is not a valid XML document. This also makes problems

with XSLT or XPath usage. The same problem is true for Grit

syntax, because it prescribes using QNames as element names.

The remaining XML syntaxes (RXR, TriX and Treetriples) are

free of this problem, because they do not allow usage of

QNames for element and attribute names. QNames has one

more significant restriction: hash symbol (“#”) is not allowed.

But URI comes in two forms: slash URI and hash URI. It

lowers URI flexibility, because the only way to use hash URI

with QNames is to append the hash symbol to the prefix part

of URI.

Omitting blank nodes is available in RDF/XML, Turtle

and TriG syntaxes. This abbreviation allows omitting blank

node identifier and putting blank node`s predicate and object

into a predicate element, which points to that blank node.

Turtle and TriG have this abbreviation too, but it is

significantly shorter.

C. Multiple Graph Serialization

TriX is the only XML syntax, which allows naming and

serializing more than one RDF graph in a single file. TriG and

N-Quads are non-XML syntaxes, which support named

graphs. In the case of N-Quads it is made by adding one more

element – graph identifier – to a triple, making it a quad.

D. Container and Collection Support

Containers (rdfs:Container) and Collections

(rdf:Collection) are resources defined by the RDF schema.

The purpose of both types is the same: to encapsulate multiple

resources. Therefore, containers allow adding new resources,

but collections do not. RDF/XML and Treetriples support both

containers and collections. Container support in Turtle is

mentioned in only one W3C document [25], but in all

specification documents it is not mentioned [18]. Containers

are part of latest RDF specification version [22], so a syntax,

which corresponds to RDF specification must support

containers. Therefore, N-Triples and N-Quads are designed as

minimalistic as possible, so they do not support any

containers, or collections.

E. Blank Nodes

It is a tool, which can be used to build facts about abstract

resources. For example, there are two ways how graph in

Fig. 4 can be viewed. First, “Author” is a concrete resource

with unique URI, in the second case it is an unknown

resource, but still unique. In the second case author node is a

<Papers#ID=001> <Author> <Authors#ID=001> .

<Authors#ID=001> <Age> "27^^xsd:integer" .

<resource uri="Papers#ID=001">

 <Author ref="Authors#ID=001">

</resource>

<resource uri="Authors#ID=001">

 <Age fmt="datatype">

 <xsd:integer>27</xsd:integer>

 </Age>

</resource>

<triple>

 <subject>Papers#ID=001</subject>

 <predicate>Papers#Author</predicate>

 <object>Authors#ID=001</object>

</triple>

<triple>

 <subject> Authors#ID=001</subject>

 <predicate> Authors#Age</predicate>

 <object datatype="xsd:integer">27</object>

</triple>

http://university.papers/DB/Authors
http://university.papers/DB/Authors#ID=001

Applied Computer Systems

 ___ 2015/18

37

blank node, because it is not mentioned which author it is.

That blank node is used in the second triple, when name is

given to the author. So it means: “a paper has an author, the

author`s age is 27”. It is not possible to infer who is that

author, but his age is known. To allow multiple triples with the

same blank node, blank node identifiers are used. In

RDF/XML three different ways to incorporate blank nodes are

available. The first one (tree-structured) is shown in Fig. 3.

The second is abbreviated with property attribute. The last one

is using identifiers and multiple triples. In Turtle blank nodes

can be written in two ways: using omitted syntax and using

identifiers and multiple triples.

F. Reification

Reification allows to identify a triple in order to create

another facts (triples) about it [26]. It can be useful in RDF

data storages, when additional information about statements is

needed. Such information is: who is the creator of the triple,

when the triple was created, etc. Normally, the reified triple is

written using five facts: statement identifier definition,

definition of a subject, an object, a predicate, and type

definition (type “rdf:Statement”). RDF/XML also has

abbreviated syntax, which allows using only one statement by

applying an identifier to it.

