
Information Technology and Management Science doi: 10.1515/itms-2015-0001

__2015 / 18

5

Selection of Software Development Project Lifecycle

Model in Government Institution

Oksana Medvedska1, Solvita Berzisa2
1, 2 Riga Technical University

Abstract – Software development projects in government

institutions have certain characteristics that can negatively

impact the management process of these projects. However, the

negative impact of these characteristics can be decreased by

using the appropriate software development project lifecycle

model, because it ensures more comprehensive and effective

project management. The methodology for selecting the most

appropriate model for software development projects in

government institutions, where outsourcing is used, is elaborated.

The impact of the characteristics of software development

projects in government institutions on project execution and

management process is analysed. The methodology is elaborated

taking into account these characteristics and ensures that the

appropriate model is selected.

Keywords – Government project management, project

lifecycle, public sector management, selection of software

development project lifecycle model.

I. INTRODUCTION

Wirick [1] highlights that project managers in the public

sector encounter difficulties because of the constraints under

which management is required to operate. These constraints

are caused by wide differences that public and private

organisations have in a variety of aspects, to which Boyne [2]

refers as organisational environment, managerial values, etc.

Software development projects in government institutions

have certain characteristics that can negatively impact and

complicate the management process of these projects.

However, the negative impact of these characteristics can be

decreased by using the appropriate software development

project lifecycle model, because it ensures more

comprehensive and effective project planning and

management during all phases of the software development

project lifecycle [3]. It is important to note that the project

lifecycle model and the software development lifecycle model

interact during all phases of the software development project

lifecycle and both impact the project, so in this research they

should be discussed conjointly as the software development

project lifecycle (hereafter – SDPL) model.

Different SDPL models can be used – waterfall, iterative

and incremental such as evolutionary or spiral model, agile

such as SCRUM or DSDM methodologies and other SDPL

models, although none is the universally appropriate model for

each project. Each model has certain conditions of use,

advantages and disadvantages depending on the project

characteristics and circumstances; thereby, each model’s

effectiveness varies with project characteristics and other

factors affecting the project, such as enterprise environmental

factors. Because of this, the most appropriate (effective)

model must be selected for every project [4].

Review of scientific literature in this field as well as

practical experience shows that very often the SDPL model for

the software development projects in government institutions

is selected arbitrarily without any analysis of project

characteristics and other factors affecting the project, so an

inappropriate model can be selected [5], [6]. Use of ineffective

SDPL model can adversely affect project manageability and,

as a consequence, can cause a decrease in software quality [4],

[5]. Therefore, model selection is a strategically important

decision, especially in government institutions, where

software development project management is more complex.

The research objective is to elaborate the methodology for

selecting the most appropriate model for the government

software development projects, where outsourcing is used.

Impact of characteristics of software development projects in

government institutions on project execution and management

process is analysed in the present research. The methodology

is elaborated taking into account these characteristics and

other factors affecting the software development projects in

government institutions and ensures that the appropriate SDPL

model is selected.

The paper is organised in 5 sections. Section II describes

the background of the research, including description of SDPL

models, SDPL model selection standards as well as

characteristics of the government software development

projects. Section III describes the steps of the methodology for

selecting the most appropriate SDPL model for the

government software development projects. The results of

applying this methodology to a particular software

development project in the State Revenue Service of Latvia

are presented in Section IV. Conclusions are drawn and

recommendations to decrease the negative impact some

factors have on execution and management process of the

government software development projects are proposed in

Section V.

II. BACKGROUND

The PMBOK classification of the project lifecycle is

described in Subsection A. SDPL models typically used in

government institutions are reviewed in Subsection B. Major

drawbacks of using standard SDPL model selection guidance

are outlined in Subsection C. In order to elaborate SDPL

model selection methodology directly applicable to the

government software development projects, the impact of

characteristics of these projects on project execution and

management process is analysed in Subsection D.

DE GRUYTER

OPEN

©2015 Oksana Medvedska and Solvita Berzisa. This is an open access article licensed under the Creative Commons Attribution-NonCommercial-
NoDerivs License (http://creativecommons.org/licenses/by/4.0), in the manner agreed with De Gruyter Open.

