
 100 

 

NONLINEAR VIBRATIONS OF A PIPE CONTAINING 
FLOWING FLUID AND THEIR APPLICATIONS IN FLOW 
METERING 
 

CAURULES AR CAURI PLŪSTOŠU ŠĶIDRUMU NELINEĀRAS 
SVĀRSTĪBAS UN TO IZMANTOŠANA ŠĶIDRUMA PATĒRIŅA 
NOTEIKŠANĀ 
 

 

Semyon Tsyfansky, Professor, Dr. Habil. Sc. Ing., Head of Research Laboratory  
Riga Technical University, Institute of  Mechanics  

Address: 6 Ezermalas Street, LV-1006, Riga, Latvia 

Phone: + 371 67089469, Fax: + 371 67820094 

E - mail: semjons.cifanskis@rtu.lv 

 

Vitaly Beresnevich, Senior Researcher, Dr. Sc. Ing.  
Riga Technical University, Institute of Mechanics 

Address: 6 Ezermalas Street, LV-1006, Riga, Latvia 

Phone: + 371 67089469, Fax: + 371 67820094 

E - mail: vitalijs.beresnevics@rtu.lv 

 

 
Keywords: nonlinear vibrations, pipe, flowing fluid, flow metering 
 
 

1. Introduction 
 

Problems, concerning the dynamics and stability of pipelines containing flowing fluid, in linear 

formulation have been solved by many authors [1-3]. The results of these investigations make a 

theoretical basis for the design of fundamentally new vibration method for the testing of the 

amount of flowing fluid (Coriolis method). Familiar designs of Coriolis flow meters [4] have a 

high reliability and are not in need of sensors inside the pipes. However these flow meters do not 

always fulfill practical requirements on accuracy of measurement. The last demerit may be 

mainly explained by the low flow rate sensitivity of linear vibration methods, which determine 

the principle of operation of such flow meters (the sensitivity of testing is not more than one 

arbitrary unit, i.e. any relative change in flow rate is accompanied by the same or even rather 

smaller relative change of vibration information parameters). 

As was shown in [5, 6], considerable increase of sensitivity of control can be achieved by 

insertion of additional nonlinear elastic elements into the structure of the testing object. 
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Therefore it has been found advantageous to transform the dynamic model of the flow meter by 

insertion in it of additional nonlinear elastic support interacting with the pipe. Nonlinear 

formulation of the problem has the aim to develop new nonlinear methods of vibration flow 

metering in order to ensure the essential rise in the sensitivity of control. 

 

 

2. Dynamic model 
 

The flow meter model to be analyzed is a uniform viscoelastic fixed beam (span of a pipe) which 

is supported in the middle section by an additional nonlinear elastic element specially inserted 

into the structure of the system (Figure 1). Under the assumptions made by R.Stein and 

M.Tobriner [2] the differential equation of flexural vibrations of the pipe, excited by the 

harmonic force Psinωt, can be represented as follows 
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where EI is the flexural rigidity of a pipe, b1 and b2  are the coefficients of internal and external 

damping, ρp  is a density of pipe material, ρ f  is a fluid density, Fp  is the pipe cross-section area, 

Ff  is a cross-section area of internal conduit of the pipe, P and ω are the amplitude and 

frequency of the external test harmonic excitation, δ1( )x xP−  and δ1( )x xr−  are Dirac delta 

functions, F yr ( ) is a nonlinear restoring force of the additional elastic support, V  is a speed of 

flowing fluid and p is a fluid pressure on the pipe internal surface. The sense of other symbols is 
clear from Figure 1. 
 

 

Figure 1. Dynamic model of the flow meter 

 

The variant of nonlinear elastic support with characteristic F yr ( ) of preload type is considered: 
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                                                              F y ky F yr ( ) sign= + 0 .                                                            (2) 

 

By changing the variables to u = y/l, z = x/l and τ = ω1t equations (1) and (2) can be transformed 

into dimensionless forms 
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                                                  f u k u f ur r( ) sign= + 0  ,                                                       (4) 

 

where the following notation is taken: β1 = b1ω1 ; β ρ ωV f fF V l EI= 2 1
3 / ( ) ; ν = ω/ω1 ; 

β ω2 2 1
4= b l EI/ ( ) ; γ ρ= +( ) ( )f f fF V pF l EI2 2

 ; q Pl EI= 2 ( )  ; f F l EI0 0
2= ( )  ; 

k kl EIr =
3 ( ) ; z x lP P=  ; z x lr r=  ; ω1 is the first natural frequency of the linear system 

(pipe interacting with the linear elastic support k) ; ε1  is a dimensionless coefficient, which is 

dependent on the boundary conditions at the pipe ends [7]. 

