
Information Technology and Management Science doi: 10.1515/itms-2015-0005

__2015 / 18

30

Decomposition of Enterprise Application:

A Systematic Literature Review and

Research Outlook

Inese Supulniece1, Inese Polaka2, Solvita Berzisa3, Egils Meiers4, Edgars Ozolins5, Janis Grabis6
1–3,6Riga Technical University, 4–5Visma Enterprise

Abstract – Enterprise applications are aimed at managing en-

terprise operational data and improving business efficiency.

Many enterprise applications have been developed over the past

three decades, therefore, known as legacy systems. Usually, they

are monolith, inflexible, poorly documented and hard to main-

tain. The purpose of this paper is to describe best practices and

limitations for enterprise application decomposition based on the

results of the systematic literature review in order to introduce

an approach for enterprise application decomposition. The paper

focuses on decomposition of large-scale systems using clustering

methods. The investigation is performed as part of the university-

industry collaboration research project.

Keywords – Component identification, decomposition, enter-

prise application, literature review, object-oriented, software

clustering.

I. INTRODUCTION

Despite the well-known disadvantages, such as being in-

flexible and hard to maintain, enterprise applications are still

vitally important to enterprises as they support complex core

business processes; they cannot simply be removed as they

implement and store critical business logic. Many enterprise

applications have been developed over the past three decades,

therefore, known as legacy systems. The knowledge contained

in these systems is of high value to the enterprises. On the

other hand, proper documentation, skilled manpower and re-

sources to evolve are scarce [1]. The need to preserve enter-

prise applications is motivated by multiple aspects commonly

associated with the advantages of reuse: taking advantage of

software that has been extensively tested in real life, reducing

risk, preserving domain knowledge, and speeding up the pro-

cess for reaching current business objectives. It becomes vital

for the enterprises to reuse their legacy systems as application

front-ends and back-ends and do it in a gradual manner [2].

Maintainability and reuse of the enterprise applications can

be improved by decomposing them into modules. Modulariza-

tion re-organises a software system so that the related parts are

collected together [3]. The heralded advantages of a modular

architecture includes [4]: handling complexity of a large sys-

tem; designing and developing different parts of the same

system by different people; testing a system in partial fashion;

repairing defective parts of a system without interfacing with

other parts; controlling defect propagation; or, reusing the

existing parts in different contexts.

The literature review about legacy system evolution to-

wards service-oriented architecture [5] reports wrapping as the

most popular migration technique. Wrapping will not solve

problems already present, such as problems in maintenance

and upgrading. It is a known fact that software maintenance is

the most expensive activity over the software life cycle [6]. In

many cases, studying the internals of the legacy system is

important and white-box modernisation tools are required [5].

Industrial migration approaches do not use reverse-

engineering techniques to understand the legacy systems. The

required knowledge is elicited from the stakeholders who own

the knowledge [2]. This means that they start from semi-

formal domain business models and produce domain software

components. This constitutes an important shortcoming like

the inability to apply these approaches when domain business

models are missing. Even if these artifacts are available, most

of the times, they do not express the true reality of the system

due to the erosion phenomenon [7]. The reality of the system

is reflected by its source code and this latter is the only artifact

always available for legacy systems [8]. Architectural under-

standing also helps to locate a suitable area to implement

changes. It has been observed that more than 50 % time effort

is spent on program comprehension before an actual change is

made [3].

The systematic literature review is an initial stage of the

university-industry collaboration research project. The indus-

try partner is an IT company developing and supporting a

legacy enterprise resource planning system over 20 years.

This enterprise application is developed in the Delphi envi-

ronment, has around 4 million lines of code and around 10,000

classes. It is used by many customers from different business

domains.

The main problems are: 1) complex maintenance and expo-

nentially growing maintenance costs; 2) difficulties to analyse

and calculate change impact; 3) increasing number of bugs; 4)

none of the employees understands the whole system – man-

agement would like to create a set of teams, where each team

would own one or more modules and would be responsible for

its development. The literature review sets the stage for further

research on developing a methodology for decomposition of

large-scale enterprise applications by taking into account both

business consulting and application development perspectives.

The rest of the paper is structured as follows: Section 2 de-

scribes the research method; Section 3 presents our findings

and best practices, open research issues and agenda. Conclu-

sion and future work is presented at the end of the paper.

DE GRUYTER

OPEN

©2015 Inese Supulniece, Inese Polaka, Solvita Berzisa, Egils Meiers, Edgars Ozolins and Janis Grabis. This is an open access article licensed
under the Creative Commons Attribution-NonCommercial-NoDerivs License (http://creativecommons.org/licenses/by/4.0), in the manner agreed
with De Gruyter Open.

0

5

10

15

20

25

30

35

40

45

Conference Paper Review

N
u

m
b

e
r

o
f

P
ri

m
ar

y
St

u
d

ie
s

Article

Publication Type

1993 2001 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Total 1 1 4 3 8 4 3 3 6 7 5 10 2 3 2

0

2

4

6

8

10

12

N
u

m
b

e
r

o
f

P
ri

m
ar

y
St

u
d

ie
s

Year

Information Technology and Management Science

__2015 / 18

31

Search strategy (1st iteration)

Abstract review
5258

Merging the lists

References review

Search strategy (2nd iteration)

229

152

Abstract review

202
Full text analysis

58

4

Review based on evaluation framework

62

Fig. 1. The review process with a number of papers.

Fig. 2. Descriptive statistics: a) a number of primary studies per year; b) a
number of primary studies by type; and c) a number of primary sources by

keywords used.