G. Compatibility with XML Tools and Technologies

Since XML syntaxes are XML-based to use advantages of

XML schema description languages (XSD, RelaxNG) and

other technologies (XSD, XSLT, XQuery, XPath), this factor

is important. RDF/XML cannot be fully defined by XML

schema, because it has some syntactic constructions which

cannot be described using schema languages. The reason for

that is that the predicate element must be able to have any

name, because in RDF predicate can have any name the user

wants. For this purpose XML schema language allows using

<any> element, which indicates that any element can be

placed inside the given element. But this also means that the

underlying structure (contents of the parent element) cannot be

controlled at all. Anything is possible here. So from this point

of view RDF/XML is useless as XML syntax, because it is not

fully XML-schema compatible. Since Grit has similar syntax,

it is not fully supported by XML schema, too. But other XML

syntaxes use unambiguous XML element names (resource

URIs are always placed inside elements as contents), so they

can be fully defined by XML schema [14]. It also means that

these syntaxes have better suitability to XML technologies

like XSLT, XPath and XQuery, so templates and queries are

simpler in this case.

IV. EXPERIMENTAL SPEED TEST

In order to find out how high or low a performance of each

syntax is, an experiment was planned and done. The point of

the experiment was to measure serialization and parsing

(deserialization) time for the same portion of information in

different syntaxes. The shorter the time is – the higher is the

performance. To measure the time, a program was written in

Java, using Apache Jena RDF library (version 2.13.0) [27].

This library was used because it has more syntaxes than other

libraries: JRDF version 0.5.6.3 [28], Sesame version 2.8.3

[29]. The following syntaxes were used in this experiment:

RDF/XML (four variants), Turtle (four variants), TriX and N-

Triples. TriG (Turtle extension with named graphs support)

and Notation-3 (with support for logical expressions) were not

tested, because their syntaxes are identical. The chosen RDF

datasets were written in N-Quads, which is an extension of N-

Triples, but since the RDF data does not contain any named

graphs, this syntax was not tested too.

The data used in the experiment was [30]:

 Dataset A is a fragment of DBpedia database dump in

English, N-Triples syntax, 320 485 triples, file size:

37.89 MB, file name: 2013-12-22-join-summary-dbpdia-

live.nt ;

 Dataset B is a fragment of DBpedia picture database

dump (see [30] Images Dataset, data is in English), N-

Triples syntax, 320 485 triples, file size: 71.33 MB, file

name: images_en.nt;

 Dataset C is a fragment of DBpedia person database

dump (see [30] Persondata Dataset, data is in English),

N-Triples syntax, 320 485 triples, file size: 37.27 MB,

file name: persondata_en.nt.

The system for the experiment had the following

configuration: CPU: Intel Core i7-4770K, RAM: 8GB DDR3-

1333MHz, OS: MS Windows 7 SP1 (64 bit), JRE: Java

1.7.0.45 (64 bit). Apache library does not allow separating

serialization and parsing from disk input/output operations. So

first, authors discovered how different type of a storage device

affects serialization/parsing operations to minimize the impact

of a hardware. Three types of storage devices were tested:

HDD, SSD and RAM drive. The results were that the

difference was small enough to be ignored (numbers showed

parsing time in milliseconds). HDD: 2351.49±116.40; SSD:

2323.81±108.13; RAM drive: 2296.395±123.96. This meant

that none of these drive types was a bottleneck in

serialization/parsing operations. Therefore the RAM drive was

chosen as the fastest solution. Next, an optimal measurement

count was defined, because if a count is too small it can lower

precision, if it is too high – raise the measurement time. This

test was made to RDF/XML syntax and relative error (it is the

absolute error divided by the magnitude of the exact value; the

percent error is the relative error expressed in terms of per

100) was: 4.57% for 200 measurements, 5.28% for 150

measurements and 5.91% for 100 measurements. The variant

of 150 measurements was chosen as a compromise. During

further experiment, it was necessary to raise the number of

measurements to 200 and 300 for TriX and N-Triples parsing,

because relative error for 150 measurements was over 10 %.

This solution did not help, so 150 measurements were chosen

as well.

Authors measured both serialization and parsing times for

every syntax and every variant of the four available (for

RDF/XML and Turtle). The measurement results for each

dataset were calculated and the final results are given in three

tables for each dataset: Table V for dataset A, Table VI for

dataset B and Table VII for dataset C. In these tables you can

Applied Computer Systems

 ___ 2015/18

38

see the overall time: it is the time needed to make a full cycle

of parsing and then serializing (or vice versa). Since

RDF/XML and Turtle syntaxes have four variants each, their

full names are shown in the tables. There are charts available

for parsing time (Fig. 8), serialization time (Fig. 9), total time

(Fig. 10) and file size (Fig. 11). The scale has been cut for Fig.

