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Abstract—Reservoir inflow forecasting with artificial neural 

networks is presented in this paper. Different types of ANN input 

data were considered such as temperature, precipitation and 

historical water inflow. Performance of the hourly inflow fore-

casts was assessed based on a case study of a specific hydropower 

reservoir in Latvia. The results showed that all the approaches 

had similar prediction errors implying that for optimal hydro-

power scheduling uncertainties need to be modelled which is also 

proposed in this study through generation of several forecast 

realisations in addition to point predictions. 
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I.  INTRODUCTION 

To participate in an electricity market, power producers 
submit their bids the day before based on their planned power 
generation schedule. For power plants that use renewable in-
termittent energy sources, forecasts of the availability of the 
respective source are vital for the daily scheduling. When oper-
ating hydroelectric power plants (HPP), the producer needs to 
forecast the availability of water which is particularly true for 
run-of-river plants and HPPs with relatively small-capacity 
reservoirs. In our study, we assume that the bids are submitted 
to the Nord Pool power exchange Elspot market with an hourly 
resolution and that the power producer is a price-taker. Conse-
quently, the power producer needs hourly water inflow fore-
casts for optimal generation scheduling. Besides that, price 
forecasts for the next day are also essential. For both reservoir 
inflow and electricity market price forecasting we have em-
ployed artificial neural networks (ANN). However, in this pa-
per only inflow forecasting is presented and price forecasts will 
be a subject of our future publications. 

Reservoir inflow forecasting has many applications, includ-
ing flood control, drought management and hydropower gener-
ation [1]. Conventional prediction techniques include time se-
ries models suggesting that the inflow is auto-correlated and 
has the same trends over time. A major disadvantage of such 
approach is the assumption of stationarity of linearity. To over-
come the drawbacks of conventional modelling techniques, 
artificial intelligence data-driven techniques have been devel-
oped [1] one of which—artificial neural networks (ANNs)—
we use for forecasting in our study due to the ability of ANNs 
to handle complexity and non-linearity. In [2], time series-
based techniques, ARMA and ARIMA, are compared with 

ANNs for inflow forecasting and it is concluded that dynamic 
autoregressive ANN model with sigmoid activity function de-
livers better forecasts than the ARIMA and ARMA models. 
Recurrent neural networks outperformed an ARMAX model 
also in [3]. A valuable advantage of ANNs is their flexibility in 
integrating time stamping inputs [4].  

Though neural networks are considered a “black-box”, 
careful setup of network parameters and inputs is necessary 
based on experience and engineering judgement and by involv-
ing trial and error [4]. In general, ANN inputs can include his-
torical values of the time series of interest, one or more exoge-
nous input parameters and time indices [4]. 

In [5], past inflows along with other data such as tempera-
ture, precipitation and time-related features is used for reservoir 
inflow prediction with neural networks. The authors made use 
of historical records of three years with an hourly resolution by 
training the ANN on the two-year data and using data of anoth-
er year for testing. They also experimented with different num-
bers of hidden neurons to conclude that for a larger number of 
hidden units the training errors are much lower [5]. 

In [6], it is concluded that using data on the observed and 
forecasted precipitation allows to significantly increase the 
accuracy of inflow forecasts in comparison to time series mod-
els that use only the previous observed inflow to form the pre-
diction. 

In our study, we have investigated four different types of 
ANN input data and compared the forecasting performance 
among them. 

II. METHOD

We used a three-layer feed-forward ANN and Levenberg-
Marquardt training algorithm with backpropagation imple-
mented in MATLAB Neural Network Toolbox. Training of the 
ANN was performed in a supervised manner using historical 
data as presented in more detail below. The output of ANN 
provided point forecasts which were further processed by time 
series smoothing techniques and by imposing prediction resid-
uals of the previous forecasts. The latter approach allowed us to 
generate additional realizations of the forecast to model the 
stochasticity of reservoir inflow while not increasing computa-
tional burden too much for a practical application to daily op-
eration optimisation of power plants. 

The work presented in this paper has been co-financed by the National 
Research Program LATENERGI (2014–2017). 
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A. Forecasting Approach 

Forecasting of inflow to the HPP reservoir was performed 
using different types of input data for training of the ANN and 
prediction. Various approaches were studied to compare their 
accuracy and choose the best one to be further used for HPP 
scheduling optimisation. The specific reservoir belongs to the 
first power plant of an HPP cascade located on the River Dau-
gava. The cascade consists of three run-of-river HPPs with 
poundage (total installed power 1559.5 MW and total useful 
volume of reservoirs 215.1 million m3). Only the inflow to the 
first reservoir (main inflow, Fig. 1) needs to be predicted, since 
the discharge through the upstream power plant determines the 
inflow to the respective downstream plant and the relatively 
small lateral inflow to HPP2 and HPP3 is assumed to be con-
stant. 