II. RESEARCH METHOD

Guidelines for performing a systematic literature review in

software engineering [9] are applied to our research to summa-

rise the existing contributions, identify the gaps in the current

research and avenues for future research.

The following research questions are formulated:

 What methods and techniques are used for decomposition

of a large monolith application?

 What are the existing research issues and what should the

future research agenda be in the area decomposition of the

large monolith legacy enterprise applications?

Firstly, the systematic literature review about the decompo-

sition of source code driven legacy systems is performed. The

full systematic literature review protocol is described in [10].

Fig. 1 presents the process for conducting this literature re-

view and the number of primary sources per activity. Descrip-

tive statistics of the selected data sources is available in Fig. 2.

Research about applicability of decomposition methods in

the area of enterprise applications is limited. In total, case

studies on 187 software systems are reported. 13 of them are

business systems (see Table I) and 3 of them are related to

enterprise resource planning systems. The rest are software

development tools and scientific applications.

This paper focuses on large enterprise application decom-

position to collect best practices, limitations and research

agenda. Three data sources are not sufficient to draw any con-

clusions. Therefore, all data sources from [10] are reviewed to

collect any knowledge that could be applied for large enter-

prise application decomposition.

III. BEST PRACTICES AND RESEARCH AGENDA OF

ENTERPRISE APPLICATION DECOMPOSITION

Analyses of the identified methods, according to ISO/IEC

24744 [11] framework, yield four main stages or phases: fact

extraction, pre-processing, component identification and post-

processing. The fact extraction phase prepares data about sys-

tem’s structure. Additional data gathering and processing are

performed in the pre-processing phase. In the component iden-

tification phase, different clustering algorithms are mostly

used for determination of system’s components, but rules can

also be used [12]–[14]. The component identification result

improvement and evaluation activities are carried out in the

post-processing phase.

Fact extraction and clustering are present in almost all

methods analysed during the literature review (see Table II).

However, pre-processing and post-processing are poorly de-

scribed and usually fused with the clustering process.

TABLE I

BUSINESS SYSTEMS IN DECOMPOSITION CASE STUDIES

Data

Source

System Description Impl. Lan-

guage

LOC Classes

[6] Industrial system NA NA 600

[14] E-commerce project Java NA main 4

[15] Software repository of medical imaging product C/C++ several million NA

[16] A proprietary CRM system Java 2681573 5063

[16] FinApp – a proprietary financial application Java 153824 551

[17] TOBEY – a proprietary industrial system that is under continuous development NA 250000 NA

[18] Base Station Management Centre – a management suite for commercial GSM base
stations

Java 72000 NA

[19] Business logic layer of the insurance software – manages the coverage information of

insurance policies offered by an international insurance company

Java 51000 436

[20] E-PaperML – personal finance application Java 12655 84

[21] Message routing system – a subsystem of an enterprise financial system NA 9000 61

[22] ATM system C++ 1400 16

[23] A small banking application Java NA 21

[24] MFG-PRO – a commercially available, enterprise resource planning (ERP) system, with

a warehousing management module extension called AIM

Progress 4GL NA[6200 proce-

dure files]

NA

b)

a)

0 5 20 25

Systems analysis

Object-oriented software systems

Management information systems

Legacy software

Computer architecture

Component identification

Clustering

Software systems

Software architecture

Program comprehension

Computer software reusability

Architecture recovery

Object-oriented system

Algorithms

Clustering algorithms

Object oriented programming

Computer software maintenance

Software engineering

Reengineering

Software clustering

Legacy systems

Computer software

Reverse engineering

10 15

Number of Primary Studies

c)

Information Technology and Management Science

__2015 / 18

32

TABLE II

SUMMARY OF DECOMPOSITION METHODS

Primary

Source

Decomposition Phases
Iterative

Process
Tool

Fact Extraction Pre-processing
Clustering/Component Iden-

tification
Post-processing

[3], [25] Static code analysis Similarity evaluation Clustering Evaluation No No

[6] Dynamic code analysis Trace compression Clustering No No Yes

[12] No Rules Rules No No Yes

[13] Static code analysis No Rules No No Yes

[14]
Static code analysis and behav-

iour analysis
No Rules Rules and meta-model No No

[18] Static code analysis Classification, weighting Clustering No No No

[20] Dynamic SQL analysis Formalisation Clustering No No No

[21] Static code analysis Business process data Clustering Evaluation, manual refinement No No

[22]
Static code analysis Grouping, removing needless

classes

Clustering No No No

[26] Dynamic code analysis No Clustering Optimisation, Refinement No Yes

[27]
Static code analysis Responsibility tree Clustering Layer identification, optimisa-

tion

Yes Yes

[28] Static code analysis No Clustering Evaluation No Yes

[29]
Dynamic code analysis Omnipresent element identifi-

cation
Clustering No No No

[30] Static code analysis No Clustering Manual refinement No No

[31] Static code analysis No Clustering Evaluation Yes No

[32] Static code analysis No Clustering, optimisation No No No

[33] Static code analysis Concept assignment Clustering Manual refinement Yes No

[34],[35]
Static code analysis and se-

mantic analysis

No Identification Evaluation No No

[36]
Static code analysis Class dependency identifica-

tion

Clustering No No No

[37]
Static code analysis and se-

mantic analysis
Similarity evaluation Clustering No No Yes

[38] Dynamic code analysis Annotate feature, entry points Features No Yes No

[39] Static code analysis No Clustering No No Yes

[40] Static code analysis Authority calculation Clustering No No Yes

[41] Static code analysis No Clustering Interface identification No Yes

[42] Static code analysis Library class elimination Clustering No No No

[43] Static code analysis No Clustering Interface identification No No

[44] Static code analysis Design patterns Clustering No No No

[45] Static code analysis No Clustering No No Yes

[46]
Static code analysis Omnipresent class identifica-

tion

Clustering No Yes No

[47] Static code analysis No Clustering No No Yes

[48] Static code analysis No Clustering Refinement No No

[49]
Static code analysis and dy-

namic analysis

No Clustering Refinement No No

The pre-processing (e.g., omnipresent class identification,

data optimisation) and post-processing (e.g., cluster interface

identification) phases are vital for large enterprise applications

because of sizeable computations and lack of manual process

control and verification.