9 and Fig. 10 for better understanding of the results, because

RDF/XML results for dataset A are significantly larger than

the results of other syntaxes.

TABLE V

EXPERIMENT RESULTS FOR DATASET A

Syntax Parsing time, ms Serialization time, ms Total time, ms File size, MB

RDF/XML 2347.55 19936.95 22284.50 30.56

RDF/XML Abbr. 2363.73 17704.80 20068.53 30.56

RDF/XML Plain 2423.38 1543.95 3967.33 23.49

RDF/XML Pretty 2320.57 16033.90 18354.47 30.56

Turtle 1262.27 223.53 1485.80 13.42

Turtle Blocks 1433.25 282.37 1715.62 28.30

Turtle Flat 1657.35 345.47 2002.83 37.89

Turtle Pretty 1258.85 282.37 1541.22 13.42

TriX 1159.63 1720.50 2880.13 59.28

N-Triples 999.24 85.95 1085.19 37.89

TABLE VI

EXPERIMENT RESULTS FOR DATASET B

Syntax Parsing time, ms Serialization time, ms Total time, ms File size, MB

RDF/XML 3555.66 5837.25 9392.91 55.21

RDF/XML Abbr. 3531.82 5797.25 9329.07 55.21

RDF/XML Plain 4327.66 3957.85 8285.51 65.92

RDF/XML Pretty 3574.40 5773.40 9347.80 55.21

Turtle 3841.92 965.25 4807.17 66.20

Turtle Blocks 3793.09 550.25 4343.34 61.75

Turtle Flat 3923.01 649.20 4572.21 67.10

Turtle Pretty 3854.83 967.80 4822.63 66.20

TriX 1371.85 2353.05 3724.90 87.83

N-Triples 1419.58 175.65 1595.23 67.10

TABLE VII

EXPERIMENT RESULTS FOR DATASET C

Syntax Parsing time, ms Serialization time, ms Total time, ms File size, MB

RDF/XML 2357.46 2367.55 4725.01 23.22

RDF/XML Abbr. 2333.12 2368.95 4702.07 23.22

RDF/XML Plain 2501.35 1258.80 3760.15 26.08

RDF/XML Pretty 2346.59 2357.30 4703.89 23.22

Turtle 1231.76 501.65 1733.41 27.86

Syntax Parsing time, ms Serialization time, ms Total time, ms File size, MB

Turtle Blocks 1233.59 308.70 1542.29 27.57

Turtle Flat 1430.98 367.60 1798.58 37.26

Turtle Pretty 1283.20 554.15 1837.35 27.86

TriX 1339.75 1327.65 2667.40 64.15

N-Triples 1162.49 134.30 1296.79 37.26

Applied Computer Systems

 ___ 2015/18

39

Fig. 8. Parsing time results for all syntaxes.

Fig. 9. Serialization time results for all syntaxes.

Fig. 10. Parsing and serialization total time for all syntaxes.

Since N-Triples and TriX syntax results have high relative

error values, their performance is rather expected than

guaranteed. Syntax performance rating is different for each

dataset, which means that the performance depends on the

data type and structure (triple count was the same for all

datasets: 320 485), though these results are not enough to

predict a tendency. The difference in file sizes for each dataset

tells that this parameter is unpredictable and is dependent on

data type and structure too.

Fig. 11. File size for all syntaxes.

According to the results, RDF/XML syntax is the slowest

by average total time (see Fig. 10). It is true for parsing and

serialization time (see Fig. 8 and Fig. 9), but parsing

performance is comparable to TriX. RDF/XML Plain variant

is only slightly slower than other RDF/XML variants. Though

the difference is larger in the case of dataset B, where the time

of RDF/XML Plain is 4327.66 ms, but the time of other

RDF/XML variants is 3531.28–3574.40 ms. So RDF/XML

Plain is 21.07–22.53 % slower than other RDF/XML variants.

For other datasets this parameter has no significant difference.