Information Technology and Management Science

__2015 / 18

6

A. Software Development Project Lifecycle

The project lifecycle consists of four stages (1) initiation;

(2) planning; (3) execution and (4) closure [7], [9]. It provides

the framework for executing and managing the project;

however, large and complex projects may require more

exhaustive management and control. In such instances, the

work carried out to complete the project objectives within the

context of the generic project lifecycle structure may be

broken down into any number of phases to ease planning,

management and control [8].

The PMBOK [8] classifies the project lifecycle as

predictive, iterative and incremental or adaptive. In the

projects with predictive lifecycle the objectives, scope,

resources required for the project are determined as soon as

possible, phases are sequential and plan is a more general,

high-level document. In the projects with iterative and

incremental lifecycle, project activities within the phase are

executed iteratively to develop the deliverables (software,

documentation) increment by increment until the criteria for

the phase closure are met, high-level planning is executed at

the beginning of the lifecycle, and more detailed planning is

executed for each iteration. Adaptive lifecycle is also iterative

and incremental, but iterations are very rapid. At the end of

each iteration, the customer provides the feedback about the

deliverable developed within the iteration to acknowledge that

their current needs are reflected.

B. SDPL Models

The project lifecycle phase within which the software is

developed is very substantial in the software development

project and depends on the SDPL model. Although the project

lifecycle model is used as a tool for planning and managing

the project, the SDPL model is used for developing the

software as a product of the project.

According to the project lifecycle classification proposed by

the PMBOK [8] and taking into account the features of SDPL

models, the following classification of SDPL models is

proposed:

 Predictive lifecycle → the waterfall model;

 Iterative and incremental lifecycle → the evolutionary

model, the spiral model;

 Adaptive lifecycle → Scrum and DSDM.

The classical waterfall model divides the SDPL into such

phases: (1) feasibility study; (2) requirements analysis; (3)

design; (4) development; (5) testing; (6) deployment and

maintenance (number and names of phases may vary). This

model assumes that all requirements are defined at the

beginning of the project, all the phases are sequential, the

various activities during the phase are assumed to be

flawlessly done, and therefore, there is no need to re-enter the

phase [3].

In the evolutionary model, a subset of the software

requirements, which are well-understood, is initially

implemented as a useable version of the software. This version

of the software is then delivered to the customer to provide

feedback and then is amended in compliance with this

feedback. The evolutionary model is very similar to the

evolutionary prototyping model, and the terms are

sometimes used synonymously. In the evolutionary

prototyping model, however, the initial software increments

implement less well-understood requirements, rather than

well-understood requirements [4].

The diagrammatic representation of the spiral model

appears like a spiral with many loops. Over each loop, some

features of the software are identified and analysed and the

risks at that point of time are identified and resolved through

prototyping. Based on this, the identified features are

implemented in the next version of the software [3].

Scrum is an Agile framework and, as such, is consistent

with the values of the Agile Manifesto [10]. The software is

developed incrementally in a series of time periods called

sprints [11]. Each sprint begins with sprint planning, produces

a software increment and ends with sprint review and sprint

retrospective when the developed software increment and the

development process are reviewed [12].

DSDM (Dynamic Systems Development Method) consists

of three phases: pre-project, project lifecycle and post-project

phase. The project lifecycle phase consists of five sub-phases

[13]. The Feasibility and Foundation phases are sequential, but

the software then is developed iteratively and incrementally

within the Exploration phase, when functional prototype is

developed, Engineering phase, when design prototype is

developed, and Deployment phase, when software is delivered

to the customer [14].

It can be concluded that each model determines the SDPL

in different ways; therefore, activities within the phases can

differ, each model has several advantages and disadvantages

etc. Because of this, the most appropriate (effective) model

must be selected for every project [4]. However, Alexander et

al. [5] state that models are often selected on an ad hoc basis

using a set of unjustified undocumented criteria.

C. SDPL Model Selection Guidance

Several standards and methodologies contain guidance on

the selection of the most appropriate SDPL model.

McConnell specifies a set of questions about the project

and criteria to assess the answers. McConnell uses the

undefined qualitative values to evaluate SDPL models against

criteria [15].

Alexander et al. define a set of criteria and criteria values.