In the literature, iterative decomposition methods are also

considered. Iterative means that input parameters and algo-

rithms are tuned before the next iteration. There are no meth-

ods, where additional datasets or types could be added before

the next iteration. Iterative or layered approach could improve

performance of large application decomposition. For example,

[15] reports large enterprise application decomposition experi-

ence. They have introduced a levelled approach to cope with

the large number of concepts.

A. Fact Extraction

Facts are data used as input for software decomposition.

Fact extraction is legacy architecture and implementation lan-

guage specific. Usually general information about this step is

provided; however, realisation details should be analysed and

applied to each particular programming language.

Most reverse engineering approaches either rely on static

code analysis or dynamic analysis approaches [50]. In the area

of software decomposition, most of the studies describe a

static source code analysis and only two studies have applied

both static and dynamic source code analyses. Dynamic source

code analysis presents business process implementation. Busi-

ness processes are the basis for enterprise applications; there-

fore, a dynamic source code analysis should be part of the

enterprise application decomposition. However, full coverage

of business process variations within a large enterprise appli-

cation is not cost efficient; therefore, a dynamic source code

analysis should be combined with a static source code analysis.

The most popular input data for object-oriented system de-

composition is a system class/entity/object dependency model.

It consists of classes/entities/objects and their relations. It

Information Technology and Management Science

__2015 / 18

33

might also include relation weights and features. Relations

might be aggregated on the class level. Usually this model is

created in the form of graph, which can be directed or undi-

rected. The nodes are classes/entities/objects, and edges are

their relations. Note that nodes and also relation types differ

according to a programming language; therefore, key concepts

should be defined for each individual system according to the

meta-model (Fig. 3). Applying a particular standard (e.g.,

UML class diagram) to a class/entity/object dependency mod-

el would avoid different interpretations of its content.

Node Relation

Node Type Relation Type

classifies classifies

source

1

0..*
0..*1

1

0..*

Weightdefines
11

target
0..*1

Fig. 3. The meta-model for class/entity/object dependency model.

B. Pre-processing

The data pre-processing step is motivated by reduction of

search space (a number of objects that are to be merged into

components) and by improving quality of the initial data. The

approaches that are not framework/language dependent and

are mentioned in multiple articles are the following:

 Exclusion of omnipresent classes or utilities – classes that

are heavily used by other classes can be misinterpreted by

decomposition algorithms and create noise as being im-

portant members of several components [29], [42], [46].

 Incorporation of non-structural information from file

names, comments etc. [15], [27], [37], [41], [51], [52].

 Dividing classes into layers based on their functionality

[15], [31], [42], [49], [53].

 Using a software system meta model to assign class func-

tionality according to business processes [21], [44].

Other pre-processing approaches from the analysed sources

are based on the chosen component search algorithm to make

the initial data easier to process.

C. Clustering

The decomposition process is model based or clustering

based. Model-based approaches (e.g., decomposition is ap-

plied starting from business process or UML models) are not

applicable to large applications because of a large number of

atomic objects (e.g., classes, tasks, entities), which cannot be

managed by a single business expert.

Clustering algorithms dominate within component identifi-

cation methods (Fig. 4), especially hierarchical clustering and

divisive clustering. Although hierarchical clustering is the

most popular approach and many modifications have been

presented, the best parameters for clustering (weights, metrics,

inter-cluster linkage, algorithm) are still unknown and have to

be fine-tuned for each task at hand. Prerequisite for divisive

clustering is to define the number of clusters before the clus-

tering process. For large enterprise applications, it is impossi-

ble to define all cluster centres manually. However, a business

architect or expert could specify some of the cluster centres

and this information should be utilised in the clustering pro-

cess.

Fig. 4. Number of data sources per clustering type.

The most commonly used classification approach (hierar-

chical clustering) is the most robust one due to its modest

requirements towards data and system. This algorithm is uni-

versal and adjustable using parameters like similarity measure

or distance metric, inter-cluster similarity, steps of each itera-

tion etc. The shortcomings of this approach also stem from its

simplicity and universality – too simple heuristics (merging

objects that have similar connections) – that possibly are not

based on the real features of the objects, because an object that

belongs to a specific component might share just one type of

edge with other objects and have completely different other

features. Another problem arises from determining the number

of clusters (components) and their limits. If the desirable

number of components is known prior to clustering, the best

option would be to use k-means clustering (or some of its

modifications) using this number of clusters and few more and

less clusters for adjustment purposes. But, in the cases where

the number of components in a legacy system is not known, it

is advisable to use a hierarchical cluster analysis and make a

cut in the built dendrogram at the most suitable distance (the

analysed research papers do not agree on the best approach to

determine the distance for the cut because it is highly depend-

ent on the nature of a system and most often is determined

experimentally).

A decomposition method for large enterprise applications

should also consider business domain areas, besides cohesion

and coupling, because these applications are usually delivered

and configured by business domain modules.