In the case studied the end boundary conditions are the following: 
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Equation (3), subject to the conditions (4) - (5), was solved on an analogue-digital computer 

system predominantly set up for the solution of complex nonlinear dynamic problems [8, 9]. The 

principle of operation of this computer system is described in more detail in references [10, 11]. 

The problem considered in this paper was solved assuming the parameters of equations (3) - (4) 

to be the following: β1 = 0.00785; β2 = 10
-6
 ; q = 1.5 ; f0 = 1; kr = 20 ; zP = 0.3 ; zr = 0.5 ; ε1 = 7.1. 

Parameters βV and γ connected with the speed V of flowing fluid have been varied within the 

limits of βV = 0 - 12 and γ = 0 - 0.25, but frequency ν of external harmonic excitation - over the 

range of ν = 0.2 - 3.0. 
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3. Analysis of vibrations 
On the whole the dynamic behaviour of the system under study may be illustrated by the 

amplitude-frequency characteristic (AFC), which graphically represents mutual connections 

between the driving frequency ν and the half-swing of oscillations u0 in the pipe cross-section 

with co-ordinate z = 0.4 (Figure 2). 

Figure 2. Amplitude-frequency characteristic of the pipe flexural vibrations 

 

Continuous lines show the resonant curves for the case βV = 0 and γ = 0 (the flow rate 

Q F Vf f= ρ  is equal to zero), dotted lines correspond to the case βV = 6 and γ = 0.15 (the flow 

rate Q is other than zero). 

Peak points of the AFC correspond to the first (points A, A') and the second (points B, B') modes 

of pipe resonant flexural vibrations. Graphs of the first and the second modes of pipe vibrations 

corresponding to the two different values of speed V are presented in Figure 3. As additional 

information the time responses  u = f(τ) and the spectrograms for points B and B' are presented. 
At Q = 0 the crest of the first mode and the nodal point of the second mode coincide with the co-

ordinate zr= 0.5 of location of additional nonlinear elastic support. Under given conditions, 

nonlinearity of elastic support has an effect only on the first resonant regime and practically does 

not influence the resonant oscillations of the second mode. Therefore at Q = 0 the zone of 

ambiguity peculiar to nonlinear systems is realized only on the first mode of pipe resonant 

flexural vibrations (the vicinity of A point of the AFC, see Figure 2). 
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Figure 3. Modes of pipe resonant flexural vibrations: (a) the first resonant mode; 

(b) the second resonant mode 

 

As the flow rate Q goes up, the original symmetry of pipe resonant modes is gradually disturbed 

by the action of inertial Coriolis forces. The antinode of the first mode and the node of the 

second mode are moved in the direction of fluid motion. And the value of this displacement is 

increased with the rise of fluid speed V. Therefore nonlinear elastic support, placed in section 

zr= 0.5, begins active interactions with the vibrating pipe not only at the first resonant mode, but 

also at the second one. In consequence of these nonlinear properties of the system on the second 

resonant regime are sufficiently intensified, and as the result the corresponding change of the 

AFC occurs. Thus, at     βV = 6 the AFC takes on the ambiguity zone in the vicinity of B' point 

(Figure 2). But on the first resonant regime the fluid motion doesn't influence substantially 

system's properties and only favors a little contraction of the ambiguity zone (compare position 

of points A and A' on the AFC). 

With the increasing of flow rate Q Fourier spectrum of pipe resonant vibrations is also varied 

(especially at the second resonant regime). As follows from the spectrograms presented in Figure 

3, at βV = 0 spectrum of the pipe second resonant regime of flexural vibrations is close to the 

monoharmonic one (spectral ratio u u
3 1

makes up only 0.007). But at βV = 6 the influence of 

nonlinear elastic support is reinforced and due to this spectral ratio u u
3 1

is increased more than 
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ten times (u u
3 1

= 0.08). Besides, fifth harmonic component u
5
 additionally emerges in vibration 

spectrum (u u
5 1

= 0.01). 