These criteria are actually a set of project characteristics. To

select the most appropriate SDPL model for a particular

project, each criterion is evaluated according to the project

characteristics, and SDPL model appropriateness is then

evaluated against values of certain criteria and quantified by

summarising the model evaluation of each criterion [5]. All

criteria have equal importance; moreover, criteria are

assessed independently of each other. Therefore, the

methodology proposed by Alexander et al. does not help

determine the most appropriate SDPL model in a particular

set of project circumstances [4].

Davis et al. use the following metrics for comparing SDPL

models: shortfall, lateness, adaptability, longevity and

inappropriateness. Davis et al. do not describe how models

Information Technology and Management Science

__2015 / 18

7

are evaluated against these metrics and evaluate the

effectiveness of various models without considering the

project circumstances [4].

ISO/IEC FDIS 1107:2007, CMMI-DEV, DO-118B,

TickIT Guide and other standards can also be used to select

the most appropriate SDPL model.

D. Software Development Projects in Government Institutions

In order to develop a set of criteria for selecting the most

appropriate model for the government software development

projects, it is necessary to identify the characteristics

impacting these projects. Such characteristics are expert

judgement-based (in project management at government

institutions experts are experienced project managers) and are

supported by the available literature in this field, so far as is

possible.

The following environmental factors impact the

execution and management processes of government

software development projects.

1) A hierarchical structure of government institutions and

functional matrix project organisational structure [2], [16].

In such organisational structure, the dispersal of decision-

making power leads to the fact that nobody assumes full

management responsibility for the project [9].

Impact on project execution and management process: high.

When more than one functional division is involved in

project execution, the potential for conflict between

functional managers and project managers exists because of

resource conflict. This can cause delays in the execution of

the project activities.

Impact: high.

Project managers must obtain continual cooperation from

functional managers of many other divisions. Certain

difficulties in the inter-divisional cooperation and

information exchange can cause difficulties in managing the

interdependent projects.

Impact: medium.

2) A role culture and autocratic management style hinder

personnel from planning, organising and controlling their

work on the project on their own; project execution depends

entirely on the leader’s competence, operational experience

and personality [1], [2].

Impact: medium.

3) Multiplicity of the government software systems.

Personnel need to be aware of multiple technologies;

furthermore, an average high-level IT specialist salary at

government institutions is lower than in the private sector.

Therefore, shortage and high fluctuation of qualified

personnel is observed in government institutions [1], [17].

Impact: medium.

Considering the shortage and high fluctuation of qualified

personnel, outsourcing is often used that results in a high

degree of dependency on an outsourced developer. Moreover,

a procurement procedure is necessary to use outsourcing

software development [1].

Impact: medium.

4) Internal policies and procedures do not provide the

framework for executing and managing the software

development projects [8], [16].

The content of the project planning documents, milestones,

approaches to risk management and quality management etc.

can differ that can make it difficult to manage interdependent

software development projects.

Impact: low.

Historical information and lessons learned throughout the

executing and managing software development projects are

unavailable because knowledge base is not maintained.

Impact: low.

The following characteristics of the government

software development projects impact the execution and

management process of these projects.

1) High degree of interdependence of software systems.

This leads to interdependency between software

development projects which complicates the planning,

management and control processes of these projects.

Impact: medium.

This must be considered at the time of defining software

system requirements, designing functional and technical

architecture, testing, and implementing the software system.

Impact: medium.

In order to provide usable functionality for carrying out core

business processes, it is often necessary to implement all

functionality simultaneously; however, it is difficult to break

down the software system into functionally independent

increments.

Impact: medium.

2) Business processes of government institutions supported

by software systems are determined by legislation [16].

Legislation determines deadlines to implement software

system functionality; therefore, government software

development projects are often time-bounded projects

constrained by hard deadlines.

Impact: high.

Because of hard deadlines, it is often necessary to specify

software system requirements during developing legislation.

Furthermore, several software systems may require

adjustments and amendments; however, functional divisions,

which operate with these software systems, may not be

involved in the project. Taking into account the above-

mentioned considerations, software system requirements may

not be initially fully understood and specified and may also

be modified during the project.

Impact: high.

3) Outsourced developer is responsible only for software

system requirements analysis, design and development,

whereas a government institution as a customer – for

software system acceptance testing, implementation and

maintenance. Therefore, high-quality project documentation,

including software system documentation, is required in

order to ensure high-quality software system testing,

configuration management, change management etc.