D. Post-processing

The post-processing phase includes activities related to

component refinement [21], [26], [33], [48], [49], [53] and

evaluation [3], [21], [28], [31]. During refinement, the identi-

fied components are modified by moving the border classes to

other components with the target to improve component quali-

ty. In this phase, it is also possible to perform layer identifica-

tion [27], component interface identification [41], [43], outlin-

er class processing [49] and cluster merging [48], [49].

k-mean clustering

k-medoid clustering

k-modes clustering

Clustering

27

Hierarchical
clustering

15

Cluster
breeding

5

Hierarchical
agglomerative

clustering

9

Hierarchical
divisive

clustering

3

Fuzzy
clustering

1

Information Technology and Management Science

__2015 / 18

34

Many of the considered studies adopt the step of migrating

border objects among clusters because the limit of each cluster

is not strict and objects close to the borders might be very

similar. This is one of the problems considered in the post-

processing step. It is usually addressed using some optimisa-

tion methods or evolutionary algorithms.

E. Approbation and Evaluation

Enterprise application data are usually confidential; there-

fore, open source systems dominate in the described case stud-

ies. Decomposition is mainly performed for systems written in

Java. Large legacy enterprise systems are usually built in other

programming languages.

Most of the studies have tested one system. It is difficult to

compare the size of these systems because some studies report

the number of classes, others – the lines of code (LOC) and

some do not report any of them. Small (10K-100KLOC) and

micro systems (<10KLOC) are mostly tested. Large systems

(>1 million LOC) are tested in only 8 papers.

The best evaluation approach would be to identify criteria

related to the initially defined problem (e.g., the number of

bugs or the amount of development time) and compare those

criteria before and after the decomposition. In the literature,

this kind of evaluation is applied very rarely (only three papers

[43], [48], [54]). Alternative is to evaluate the decomposition

process (e.g., performance) or outputs (e.g., compo-

nent/module quality).

The most common evaluation methods in the area of soft-

ware decomposition are: authoritativeness [55], stability [56],

extremity of module size distribution [18] and execution time.

Some studies use only one evaluation method, others use sev-

eral evaluation methods (Table III). A manually created full

reference decomposition model is hardly achievable in the

case of larger enterprise applications; thus, alternative ap-

proaches for authoritativeness assessment or modifications are

expected.

TABLE III

EVALUATION SUMMARY

Evaluation Method Data Sources

Decomposition Quality Evaluation
(Authoritativeness)

[3], [15], [18]–[21], [31], [37],
[42], [44], [46], [49], [57]

Decomposition Quality Evaluation

(Stability)

[18], [31]

Decomposition Quality Evaluation
(Extremity of Module Size Distribu-

tion)

[18], [31], [37], [46]

Decomposition Quality Evaluation

(Other)

[13], [25], [28], [32], [38], [41],

[45], [8], [58]

Decomposition Process Evaluation
(Usually Execution Time)

[18], [23], [26], [31], [32], [38],
[42], [46], [49], [57]

Enterprise application decomposition evaluation should be

performed by applying several decomposition methods to the

same enterprise application. Results should be discussed with

business architects/experts. Performance and scalability of the

decomposition process should be tested.

Evaluation criteria depend on the evaluation of the ap-

proach/method. Measurements for authoritativeness are MoJo

distance [13], [42], [44], [46], [49], MoJoSim [18], [31], [37],

MoJoFM [3], [25], Precision and Recall [18], [21], [44],

EdgeSim, MeCl, EdgeMoJo. Stability is measured by stability

criteria [18], [31]. Extremity of module size distribution is

measured by NED [18], [31], [37] criteria. Decomposition

process can be evaluated by seconds [23], [26], [42], [57],

milliseconds [18], [31], minutes and hours.

Most of the researchers perform internal evaluation, which

cannot be generalised. External evaluation is more objective.

Comparative evaluation of multiple methods using the same

criteria is performed only in a few papers: [8], [18], [19], [28],

[31], [32], [44], [49]. The most popular benchmarks are

BUNCH [47], ACDC [19] and LIMBO [52].

The statistical significance of improvements achieved is

evaluated in three papers: t-test and Mann–Whitney statistical

test [18]; Wilcoxon signed ranked test [56]; k-fold cross vali-

dation and Pearson and Spearman correlation coefficient [48].

IV. CONCLUSION AND FUTURE WORK

This paper reports a systematic literature review on source

code driven decomposition of large object-oriented enterprise

applications. We will use the obtained results in the collabora-

tion project between industrial partners and the university to

create a decomposition method for large enterprise applica-

tions. Application of the decomposition methods is expected

to lead towards an application design, which is easier to main-

tain, and development process suitable for autonomous teams.

The main requirements for the enterprise application de-

composition method are: 1) it should be scalable and computa-

tionally feasible for large applications (several million LOC

and >10000 classes); 2) it should be source code driven; 3) it

should consider business domain knowledge; 4) it should au-

tomatically produce the list of loosely coupled modules; 5) it

should be tractable for software architects; 6) it should be a

parameterised process.

Various subjective measures have been involved in this sys-

tematic literature review, e.g., the selection of the primary

studies (search keywords and search strategy), data extraction

process, and evaluation framework. Such subjective measures

can bias the overall result of the findings. The following ac-

tions have been performed to reduce the possibility of bias:

• Possible synonyms and related terms for each keyword

have been included.

• The search process has been organised in two iterations;

the search strategy has been adapted based on the first search

iteration results.

• Inclusion and exclusion criteria have clearly been speci-

fied.

• The selection process has been distributed among three

researchers.

ACKNOWLEDGMENT

The research has been conducted within the framework of

European Regional Development Fund project “Information

and Communication Technologies Competence Centre” No.