Serialization measurements show that RDF/XML Plain is

31.45–32.20 % faster for dataset B and 46.86–47.27 % faster

for dataset C, in comparison to other RDF/XML variants. For

dataset A difference is significantly larger: 90.37‒92.26 %. It

means that RDF/XML Plain variant may not be the fastest

syntax when parsing performance is needed, but RDF/XML

serialization variant will always be the fastest.

Turtle syntax variants do not significantly differ, but dataset

B results are lower than for datasets A and C. Speaking about

the total time, Turtle is as fast as TriX, slower than N-Triples,

but parsing performance is worse than for both TriX and N-

Triples. TriX is the fastest XML syntax in both parsing and

serialization operations. N-Triples has the best parsing and

serialization performance between non-XML syntaxes and all

other syntaxes in this experiment. Average total time helped to

notice the tendency: the simpler the syntax is, the better is the

performance. The results show that XML syntaxes

implemented in Jena library are slower than non-XML

syntaxes. TriX is the fastest XML syntax, but N-Triples is the

fastest non-XML syntax. Important note can be done about

RDF/XML: RDF/XML Plain variant with the best

serialization results compared to other RDF/XML variants,

does not use nested <Description> elements, but other

(slower) variants do. RDF/XML Plain variant uses property

attributes to serialize object resource. It means that the only

difference between RDF/XML Plain and the other variants is

the usage of multilevel nested elements, and the usage of

nested elements slows down serialization. It is approved by

dataset B and C results: RDF/XML, RDF/XML Abbreviated

and RDF/XML Pretty variants are significantly lower than for

dataset A. The dataset analysis showed that datasets B and C

do not contain multiple level nested triples, so serialization

Applied Computer Systems

 ___ 2015/18

40

was faster. So, nested XML elements lower RDF/XML

serialization performance.

V. RECOMMENDATIONS FOR RDF SYNTAX USAGE

A. Requirements for XML Syntax

The requirements were formulated for XML syntax, based

on the research:

1. Can be fully defined by XML schema.

2. Simple triple syntactic form, where all triple elements are

on the same level.

3. Unified triple syntax in all situations (abbreviations with

nested elements are denied).

4. All XML elements have unambiguous names (URI

cannot be used for XML tag names).

5. QNames cannot be used for element and attribute values.

6. Additional syntactic constructions (RDF collections,

QNames, etc.) must be implemented outside XML

schema, using XSLT or other transformations.

RXR, TriX and Treetriples syntaxes fill these requirements.

Though RDF/XML is the only XML syntax recommended by

W3C as a standard. Authors propose an improvement for this

syntax, to fill requirements formulated, and the improved

syntax must be compatible with the existing RDF/XML syntax

version. But it is not possible to design full XML schema for

this syntax, because of an unpredictable property tag name.

Therefore it is not possible to put restrictions on property

XML element attributes, despite the fact that they all are

known (predictable). Consequently, the proposed

improvement is based on simplifying triple syntax and

preventing multiformity of abbreviations.

B. Proposed RDF/XML Syntax Improvement

Triple syntax. Only one triple syntactic form for typed/non-

typed literal must be allowed. For triples with object URI two

variants are possible. The first one (variant A) conforms to the

syntax shown in Fig. 3. Its advantage is the logical uniformity

of triples with URI and literal objects: in both cases the object

value is placed under the property element. But it incorporates

nested <Description> elements, which slows down

serialization performance. The second variant (variant B) uses

empty property element syntax and adds object URI as a value

to rdf:resource attribute, see Fig. 11. It has two advantages:

better performance (using no nested <Description> elements)

and unified XML structure.

The blank node syntax must conform to triples syntax. To

simplify the syntax, blank nodes without identifiers must be

denied. This leads to the only possible syntax with identified

blank nodes. Containers and collections do not complicate

triple syntax and are part of RDF specification, so there is no

need in removing them. Usage of full URIs instead of QNames

is recommended. The proposed improvement is compatible

with the existing RDF/XML version, it is a subset of it.

Therefore, named graphs and identifiers are not recommended.

The only way to implement this feature is to explicitly notify

about the fact that the given syntax is a modified RDF/XML.