Impact: medium.

Information Technology and Management Science

__2015 / 18

8

4) Government software systems process restricted

information (e.g. personally identifiable information).

Therefore, the software system must be developed

considering all security requirements in order to ensure

security, confidentiality and integration of information.

Impact: medium.

Taking into account the characteristics of the government

software development projects described above, it can be

concluded that software development projects in the public

sector differ from software development projects in the

private sector. Although software development projects in the

private sector can be extremely different, the following

factors distinguish the environment of software development

projects in the private sector from the environment in the

public sector:

projectized or projectized matrix organizational structure in

the private sector instead of functional or functional matrix

structure in the public sector;

task culture instead of role culture;

democratic management style instead of autocratic;

lower level of shortage of qualified personnel.

Software development projects in the private sector are more

flexible – limits of resources, amount of planning, software

system development and implementing approach, amount of

software system documentation etc. are more flexible. The

framework for executing and managing software

development projects (including framework for selecting the

SDPL model) is provided by internal policies and procedures

in many mature software development companies.

It follows from this that the SDPL model selection

methodology directly applicable to the government software

development projects needs to be elaborated.

III. SDPL MODEL SELECTION METHODOLOGY

The methodology for selecting the most appropriate SDPL

model for the government software development projects is

elaborated.

SDPL model selection criteria are defined taking into

account characteristics of the government software

development projects mentioned in Subsection D of Section

II. Criteria are specified by the values and the relative

weights. Values of criteria represent the range of values

characterising a particular project. The relative weights of

criteria depend on the impact each criterion has on the

execution and management process of government software

development projects, thus determining for which criterion

the selection of the appropriate SDPL model is most

important. The rating scales of SDPL models determine the

appropriateness of a particular SDPL model with respect to

the values of criteria.

The relative weights of criteria are defined on the basis of

the authors’ personal experience in government software

development project management. Each rating scale is

defined on the basis of the analysis of the advantages,

disadvantages and conditions of use of the waterfall, iterative

and incremental, evolutionary, spiral and agile models.

Therefore, the relative weights of criteria, the rating scales of

SDPL models and the ranges of values of criteria can be

defined more precisely in accordance with the characteristics

of software development projects in a particular government

institution and the experience accumulated managing

software development projects in this government institution.

Criteria (ci, i = 1..20) and ranges of criterion values (vij,

j = a..e), as well as the relative weight (wi) of each criterion

are defined in Table II. The rating scales (ri) of the waterfall,

iterative and incremental, evolutionary, spiral and agile

models with respect to each criterion value are defined in

Table III.

The methodology allows selecting the appropriate SDPL

model for the government software development project in

the following steps:

0. Precise the relative weights of criteria (wi), the rating

scales of SDPL models (ri) and the ranges of values of

criteria (vij).

wi values are the following: 1 – no impact, 1.25 –

insignificant, 1.50 – significant, 1.75 – very significant

impact.

ri values are the following: 0 – not appropriate, 1 – partly

appropriate, 2 – almost appropriate, 3 – appropriate, 4 – very

appropriate.

ranges of values of criteria vij differ depending on criteria.

1. Evaluate the project against the set of twenty criteria ci.

Criteria ci may take on the values vij defined in Table II.

2. Evaluate the appropriateness of SDPL model x with

respect to the criterion’s ci value vij by determining the rating

ri(x) according to the rating scale defined in Table III.

3. Multiply ri (x) by wi and summarise the total rating of the

SDPL model x.

20

1

)(
i

ii wxrxr (1)

4. Select the SDPL model with the highest total rating

MAX(r(x)) as the appropriate SDPL model.