Information Technology and Management Science

__2015 / 18

35

KC/2.1.2.1.1/10/01/001 (Contract No. L-KC-11-0003,

www.itkc.lv), activity 1.3 “The Method of Monolithic System

Decomposition According to SOA Principles.”

REFERENCES

[1] S. Ali and S. Abdelhak-Djamel, “Evolution approaches towards a Ser-

vice oriented architecture,” in Proc. of 2012 Inte. Conf. on Multimedia

Computing and Systems, ICMCS 2012, 2012, pp. 687–692.
http://dx.doi.org/10.1109/icmcs.2012.6320243

[2] M. Razavian and P. Lago, “A survey of SOA migration in industry,” in
Proc. of 9th int. conf. on Service-Oriented Computing, ICSOC'11, 2011,

pp. 618–626. http://dx.doi.org/10.1007/978-3-642-25535-9_48

[3] S. Muhammad, O. Maqbool, and A.Q. Abbasi, “Evaluating relationship
categories for clustering object-oriented software systems,” IET Softw.,

vol. 6, no. 3, 2012, pp. 260–274. http://dx.doi.org/10.1049/iet-sen.2011.0061
[4] N. Anquetil and J. Laval, “Legacy software restructuring: Analyzing a

concrete case,” in Proc. of 15th European Conf. on Software Mainte-

nance and Reengineering, CSMR 2011, 2011. pp. 279–286.

http://dx.doi.org/10.1109/CSMR.2011.34

[5] A.A. Almonaies, J.R. Cordy, T.R. Dean, “Legacy System Evolution
towards Service-Oriented Architecture,” in Proc. of Int. Workshop on

SOA Migration and Evolution, SOME, 2010. pp. 53–62.

[6] P. Dugerdil, and J. Repond, “Automatic generation of abstract views for
legacy software comprehension,” in Proc. of India Software Engineering

Conf., ISEC’10, 2010. pp. 23–32.
http://dx.doi.org/10.1145/1730874.1730881

[7] C. Riva, “Reverse architecting: an industrial experience report,” in Proc.

of 7th Working Conf. on Reverse Engineering, 2000. pp. 42–50.
http://dx.doi.org/10.1109/WCRE.2000.891451

[8] S. Kebir, A.-D. Seriai, S. Chardigny, A. Chaoui, “Quality-centric ap-
proach for software component identification from object-oriented

code.,” in Proc. of Joint Working Conf. on Software Architecture and

6th European Conf. on Software Architecture, WICSA/ECSA 2012,
2012. pp. 181–190. http://dx.doi.org/10.1109/WICSA-ECSA.212.26

[9] S.C.B. Kitchenham, “Guidelines for performing Systematic Literature
Reviews in Software Engineering,” Technical report, 2007.

[10] I. Supulniece, S. Berzisa, I. Polaka, E. Meiers, E. Ozolins, and J. Grabis,

“Source Code Driven Decomposition of Object-Oriented Legacy Sys-

tems: A Systemic Literature Review and Research Outlook,” In Press,

2015.
[11] International Organization for Standardization, “ISO/IEC 24744 :2014,

Software Engineering: Metamodel for Development Methodologies,”

2014.
[12] K.S. Hwang, J.F. Cui, and H.S. Chae, “An automated approach to com-

ponentization of java source code,” in Proc. of the IEEE 9th Int. Conf.
on Computer and Information Technology, CIT 2009, 2009, pp. 205–210.

http://dx.doi.org/10.1109/CIT.2009.19

[13] G. Scanniello, A. D’Amico, C. D’Amico, and T. D’Amico, “An ap-
proach for architectural layer recovery,” in Proc. of the ACM Symposium

on Applied Computing, 2010, pp. 2198–2202.
http://dx.doi.org/10.1145/1774088.1774551

[14] S. Alahmari, E. Zaluska, and D. De Roure, “A Service Identification

Framework for Legacy System Migration into SOA,” in Proc. of the
IEEE Int. Conf. on Services Computing, 2010 pp. 614–617.

[15] M. Glorie, A. Zaidman, A. van Deursen, and L. Hofland, “Splitting a
large software repository for easing future software evolution—an in-

dustrial experience report,” J. Softw. Maint. Evol. Res. Pract., vol. 21,

no. 2, pp. 113–141., 2009. http://dx.doi.org/10.1002/smr.401
[16] S. Sarkar, A.C. Kak, and G.M. Rama, “Metrics for Measuring the Quali-

ty of Modularization of Large-Scale Object-Oriented Software,” IEEE
Trans. Softw. Eng., vol. 34, pp. 700–720., 2008.

http://dx.doi.org/10.1109/TSE.2008.43

[17] M. Shtern and V. Tzerpos, “Factbase and decomposition generation,” in
Proc. of the European Conf.on Software Maintenance and Reengineer-

ing, CSMR, 2011, pp. 111–120.
[18] U. Erdemir and F. Buzluca, “A learning-based module extraction meth-

od for object-oriented systems,” J. Syst. Softw., vol. 97. pp. 156–177.,

2014. http://dx.doi.org/10.1016/j.jss.2014.07.038
[19] H.H. Kim and D.-H. Bae, “Object-oriented concept analysis for software

modularisation,” IET Softw., vol. 2, no. 2, pp. 134–148, 2008.
http://dx.doi.org/10.1049/iet-sen:20060069

[20] C. Del Grosso, M. Di Penta, and I. G.-R. de Guzman, “An approach for

mining services in database-oriented applications,” in Proc. of the

European Conf. on Software Maintenance and Reengineering, CSMR,

2007, pp. 287–295. http://dx.doi.org/10.1109/csmr.2007.11

[21] Z. Cai, X. Yang, X. Wang, and Y. Wang, “A systematic approach for
layered component identification,” in Proc. of the 2nd IEEE Int. Conf.