File name extension can be used for that purpose: “*.rdfg”

instead of usual “*.rdf”. But this does not solve the problem

when using RDF data transfer: another technique is needed in

order to inform a parser about modified RDF/XML data. This

could be done using modified parser and specific directives.

The remaining syntax is not affected by any changes.

To use the proposed recommendations, a table (see Table

VIII) can be used. It shows corrections to RDF/XML

specification items (to be found in [13]) for both proposed

variants.

TABLE VIII

PROPOSED VARIANTS ACCORDING TO RDF/XML SPECIFICATION

RDF/XML specification item Variant A Variant B

2.2 Node Elements and
Property Elements

<Description>
element can be

nested only once

(in one triple).

Denied.

2.4 Empty Property Elements Denied. Allowed.

2.5 Property Attributes Denied. Denied.

2.10 Identifying Blank Nodes:

rdf:nodeID

Allowed in

conformance with
item 2.2.

Allowed in

conformance
with item 2.4.

2.11 Omitting Blank Nodes:
rdf:parseType="Resource"

Denied. Denied.

2.12 Omitting Nodes: Property
Attributes on an empty

Property Element

Denied. Denied.

C. Overall Syntax Usage Recommendations

Further recommendations are targeted mainly on standard

developers and software developers.

XML syntaxes can be used when compatibility with XML

tools and technologies (parsers, XSLT, XQuery, XPath, DTD,

XSD, RelaxNG) are needed, or is more beneficial than usage

of non-XML syntaxes. Otherwise, non-XML syntaxes are

recommended as both easy readable to a human and high

performance on a computer. TriX, Grit and Treetriples are

recommended XML syntaxes, but if RDF/XML must be used,

the proposed variant B is recommended. Turtle and its

extensions Notation-3 and TriG are general purpose non-XML

syntaxes. N-Triles and N-Quads are the simplest syntaxes, are

well suited for computer processing, but not as readable to a

human as Turtle.

VI. CONCLUSION

Authors give a mark for each syntax by each factor; marks

can be viewed in the Table IX. The table contains marks for

the proposed RDF/XML improvement variants A and B. The

marks are relative – they display only syntax rating by given

factor. The scale is: 1 – weakly implemented feature; 2 –

normal implementation; 3 – best implementation. The stroke

(—) means that the feature is not available in the given syntax.

“N/A” – “not available” tells that information about this

feature implementation in the given syntax is not available.

The factors marked by a star (*) have inversed scale – the

bigger the mark, the worse implementation is. The features,

which are improved by the proposed solution, are in bold

frame.

Applied Computer Systems

 ___ 2015/18

41

To conclude this research, generalized recommendations

are given. RDF/XML W3C recommended version is much

more multiformal than other XML syntaxes, which can cause

readability issues to a human. The tool development for this

syntax is a complex task too, because the developer has to

cover all possible situations. However, RDF/XML is a W3C

recommendation which led to its popularity, therefore a new

XML syntax will cause compatibility problems. Since non-

XML syntaxes are more suitable for RDF graph serialization,

there is no need for another XML syntax, incompatible with

existing standard. That is why authors propose their solution:

RDF/XML subset, variant B, to prevent syntactic

multiformity. The apparent advantage of XML syntaxes is

compatibility with existing XML tools and technologies

(parsers, editors, XSLT, XQuery and XPath).

Future research on this problem might include the following

tasks: (1) implementing and testing the performance of

RDF/XML parser designed in conformance with the proposed

RDF/XML variant A or B; (2) a research focused on non-

XML syntaxes based on specific factors (logic expressions,

multiple graphs, usage for data streaming).