TABLE II

CRITERIA FOR EVALUATING SOFTWARE DEVELOPMENT PROJECT

ci Criterion wi
Values of criteria

via vib vic vid vie

c1 Complexity 1.50
1 software system is

involved

2 software systems are

involved

3–4 software systems

are involved

4–6 software systems

are involved

> 6 software systems

are involved

c2 Size (man-hours) 1.25 <200 200–500 500–1 000 1 000–1 500 >1 500

c3
Ability to develop software

system incrementally
1.75

Cannot be broken

down into increments

Increments are
interdependent, cannot

be brought into

production apart

Increments are
interdependent, but can

be brought into

production apart

Increments are
independent, cannot be

brought into production

apart

Increments are
independent, cannot be

brought into production

apart

Information Technology and Management Science

__2015 / 18

9

ci Criterion wi
Values of criteria

via vib vic vid vie

c4
Quality of the initially
determined requirements

1.75

Only basic

requirements need to
be defined more

precisely

Only business

requirements need to
be defined more

precisely

Business and user

requirements need to
be defined more

precisely

All level requirements

need to be defined

more precisely

All level requirements

do not need to be

defined more precisely

c5
Probability of changing

requirements
1.75

Very likely, extreme

magnitude

Very likely, moderate

magnitude

Likely, extreme

magnitude

Likely, moderate

magnitude

Unlikely, minor

magnitude

c6
Software security
requirements

1.50 None Very low Low High Very high

c7

Requirement for amount
and granularity of

documentation

1.50
Minimum, low level of

detail

Small, low level of

detail

Medium, medium level

of detail

Large, high level of

detail

Very large, very high

level of detail

c8
Time constraint and slack
time

1.50
Bounded with no slack

time
–

Bounded with slack
time

– No constraints

c9 Funds availability 1.50
Bounded with no

reserve
– Bounded with reserve – No constraints

c10 Personnel availability 1.50
Limited with no

reserve
– Limited with reserve – No constraints

c11
Personnel qualification and
experience

1.25
Low with no
experience

Average with no
experience

Average with
experience > 2 years

High with experience
> 2 years

High with experience
> 5 years

c12

Outsourced developer

qualification and
experience

1.50
Low with no

experience

Average with no

experience

Average with

experience > 2 years

High with experience >

2 years

High with experience

> 5 years

c13
Communication between

client and developer
1.25

Formal, informal on

request
–

Formal, informal, at

the site on request
–

Formal, informal, at

the site regularly

c14
Project organisational

structure
1.25 Functional Weak matrix Balanced matrix Strong matrix Projectised

c15
Amount of planning at the

beginning of the project
1.25 Minimum Small Medium Large Very large

c16
Risk management

approach
1.50 None – With no documenting – With documenting

c17
Acceptable level of

developer’s risk
1.25 Minimum Small Medium Large Very large

c18
Verification and validation

of results of the project
1.50

At the end of each

phase
–

At the end of each

iteration
– Throughout the project

c19
Need for project progress

visibility for client
1.50 Very little Little Medium Great Acute

c20
Acceptable amount of
training to use the SDPL

model

1.00 No constraints Large Medium Small Inadmissible

TABLE III

THE RATING OF SDPL MODELS WITH RESPECT TO CRITERIA VALUES

ri(x) x Waterfall
Iterative and

incremental
Evolutionary Spiral SCRUM DSDM

ci vij via vib vic vid vie via vib vic vid vie via vib vic vid vie via vib vic vid vie via vib vic vid vie via vib vic vid vie