on Computer Science and Information Technology, 2009, pp. 98–103.
http://dx.doi.org/10.1109/ICCSIT.2009.5234763

[22] E. Lee, B. Lee, W. Shin, and C. Wu, “A reengineering process for

migrating from an object-oriented legacy system to a component-based
system,” in Proc. of the IEEE Computer Society’s Int. Computer

Software and Applications Conf., 2003, pp. 336–341.
http://dx.doi.org/10.1109/CMPSAC.2003.1245362

[23] C. Matos and R. Heckel, “Legacy transformations for extracting service

components,” SENSORIA Project, LNCS vol. 6582, 2011, pp. 604-621.
http://dx.doi.org/10.1007/978-3-642-20401-2_29

[24] A. Le Gear, J. Buckley, B. Cleary, J.J. Collins, and K. O’Dea,
“Achieving a Reuse Perspective within a Component Recovery Process:

An Industrial Scale Case Study,” in Proc. of the 13th Int. Workshop on

Program Comprehension, IWPC’05, 2005, pp. 279–288.
http://dx.doi.org/10.1109/WPC.2005.4

[25] S. Muhammad, O. Maqbool, and A.Q. Abbasi, “Role of relationships

during clustering of object-oriented software systems,” in Proc. of the

6th Int. Conf. on Emerging Technologies (ICET), 2010, pp. 270–275.

http://dx.doi.org/10.1109/icet.2010.5638477
[26] S. Allier, H.A. Sahraoui, and S. Sadou, “Identifying components in

object-oriented programs using dynamic analysis and clustering,” in
Proc. of the 2009 Conf. of the Center for Advanced Studies on

Collaborative Research - CASCON ’09, 2009, pp. 136–148.

http://dx.doi.org/10.1145/1723028.1723045
[27] A.B. Belle, G. El Boussaidi, and H. Mili, “Recovering software layers

from object oriented systems,” in Proc. of the 9th Int. Conf. on
Evaluation of Novel Approaches to Software Engineering, ENASE 2014,

2014, pp. 78–89.

[28] J.F. Cui and H.S. Chae, “Applying agglomerative hierarchical clustering
algorithms to component identification for legacy systems,” Inf. Softw.

Technol., vol. 53, no. 6, pp. 601–614, Jun. 2011.
http://dx.doi.org/10.1016/j.infsof.2011.01.006

[29] P. Dugerdil, “Using trace sampling techniques to identify dynamic

clusters of classes,” in Proc. of the 2007 Conf. of the Center for
Advanced Studies on Collaborative Research, CASCON ’07, 2007, pp.

306–314. http://dx.doi.org/10.1145/1321211.1321254
[30] G. El Boussaidi, A.B. Belle, S. Vaucher, and H. Mili, “Reconstructing

architectural views from legacy systems,” in Proc. of the Working Conf.

on Reverse Engineering, WCRE, 2012, pp. 345–354.
http://dx.doi.org/10.1109/wcre.2012.44

[31] U. Erdemir, U. Tekin, and F. Buzluca, “Object Oriented Software
Clustering Based on Community Structure,” in Proc. of the 18th Asia-

Pacific Software Engineering Conf., 2011, pp. 315–321.

http://dx.doi.org/10.1109/apsec.2011.33
[32] I. Hussain, A. Khanum, A. Q. Abbasi, and M. Y. Javed, “A novel

approach for software architecture recovery using particle swarm
optimization,” Int. Arab J. Inf. Technol., vol. 12, no. 1, pp. 32–41, 2015.

[33] J. Jahnke, “Reverse engineering software architecture using rough

clusters,” in Proc. of the Annu. Meet. NORTH Am. FUZZY Inf. Process.
Soc. NAFIPS 2004, 2004, pp. 4–9.

http://dx.doi.org/10.1109/nafips.2004.1336239
[34] J. Cha and C. Kim, “MaRMI-RE: Systematic componentization process

for reengineering legacy system,” Comput. Sci. ITS Appl. – ICCSA 2005,

PT 3, vol. 3482, pp. 896–905, 2005.
[35] H. Kim and Y. Chung, “Transforming a legacy system into

components,” Comput. Sci. ITS Appl. – ICCSA 2006, LNCS, vol. 3982,
pp. 198–205, 2006.

[36] S.K. Mishra, D.S. Kushwaha, and A.K. Misra, “Creating reusable

software component from object-oriented legacy system through reverse
engineering,” J. Object Technol., vol. 8, no. 5, pp. 133–152, 2009.

http://dx.doi.org/10.5381/jot.2009.8.5.a3
[37] J. Misra, K. M. Annervaz, V. Kaulgud, S. Sengupta, and G. Titus,

“Software Clustering: Unifying Syntactic and Semantic Features,” in

Proc. of the 19th Working Conf. on Reverse Engineering, 2012, pp. 113–
122. http://dx.doi.org/10.1109/wcre.2012.21

[38] A. Olszak and B. Nørregaard Jørgensen, “Remodularizing Java
programs for improved locality of feature implementations in source

code,” Sci. Comput. Program., vol. 77, no. 3, pp. 131–151, 2012.