TABLE IX

GENERALIZATION TABLE FOR ALL DISCUSSED XML RDF SYNTAXES

Factor

R
D

F
/X

M
L

V
a

r
ia

n
t A

V
a

r
ia

n
t B

T
r
iX

R
X

R

G
rit

T
r
ee

tr
ip

le
s

Conformance to the etalon syntax 1 2 2 3 3 2 3

Graph identifiers — — — 3 — — —

Multiple graphs in a single file — — — 3 — — —

Collections 3 3 3 3 3 3 3

Containers 3 3 3 N/A N/A N/A 3

Abbreviated reification 3 3 3 — — — —

Blank nodes with identifiers 3 3 3 3 3 3 3

Blank nodes without identifiers * 3 — — — N/A N/A N/A

URI using QNames * 3 — — — — 3 —

Other abbreviations 2 — — — N/A N/A —

Syntax multiformity * 3 2 2 — — — —

Compatibility with XML tools and technologies 1 2 2 3 3 2 3

XML literals 3 3 3 3 3 3 3

Performance in Jena library 1 N/A 2 3 N/A N/A N/A

REFERENCES

[1] G. Cormode and B. Krishnamurthy „Key differences between Web 1.0

and 2.0,” First Monday, vol. 13, no. 6, June 2008.
[2] D. Dinucci „Fragmented Future,” Print magazine, pp. 220–222, Apr.

2009.

[3] T. Berners-Lee and M. Fischetti Weaving The Web, San Francisco:
Harper San Francisco, 1999.

[4] I. Herman. (2009, Nov.) W3C Semantic Web Frequently Asked

Questions [Online]. Available: http://www.w3.org/2001/sw/SW-FAQ
[5] D. Booth, H. Haas and others. (2004, Feb.) Web Service Architecture

[Online]. Available: http://www.w3.org/TR/2004/NOTE-ws-arch-

20040211/

[6] Kumar S. “Agent-Based Semantic Web Service Selection and

Composition,” SpringerBriefs in Electrical and Computer Engineering,

New York: Springer New York, 2012, ch. 3, pp. 15–25.
http://dx.doi.org/10.1007/978-1-4614-4663-7_3

[7] S. Decker, F. Harmelen and others, „The Semantic Web - on the

respective Roles of XML and RDF,” IEEE Internet Comput., pp. 1–19,
Sep./Oct 2000.

[8] G. Schreiber and Y. Raimond. (2014, June) RDF 1.1 Primer [Online].

Available: http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/
[9] T. Bray, J. Paoli and others. (2006, Aug.) Extensible Markup Language

(XML) 1.1 (2nd ed.) [Online]. Available: http://www.w3.org/TR/

2006/REC-xml11-20060816/
[10] Yu L. A Developer`s Guide to the Semantic Web, New York: Springer

New York, 2014.

[11] J. D. Fernández, M. A. Martínez-Prieto and others. (2011, Mar.) Binary

RDF Representation for Publication and Exchange (HDT) [Online].
Available: http://www.w3.org/Submission/2011/SUBM-HDT-20110330/

[12] A. Seaborne. RDF Binary encoding using Thrift [Online]. Available:

http://afs.github.io/rdf-thrift/rdf-binary-thrift.html
[13] F. Gandon and G. Schreiber. (2014, Feb.) RDF 1.1 XML Syntax

[Online]. Available: http://www.w3.org/TR/2014/REC-rdf-syntax-

grammar-20140225/
[14] J. J. Carroll and P. Stickler. (2004, May) HP Labs: TriX: RDF Triples in

XML [Online]. Available: http://www.hpl.hp.com/techreports/2004/HPL-

2004-56.html
[15] D. Beckett. (2004) Modernising Semantic Web Markup [Online].

Available: https://www.dajobe.org/papers/xmleurope2004/

[16] (2010, Sep.) Grit: Grokkable RDF Is Transformable [Online].
Available: https://code.google.com/p/oort/wiki/Grit

[17] Treetriples syntax specification [Online]. Available:

http://djpowell.net/schemas/treetriples/1/SyntaxSpec.html
[18] D. Beckett, T. Berners-Lee, E. Prudhommeaux and G. Carothers. (2014,

Feb.) RDF 1.1 Turtle [Online]. Available: http://www.w3.org/TR/

2014/REC-turtle-20140225/
[19] G. Carothers and A. Seaborne. (2014, Feb.) RDF 1.1 N-Triples [Online].

