

Balticum Organicum Syntheticum

3-6 July 2016 Riga, Latvia

PROGRAM AND ABSTRACTS

SYNTHESIS OF NEW AZIRIDINE AND AZETIDINE DERIVATIVES AS POTENTIAL MMP-2 INHIBITORS

Krista Suta¹, Diāna Stamberga¹, Andrejs Solops¹, Ilona Domracheva², Māris Turks¹
¹ Faculty of Materials Science and Applied Chemistry, Riga Technical University
P. Valdena 3, Riga, LV-1048, Latvia
² Latvian Institute of Organic Synthesis
Aizkraukles 21, Riga, LV-1006, Latvia

maris turks@ktf.rtu.lv

Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that are responsible for cleavage of extracellular matrix proteins. Because of their effect on both physiological and pathological processes, MMPs, especially MMP-2, have become interesting targets for treatment of cancer.

Previously, we have reported promising results for aziridine derivatives with 1,4-disubstituted 1,2,3-triazole in the side chain as a new class of MMP-2 inhibitors. L2 Herein we describe an expansion of aziridine series by preparing both 1,5- and 1,4-disubstituted 1,2,3-triazole derivatives. Also azetidine-triazole conjugates were prepared. The syntheses were realized by transition metal catalyzed azide-alkyne cycloaddition reactions (CuAAC or RuAAC).

The products acting as selective MMP-2 inhibitors were found among aziridine 1,4-disubstited 1,2,3-triazole conjugates.

Acknowledgement

This work was supported by the Latvian Council of Science Grant 14.0593.

References

- 1. Romanchikova, N.; Trapencieris, P.; Zemītis, J.; Turks, M. J. Enzyme Inhib. Med. Chem. 2014, 29, 765.
- 2. Kreituss, I.; Rozenberga, E.; Zemitis, J.; Trapencieris, P.; Romanchikova, N.; Turks, M. Chem. Heterocycl. Compd. 2013, 49, 1108.