http://dx.doi.org/10.1016/j.scico.2010.10.007

http://dx.doi.org/10.1109/icmcs.2012.6320243
http://dx.doi.org/10.1007/978-3-642-25535-9_48
http://dx.doi.org/10.1049/iet-sen.2011.0061
http://dx.doi.org/10.1109/CSMR.2011.34
http://dx.doi.org/10.1145/1730874.1730881
http://dx.doi.org/10.1109/WCRE.2000.891451
http://dx.doi.org/10.1109/WICSA-ECSA.212.26
http://dx.doi.org/10.1109/CIT.2009.19
http://dx.doi.org/10.1145/1774088.1774551
http://dx.doi.org/10.1002/smr.401
http://dx.doi.org/10.1109/TSE.2008.43
http://dx.doi.org/10.1016/j.jss.2014.07.038
http://dx.doi.org/10.1049/iet-sen:20060069
http://dx.doi.org/10.1109/csmr.2007.11
http://dx.doi.org/10.1109/ICCSIT.2009.5234763
http://dx.doi.org/10.1109/CMPSAC.2003.1245362
http://dx.doi.org/10.1007/978-3-642-20401-2_29
http://dx.doi.org/10.1109/WPC.2005.4
http://dx.doi.org/10.1109/icet.2010.5638477
http://dx.doi.org/10.1145/1723028.1723045
http://dx.doi.org/10.1016/j.infsof.2011.01.006
http://dx.doi.org/10.1145/1321211.1321254
http://dx.doi.org/10.1109/wcre.2012.44
http://dx.doi.org/10.1109/apsec.2011.33
http://dx.doi.org/10.1109/nafips.2004.1336239
http://dx.doi.org/10.5381/jot.2009.8.5.a3
http://dx.doi.org/10.1109/wcre.2012.21
http://dx.doi.org/10.1016/j.scico.2010.10.007

Information Technology and Management Science

__2015 / 18

36

[39] X. Peng, W. Zhao, Y. Wu, and Y. Xue, “Research on support tools for

object-oriented software reengineering,” in Proc. of the 7th Int. Conf. on

Enterprise Information Systems, ICEIS 2005, 2005, pp. 399–402.
[40] G. Scanniello and U. Erra, “Software entities as bird flocks and fish

schools,” in Proc. of the First IEEE Working Conf. on Software
Visualization , VISSOFT, 2013, pp. 1–4.

http://dx.doi.org/10.1109/vissoft.2013.6650544

[41] S. Budhkar and A. Gopal, “Component identification from existing
object oriented system using Hierarchical clustering,” IOSR Journal of

Engineering, vol. 2, no.5, pp. 1064–1068, 2012.
http://dx.doi.org/10.9790/3021-020510641068

[42] I. Sora, G. Glodean, and M. Gligor, “Software architecture

reconstruction: An approach based on combining graph clustering and
partitioning,” in Proc. of the International Joint Conf. on Computational

Cybernetics and Technical Informatics, 2010, pp. 259–264.
http://dx.doi.org/10.1109/icccyb.2010.5491289

[43] X. Wang, J. Sun, X. Yang, C. Huang, Z. He, and S.R. Maddineni,

“Reengineering standalone C++ legacy systems into the J2EE partition
distributed environment,” in Proc. of the Int. Conf. on Software

Engineering, 2006, pp. 525–533.

http://dx.doi.org/10.1145/1134285.1134359

[44] L. Wang, Z. Han, J. He, H. Wang, and X. Li, “Recovering Design Patterns

to Support Program Comprehension,” in Proc. of the 2Nd Int. Workshop on
Evidential Assessment of Software Technologies, 2012, pp. 49–54.

http://dx.doi.org/10.1145/2372233.2372248
[45] H. Washizaki and Y. Fukazawa, “A technique for automatic component

extraction from object-oriented programs by refactoring,” Sci. Comput.

Program., vol. 56, no. 1–2, pp. 99–116, Apr. 2005.
http://dx.doi.org/10.1016/j.scico.2004.11.007

[46] L. Zhang, J. Luo, H. Li, J. Sun, and H. Mei, “A biting-down approach to
hierarchical decomposition of object-oriented systems based on structure

analysis,” J. Softw. Maint. Evol. Res. Pract., vol. 22, no. 8, pp. 567–596,

Dec. 2010. http://dx.doi.org/10.1002/smr.417
[47] B.S. Mitchell and S. Mancoridis, “On the Automatic Modularization of

Software Systems Using the Bunch Tool,” IEEE Trans. Softw. Eng., vol.
32, no. 3. pp.193–208., 2006. http://dx.doi.org/10.1109/TSE.2006.31

[48] R. Islam and K. Sakib, “A Package Based Clustering for enhancing

software defect prediction accuracy,” in Proc. of the 17th Int. Conf. on
Computer and Information Technology ICCIT, 2014, pp. 81–86.

http://dx.doi.org/10.1109/iccitechn.2014.7073117
[49] B. Andreopoulos, A. An, V. Tzerpos, and X. Wang, “Multiple layer

clustering of large software systems,” in Proc. of the 1th Work. Conf.

Reverse Eng, WCRE, 2005. pp. 79–88.
http://dx.doi.org/10.1109/wcre.2005.24

[50] K. Krogmann, Reconstruction of Software Component Architectures and
Behaviour Models Using Static and Dynamic Analysis. KIT Scientific

Publishing, 2012, p. 371.

[51] O. Maqbool and H. Babri, “Hierarchical clustering for software
architecture recovery,” IEEE Trans. Softw. Eng., vol. 33, no. 11, pp.

759–780, 2007. http://dx.doi.org/10.1109/TSE.2007.70732
[52] P. Andritsos and V. Tzerpos, “Information-theoretic software

clustering,” IEEE Trans. Softw. Eng., vol. 31, no. 2, pp. 150–165, Feb.