c1 4 2 1 0 0 4 4 3 2 1 4 3 2 1 1 4 3 1 0 0 4 4 3 1 0 4 4 3 2 1

c2 4 3 1 0 0 4 3 2 2 1 4 3 3 2 1 4 3 2 1 0 4 3 2 0 0 4 3 3 2 1

c3 4 3 2 3 1 0 1 2 2 4 2 2 3 3 4 0 1 3 3 4 1 2 3 4 4 1 3 3 4 4

c4 0 1 2 2 4 0 1 2 3 4 2 2 3 3 4 2 2 3 3 4 2 3 3 4 4 2 3 3 4 4

c5 0 0 1 2 3 0 1 1 2 3 1 1 2 3 4 1 2 3 3 4 2 2 3 3 4 2 2 3 3 4

c6 4 4 3 3 2 4 3 2 2 1 4 3 2 1 1 4 3 3 2 1 4 3 3 2 2 4 3 3 2 2

c7 0 0 3 4 4 1 1 3 3 2 1 1 3 3 2 2 2 3 3 2 4 4 3 1 0 2 3 4 3 3

c8 0 – 2 – 4 2 – 3 – 4 1 – 3 – 4 2 – 3 – 4 3 – 4 – 3 2 – 4 – 3

c9 0 – 2 – 4 1 – 3 – 4 3 – 4 – 4 3 – 3 – 4 3 – 3 – 4 3 – 3 – 4

c10 0 – 1 – 4 2 – 3 – 4 2 – 3 – 4 1 – 2 – 4 2 – 3 – 4 2 – 3 – 4

c11 3 3 4 4 4 3 4 4 4 4 3 4 4 4 4 2 2 3 4 4 0 1 3 3 4 1 2 3 3 4

c12 1 2 3 3 4 2 2 3 4 4 2 2 3 4 4 2 2 3 3 4 0 1 2 3 4 1 1 2 3 4

c13 3 – 4 – 4 2 – 4 – 4 2 – 3 – 4 2 – 3 – 4 0 – 2 – 4 1 – 2 – 4

c14 2 2 3 3 4 2 2 3 3 4 2 2 3 3 4 1 2 2 3 4 0 1 2 3 4 1 2 2 3 4

c15 0 1 1 3 4 1 1 2 3 3 1 2 2 3 3 1 2 2 3 3 2 2 3 3 3 2 2 3 3 3

c16 3 – 2 – 2 1 – 2 – 3 1 – 2 – 3 0 – 2 – 4 1 – 3 – 3 1 – 3 – 4

c17 4 3 2 1 0 2 2 3 3 3 2 2 3 3 3 2 2 3 3 3 1 2 2 3 4 1 2 3 3 4

c18 4 – 2 – 1 0 – 3 – 4 1 – 3 – 3 1 – 3 – 4 0 – 3 – 4 1 – 3 – 4

c19 4 4 3 2 1 2 3 4 4 3 3 3 4 4 3 3 3 4 4 3 1 2 4 4 4 1 2 4 4 4

c20 4 4 4 4 3 4 4 4 3 3 4 4 4 3 2 4 4 3 2 1 4 3 3 1 1 4 3 3 2 1

Information Technology and Management Science

__2015 / 18

10

IV. APPLICATION EXAMPLE AND DISCUSSION

The methodology described in Section III was applied to

select the appropriate SDPL model for a particular software

development project in the State Revenue Service of Latvia

(hereafter – SRS), which has almost all characteristics of the

government software development projects described in

Subsection D of Section II.

Commonly the waterfall model is used for software

development projects in the SRS. However, commonly it is

selected without any analysis of characteristics of software

development projects; therefore, it can be inappropriate. The

main results of SWOT (Strengths – Weaknesses –

Opportunities – Threats) analysis of how appropriate the

waterfall model is as the SDPL model for a particular software

development project in the SRS are presented in Table IV.

TABLE IV

SWOT ANALYSIS OF USING WATERFALL MODEL

Strengths Weaknesses

Document-driven approach

provides comprehensive
documentation for software system

further development, testing and
maintenance.

Detailed planning at the beginning
of the project provides more

coordinated inter-divisional

cooperation (several SRS functional
divisions are involved).

Model determines SDPL in an
easy-to-understand way, so high-

level experience is not necessary.

Model requires all requirements to

be defined before designing
software system architecture

(however, requirements are initially
not well understood).

Performing phases sequentially is
time-consuming (however, project

is constrained by hard deadlines).

Model does not support building
software system incrementally.

Late and rare delivery does not
ensure visibility of progress.

Model does not cover all aspects
of risk management (however, such

a high-risk project requires
comprehensive risk management).

Opportunities Threats

Verification and validation of
specifications (e.g. design

specification) allow detecting non-

conformity of specifications on time.

Developing all the functionality

simultaneously can ensure a higher
level of the software system security.

By dividing SDPL into sequential
phases, problems can also be solved

sequentially one by one (important
for such a complex project).

Working software system is
delivered only in the testing and

deployment phase, so non-fulfilment

of the requirements can occur.

Model requires to re-enter all

previous phases in case of any
changes (e.g. requirements changes)

increasing the risk of exceeding time
and budget as well as the risk of

conflict with the related project (if

artifacts from the previous phase
have already been agreed and have

already been used in the related
project).

The results of applying the methodology for a particular

SRS software development project are shown in Fig. 1 and

according to them the DSDM model is most appropriate,

whereas the waterfall model is most inappropriate.