Available: http://www.w3.org/TR/n-triples/

[20] G. Carothers. (2014, Feb.) RDF 1.1 N-Quads [Online]. Available:
http://www.w3.org/TR/n-quads/

[21] D. Beckett “RDF Syntaxes 2.0” in W3C 2010 RDF Next Steps
workshop, Stanford, Palo Alto, CA, USA, 2010.

http://www.w3.org/2001/sw/SW-FAQ#whrules
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
http://dx.doi.org/10.1007/978-1-4614-4663-7_3
http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/
http://www.w3.org/TR/%202006/REC-xml11-20060816/
http://www.w3.org/TR/%202006/REC-xml11-20060816/
http://www.w3.org/Submission/2011/SUBM-HDT-20110330/
http://afs.github.io/rdf-thrift/rdf-binary-thrift.html
http://www.w3.org/TR/2014/REC-rdf-syntax-grammar-20140225/
http://www.w3.org/TR/2014/REC-rdf-syntax-grammar-20140225/
http://www.hpl.hp.com/techreports/2004/HPL-2004-56.html
http://www.hpl.hp.com/techreports/2004/HPL-2004-56.html
https://www.dajobe.org/papers/xmleurope2004/
https://code.google.com/p/oort/wiki/Grit
http://djpowell.net/schemas/treetriples/1/SyntaxSpec.html
http://www.w3.org/TR/%202014/REC-turtle-20140225/
http://www.w3.org/TR/%202014/REC-turtle-20140225/
http://www.w3.org/TR/n-triples/

Applied Computer Systems

___ 2015/18

42

[22] D. Brickley and R. V. Gruha. (2014, Feb.) RDF Schema 1.1 [Online].

Available: http://www.w3.org/TR/2014/REC-rdf-schema-20140225/

[23] P. J. Hayes and P. F. Patel-Schneider. (2014, Feb.) RDF 1.1 Semantics
[Online]. Available: http://www.w3.org/TR/2014/REC-rdf11-mt-20140225/

[24] T. Bray, D. Hollander, A. Layman and R. Tobin. (2006, Aug.)

Namespaces in XML 1.1 (Second Edition) [Online]. Available:
http://www.w3.org/TR/2006/REC-xml-names11-20060816/

[25] D. Beckett and I. Herman. (2007) RDF Primer – Turtle Version

[Online]. Available: http://www.w3.org/2007/02/turtle/primer/
[26] S. Powers Practical RDF, O`Reilley Media, 2003.

[27] Apache: Apache Jena Core 2.13.0 [Online]. Available:

https://jena.apache.org/documentation/javadoc/jena/index.html
[28] Java RDF API Framework 0.5.6.3 JavaDoc [Online]. Available:

http://jrdf.sourceforge.net/0.5.6.3/doc/javadoc/index.html

[29] Sesame 2.8.3 API JavaDoc [Online]. Available:
http://rdf4j.org/sesame/2.8/apidocs/

[30] (2015, Apr.) DBpedia: Downloads 2015-04 [Online]. Available:

http://wiki.dbpedia.org/Downloads

Yevgeny Gryaznov was born in 1991 in Riga,

Latvia. He received his Bc. sc. ing. and Mg. sc.

ing. from Riga Technical University (RTU) in
2013 and 2015 respectively. He received the

Diploma with distinction: Master of engineering

science in computer systems.
His fields of interest are computer science,

Web technologies, design and development of

information systems, data transmission, mobile
technologies.

E-mail: jevgenij.grjaznov@gmail.com

Pavel Rusakov was born in 1972 in Riga,
Latvia. He received his Bc. sc. ing., Mg. sc. ing.

and Dr. sc. ing. from Riga Technical University

(RTU) in 1993, 1995 and 1998 respectively. He
received the Diploma with distinction:

Mg. sc. ing.

He is an Associate Professor with the

Institute of Applied Computer Systems, RTU.

He is Head of laboratory and is responsible for

the Professional Bachelor and Professional
Master studies in the Department of Applied

Computer Science. His fields of interest are
computer science, programming paradigms,

object-oriented approach to systems development, parallel computing, Web

technologies, distributed systems, computer graphics, and protection of
information.

E-mail: Pavels.Rusakovs@cs.rtu.lv

http://www.w3.org/TR/2014/REC-rdf-schema-20140225/
http://www.w3.org/TR/2006/REC-xml-names11-20060816/
http://www.w3.org/2007/02/turtle/primer/
https://jena.apache.org/documentation/javadoc/jena/index.html
http://jrdf.sourceforge.net/0.5.6.3/doc/javadoc/index.html
http://rdf4j.org/sesame/2.8/apidocs/
http://wiki.dbpedia.org/Downloads