2005. http://dx.doi.org/10.1109/TSE.2005.25
[53] G. El Boussaidi, A. B. Belle, S. Vaucher, and H. Mili, “Reconstructing

Architectural Views from Legacy Systems,” in Proc. of the 19th
Working Conf. on Reverse Engineering, 2012, pp. 345–354.

http://dx.doi.org/10.1109/wcre.2012.44

[54] G. Scanniello, C. Gravino, A. Marcus, and T. Menzies, “Class Level
Fault Prediction using Software Clustering,” in Proc. of the 28th

IEEE/ACM Int. Conf. Autom. Softw. Eng., pp. 640–645, 2013.
http://dx.doi.org/10.1109/ase.2013.6693126

[55] F. Beck and S. Diehl, “On the impact of software evolution on software

clustering,“ Empirical Software Engineering, vol. 18. 2013, pp. 970–
1004. http://dx.doi.org/10.1007/s10664-012-9225-9

[56] V. Tzerpos and R. C. Holt, “On the stability of software clustering
algorithms,” in Proc. of the 8th Int. Workshop on Program

Comprehension, IWPC 2000, 2000, pp. 211–218.

http://dx.doi.org/10.1109/WPC.2000.852495

[57] M. McKenna, J. Slonim, M. McAllister, and K. Lyons, “Identification of
software system components using semantic models and graph slicing, ”

in Proc. of the 4th Int. Conf. on Software and Data Technologies,
ICSOFT 2009, 2009, pp. 5–12.

[58] K. Mahdavi, M. Harman, and R. M. Hierons, “A Multiple Hill Climbing

Approach to Software Module Clustering,” in Proc. of the IEEE Int.
Conf. on Software Maintenance, ICSM, 2003, pp. 315–324.

http://dx.doi.org/10.1109/icsm.2003.1235437

Inese Supulniece holds a Doctoral Degree and is a Researcher at the Institute

of Information Technology of Riga Technical University (Latvia). Her main
research fields are ERP system’s usability, user-adaptive systems, user model-

ling, business process modelling and process personalisation in business
applications. Her professional activities are related to business and system

analyses.

E-mail: Inese.Supulniece@rtu.lv

Inese Polaka holds a Doctoral degree and is a Lecturer at the Institute of

Information Technology of Riga Technical University (Latvia). Main research

interests include data mining, machine learning, classifiers, evolutionary

algorithms and their applications, as well as bioinformatics and biostatistics.
E-mail: inese.polaka@rtu.lv

Solvita Berzisa holds a Doctoral degree (2012) and is a Lecturer and Re-

searcher at the Institute of Information Technology of Riga Technical Univer-

sity (Latvia). She obtained her Dr. sc. ing. (2012), Mg. sc. ing. (2007) and
B. sc. ing. (2005) degrees in Computer Science and Information Technology

from Riga Technical University. Her main research fields are IT project
management, project management information systems implementation and

application as well as project data analytics. Also she works as an IT Project

Manager at Exigen Services Latvia. She holds PMP certificate and is awarded
the IPMA Outstanding Research Contribution of a Young Researcher 2013.

She is a member of PMI, IIBA and Latvian National Project Management
Association.

E-mail: Solvita.Berzisa@rtu.lv

Egils Meiers holds a Master degree in Management and is the Development

Project Manager at VISMA Enterprise. His main field of research lies in
system architecture and business process optimisation. Over the past 5 years

he has led a number of research and development projects which resulted in

solutions for new business opportunities.
E-mail: Egils.Meiers@visma.com

Edgars Ozolins holds a Master degree from the Institute of Industrial Elec-

tronics and Electrical Engineering of Riga Technical University (Latvia). His

research interests lie in the complex and multidisciplinary systems engineer-
ing and workflows. Edgars has over 19 years of experience in commercial

software development, software architecture, systems and business analysis
and management. He has worked on the international projects in Germany,

UK and Australia as well as collaborated with partners in Scandinavian coun-

tries, Belarus and Azerbaijan.
E-mail: Edgars.Ozolins@visma.lv

Janis Grabis holds a Doctoral degree and is a Professor at Riga Technical

University (Latvia) and the Head of the Institute of Information Technology.

His main research interests lie within the application of mathematical pro-
gramming methods in information technology, enterprise applications and

system integration. He has published more than 60 scientific papers, including
a monograph on supply chain configuration. He has led a number of national

projects and has participated in five projects in collaboration with the Univer-

sity of Michigan-Dearborn (USA) and funded mainly by industrial partners,
such as SAP America and Ford Motor Company.

E-mail: Grabis@rtu.lv

http://dx.doi.org/10.1109/vissoft.2013.6650544
http://dx.doi.org/10.9790/3021-020510641068
http://dx.doi.org/10.1109/icccyb.2010.5491289
http://dx.doi.org/10.1145/1134285.1134359
http://dx.doi.org/10.1145/2372233.2372248
http://dx.doi.org/10.1016/j.scico.2004.11.007
http://dx.doi.org/10.1002/smr.417
http://dx.doi.org/10.1109/TSE.2006.31
http://dx.doi.org/10.1109/iccitechn.2014.7073117
http://dx.doi.org/10.1109/wcre.2005.24
http://dx.doi.org/10.1109/TSE.2007.70732
http://dx.doi.org/10.1109/TSE.2005.25
http://dx.doi.org/10.1109/wcre.2012.44
http://dx.doi.org/10.1109/ase.2013.6693126
http://dx.doi.org/10.1007/s10664-012-9225-9
http://dx.doi.org/10.1109/WPC.2000.852495
http://dx.doi.org/10.1109/icsm.2003.1235437
http://mail.inbox.lv/compose?to=mailto%3aEgils.Meiers%40visma.com