The main results of SWOT analysis of how appropriate the

DSDM model is as SDPL model for a particular software

development project in the SRS are presented in Table V.

Fig. 1. The rating of the evaluated SDPL models.

TABLE V

SWOT ANALYSIS OF USING DSDM MODEL

Strengths Weaknesses

Planning and resourcing each

phase allow keeping a project on
track (however, a project is

constrained by hard deadlines).

Model requires only high-level

requirements to be defined before
designing software system

architecture (however, requirements

are initially not well understood).

Iterative and incremental

development and delivery ensure
clear visibility of progress.

Iterative risk management process
helps manage project risks

proactively.

Model is complicated and difficult

to understand.

Model is a relatively new approach

represented with a limited amount of
examples of good practice.

Opportunities Threats

By defining requirements
iteratively, the software system

addresses the current and imminent
needs (requirements can change

during developing legislation).

MoSCoW prioritisation allows
avoiding development of less needed

functionality of software system and
keeping the project on track.

By testing early and continuous
non-conformity of the software

system can be detected and
eliminated as soon as possible.

Personnel have no experience in
using the DSDM model.

Model requires collaboration and
cooperation; however, difficulties

may arise in the inter-divisional
communication.

Model requires personnel to be
empowered to make decisions;

however, in the functional matrix

structure (like in the SRS) only
functional managers have full

decision-making power.

Model requires active user

involvement in the development
process; however, it may be difficult

to involve all users (users of

software system are both internal
and external).

As the DSDM model can provide the usable and useful

80 % of the wanted software system functionality in 20 % of

the total development time [13], it can be concluded that the

DSDM model is more effective for such a project as a

particular software development project in the SRS, i.e. with

unstable requirements and hard deadlines than the waterfall

model. This conclusion is supported by SWOT analysis results

and the main results are the following:

0

10

20

30

40

50

60

70

80

57.50

71.75 72.75

69.50

74.50

79.75

r(x)

x

Information Technology and Management Science

__2015 / 18

11

Software system requirements are initially not well understood

as the waterfall model requires. DSDM model requires only

high-level requirements to be defined initially; other

requirements are defined iteratively as well as are prioritised.

Benefit: Focus on the business needs.

Changes in the legislation can cause changes in the

requirements. Furthermore, hard deadlines for implementing

the software system are determined by legislation.

Benefit: Though the DSDM model determines SDPL as an

iterative and incremental approach and planning, monitoring

and controlling processes also are iterative, the likelihood of the

project being completed in time and on budget is increased.

Software system functionality supports interdependent

business processes, therefore, is very complex.

Benefit: Non-conformity of the software system can be

detected and eliminated as soon as possible by testing early

and continuously as the DSDM model assumes.

V. CONCLUSION

The results of applying the methodology discussed in

Section IV confirm that the methodology can be applied to

select the appropriate SDPL model for the government

software development projects, because the DSDM model

selected by applying the methodology to a particular SRS

project as the SDPL model can help decrease the negative

impact some characteristics have on the execution and

management processes of this project. However, the negative

impact some factors have on the execution and management

processes of the government software development projects

cannot be decreased only by selecting and using the

appropriate SDPL model. Therefore, the following

recommendations are proposed:

Developing internal policies and procedures how to manage

and execute software development projects in a particular

government institution, including guidelines for selecting the

appropriate SDPL model;

Developing a common knowledge base containing the

historical information about the previous projects, e.g. the

effect of decision results, risk assessment measures, using a

particular SDPL model etc.;

Assessing the possibility of establishing the Project

Management Office responsible for taking the project-related

decisions in accordance with the strategy of a particular

government institution in order to avoid conflict between

functional managers and project managers;

Assessing the amount of financial resources accessible for

increasing personnel motivation in order to attract and retain

qualified personnel and decrease the degree of dependency on

the outsourced developer.

The methodology for selecting the most appropriate SDPL

model for the government software development projects can

be improved by analysing the mutual dependence and impact

of criterion values that can be an objective of the further

research. The potential for applying the methodology for

selecting the most appropriate SDPL model for software

development projects in the private sector can also be further

studied.