 

 

4. Flow metering 
 
 
Specified distortions of modes and spectrum of pipe flexural vibrations due to flowing fluid can 

be used in flow metering as information signs. Quantitative test of flow rate Q may be executed 

by the recording of a difference in amplitude ∆u between two points of the pipe equally distant 

from its middle (e.g. ∆u1  =  uA - uC ;  ∆u2 =  uB - uD ) or by the measuring of spectral ratio 

u u3 1 .For the case studied in this paper calibration curves ∆u = f(βV) and u3/u1 = f(βV) as well as 

sensitivity functions η = f(βV) are shown in Figure 4. The sensitivity η of flow metering is 

estimated in arbitrary units indicating the ratio between the relative change of vibration 

information parameter (∆u or u3/u1 ) and the corresponding relative change in flow rate Q. 

Numerals 1 and 2 indicate the order of resonant regime (the first or the second), for which the 

corresponding graph is plotted. For comparison, the same graphs are presented for the system 

with linear elastic support k (dotted lines). 

From the analysis of graphs presented it can be concluded, that sensitivity of flow metering is 

sufficiently higher when the system is tuned on the second order resonant regime. In this case the 

flow rate sensitivity is about 1.4 - 1.5 arbitrary units (in case of measuring of spectral ratio u3/u1 ) 

and 2.0 - 2.1 units, if the difference in amplitude ∆u is recorded. Such level of sensitivity is 

basically unattainable for linear Coriolis vibration methods [4], which sensitivity can not exceed 

the value of one arbitrary unit. 

Fluid flow metering by the proposed nonlinear vibration method can be carried out in the 

following operational procedure. At first, the rectilinear part of a pipe to be tested is chosen, then 

the ends of this part of the pipe have to be fixed, but its middle section must be connected with 

an additional nonlinear elastic support. After that the second mode of pipe resonant flexural 

vibrations is excited and parameters ∆u or  u u3 1  of these vibrations are recorded. 

 



 106 

 

Figure 4. Calibration curves and sensitivity functions 
 

The flow rate Q is evaluated by the measured value of vibration parameter (∆u or  u u3 1 ) with 

the aid of calibration curve preliminary constructed (similar curves are presented in Figure 4). 
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Cifanskis S., Beresņevičs V. Caurules ar cauri plūstošu šķidrumu nelineāras svārstības un to izmantošana 

šķidruma patēriņa noteikšanā 

Izpētīta izplūstošā šķidruma plūsmas ietekme uz caurules iecirkņa, kurš savstarpēji iedarbojas ar nelineāru elastīgu 

balstu, uzspiestajām lieces svārstībām. Atklātas caurules ar šķidruma plūsmu tajā rezonanses lieces svārstību formu 

un spektrālo raksturlielumu specifiskas izmaiņas. Izmantojot atklātās nelineāro svārstību īpatnības, piedāvātas 

jaunas pa cauruli izplūstošā šķidruma daudzuma noteikšanas metodes, kuru jutīgums 1,5 – 2 reizes augstāks, 

salīdzinot ar tradicionālajām lineārajām kontroles metodēm. 

 

Tsyfansky S., Beresnevich V. Nonlinear Vibrations of a Pipe Containing Flowing Fluid and Their Applications 

in Flowmetering 

Forced flexural vibrations of a pipe conveying fluid and interacting with a nonlinear elastic support are 

investigated. Specific distortions of flexural modes and spectrum of pipe's resonant vibrations due to flowing fluid 

are studied. It is shown, that the rise of flow rate leads to the pronounced amplification of the third and the fifth 

harmonic components in vibration spectrum. The utilization of nonlinear phenomena has made it possible to 

develop new vibration methods of flow-metering. The sensitivity of proposed nonlinear vibration procedures is 

about 1.5 - 2 times higher in comparison with familiar linear methods. 

 

Цыфанский С., Бересневич В. Нелинейные колебания трубы с протекающей жидкостью и их 

использование для определения расхода 

Изучено влияние потока протекающей жидкости на вынужденные изгибные колебания участка трубы, 

взаимодействующего с нелинейной упругой опорой. Вскрыты специфические искажения спектральных 

характеристик и форм резонансных изгибных колебаний трубы под воздействием потока жидкости. На 

основе использования обнаруженных нелинейных свойств предложены новые вибрационные методы 

определения расхода, чувствительность которых в 1,5 – 2 раза выше по сравнению с чувствительностью 

традиционных линейных методов контроля. 

 