REFERENCES

[1] D.W. Wirick, Public-sector Project Management: Meeting the

Challenges and Achieving Results. New Jersey: Wiley, 2009.

http://dx.doi.org/10.1002/9780470549131
[2] G.A. Boyne, “Public and Private Management: What's the Difference?”

Journal of Management Studies, vol. 39, Issue 1, 2002, pp. 97–122.
http://dx.doi.org/10.1111/1467-6486.00284

[3] R. Mall, Fundamentals of Software Engineering. New Delhi: PHI

Learning Pvt., 2009.
[4] R.W. Boyd, Software Lifecycle Model Selection: Criteria for Safety-

critical Software. York: University of York, 2009.
[5] L. Alexander, A. Davis, “Criteria for Selecting Software Process

Models,” Proc. of the 15th Int. IEEE COMPSAC, 1991, pp. 521–528.

http://dx.doi.org/10.1109/cmpsac.1991.170231
[6] V. Massey, “Comparing Various SDLC Models And The New Proposed

Model On The Basis Of Available Methodology,” Int. J. of Advanced
Research in Computer Science and Software Engineering, vol. 2,

Issue 4, 2012, pp. 170–177.

[7] J. Westland, The Project Management Life Cycle: A Complete Step-by-

step Methodology for Initiating, Planning, Executing & Closing a

Project Successfully. London: Kogan Page, 2007.
[8] Project Management Institute, A Guide to the Project Management Body

of Knowledge: PMBOK Guide Fifth Edition. Newton Square: Project

Management Institute, 2013.
[9] K. Schwalbe, Information Technology Project Management. Boston:

Course Tehcnology, 2013.
[10] The Agile Manifesto. Agile Alliance, [Online]. Available:

http://www.agilealliance.org/the-alliance/the-agile-manifesto/.

[Accessed: June 18, 2015].
[11] The Scrum Guide. ScrumGuides.Org, [Online]. Available:

http://www.scrumguides.org/scrum-guide.html [Accessed: June 18, 2015].
[12] K. Schwaber, Agile Project Management with Scrum. Washington:

Microsoft Press, 2004.

[13] What is DSDM? DSDM CONSORTiUM, [Online]. Available:
http://www.dsdm.org/content/what-dsdm. [Accessed: June 18, 2015].

[14] J. Stapleton, DSDM, Dynamic Systems Development Method: The
Method in Practice. Cambridge: Cambridge University Press, 1997.

[15] S. McConnell, Rapid Development. Redmond: Microsoft Press, 1996.

[16] Project Management Institute, Government Extension to the PMBOK
Guide Third Edition. Newton Square: Project Management Institute, 2013.

[17] E. Pūlmanis, “Public Sector Project Management Application and
Sustainability Problems, Case of EU Member State – Latvia,” PM World

Journal, vol. 3, Issue 9, 2014.

Oksana Medvedska obtained her BSc (2012) and MSc (2015) degrees in

Computer Science and Information Technology from Riga Technical
University (Latvia) and BSc degree (2014) in Economics from Daugavpils

University (Latvia). Her major field of study is IT project management. From

2012 till 2013, she was an Assistant Project Manager at website design and
development company, Riga, Latvia. Since 2013 she has been an IT Project

Manager at the State Revenue Service, Riga, Latvia. Current research interests
are IT project management in the public sector, international standards in the

field of IT project management, service-oriented architecture (SOA) in the

public sector.
E-mail: Oksana.Medvedska@vid.gov.lv

Solvita Berzisa holds a Doctoral Degree and is a Lecturer and Researcher at

the Institute of Information Technology of Riga Technical University (Latvia).
She obtained her Dr. sc. ing. (2012), BSc (2005) and MSc (2007) degrees in

Computer Science and Information Technology from Riga Technical

University. Her main research fields are IT project management, project
management information systems implementation and application, as well as

project data analytics. She also works as an IT Project Manager at Exigen
Services Latvia. She holds a PMP certificate and was awarded the IPMA

Outstanding Research Contribution by a Young Researcher 2013. She is a

Member of PMI, IIBA and Latvian National Project Management
Association.

E-mail: Solvita.Berzisa@rtu.lv

http://dx.doi.org/10.1002/9780470549131
http://dx.doi.org/10.1111/1467-6486.00284
http://dx.doi.org/10.1109/cmpsac.1991.170231