The following approaches were used with different input 
data to the ANN: 

 method (1): historical temperature data and respective res-
ervoir inflow for training of the ANN and temperature fore-
cast for the next day to predict the inflow for that day; 

 method (2): historical data of precipitation (particularly, in 
Daugavpils city located about 150 km upstream the river 
from the HPP1) and respective reservoir inflow for training 
of the ANN and next day precipitation forecast for predic-
tion of the inflow; 

 method (3): output data of the approach (1) was used for 
training of the ANN along with the actual inflow, thus mak-
ing the ANN learn from the previous forecast errors. For 
prediction, output of the forecast (1) was used, obtaining 
another (proposedly improved) forecast for the same day; 

 method (4): an existing reservoir inflow forecast was used 
as input data for training of the ANN along with the corre-
sponding historical inflow data. The specific approach for 
the existing forecast is not known in detail, but the forecast 
data is available (this forecast is currently used by the pow-
er producer who operates the HPP cascade; further referred 
to as “conventional forecast”). For prediction, the forecast-
ed inflow of the conventional forecast was used as input da-
ta assuming that this forecast would be available at all times 
and it could be improved by employing ANNs. 

 

 

Fig. 1. The cascade of HPPs on the River Daugava 

The aim for employing various approaches was to develop 
an automated forecasting approach in comparison to the con-
ventional forecast which is obtained in a labour-intensive em-
pirical way. Another objective was to derive an improved fore-
cast as compared to the conventional one used by the power 
producer. Initially, we hypothesized that the forecast (3) or (4) 
should provide the best results by training on the previous fore-
cast errors. 

All the data for training and forecasting was with an hourly 
resolution. Training data of 2 to 4 previous weeks was em-
ployed (the exact amount of data for training was selected ran-
domly). This duration of training was chosen due to the high 
seasonal and annual variability of river inflow. Additionally, 
employment of such a period was computationally affordable. 
As indicated in [7], very large training sets should not be used 
to avoid overtraining during the learning process. 

B. Selection of the ANN parameters 

We designed an algorithm to specify the most suitable pa-
rameters of the ANN (Fig. 2), namely, the length of the training 

data set, 
 
T

T
, and the number of neurons in the hidden layer, 

 
N

H
. A partial enumeration was performed by randomly select-

ing the above parameters within the specified limits (
 
T

T
 from 

336 to 672 hours and 
 
N

H
 from 10 to 15 neurons) to evaluate 

the forecast performance for the previous day with the selected 
parameters. The minimum prediction error of the forecasts for 
the previous period was used as the criterion for selecting the 
most suitable ANN parameters for the next forecast horizon. 
Competing forecasts made by ANNs with differing parameters 
were compared to the actual observed data and assessed by 
means of an error measure, namely the root square error: 

RMSE = 1
T

yt - ŷt( )
2

t=1

T

å , where ŷt  are the point forecasts 

made for the previous forecast period T = 24 hours, and yt  are 

the corresponding actual observations. After such a partial 
enumeration, the ANN parameters that provided the least 
RMSE were chosen for the next forecast horizon. This proce-
dure is repeated for each day of the forecast. 
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Fig. 2. A simplified diagram of the algorithm for choosing the ANN 

parameters 
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C. Forecast Smoothing and Modelling of Uncertainties 

The output of ANN provides point forecasts of the hourly 
water inflow. These forecasted time series were smoothed by 
calculating the weighted double-sided moving average of dif-
ferent lengths: 
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where ŷt smoothed
 is the smoothed forecast and T is the forecast 

horizon (24 hours for forecast smoothing). 

Additionally, to take into account uncertainties, we used 
historical forecast residuals to generate additional realisations 
of the forecast. By assuming that the forecast errors retain gen-
erally the same characteristics in the medium-term, we used the 
hourly relative errors from the forecasts since 10 days before. 
Each realisation was obtained by adding or subtracting the his-
torical error to the new forecast at the respective hour. In such a 
way, the 10-day old historical data provided 20 realisations in 
addition to the one initial point forecast. We assumed that all 
the realisations have equal probabilities. Consequently, we 
obtained 21 realisations of electricity market prices and water 
inflow which are to be used for stochastic optimisation of pow-
er plant operation. 

The hourly forecasts presented in next section were evalu-
ated by calculating the mean absolute percentage error and the 
root mean squared percentage error: 
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III. RESULTS AND DISCUSSION 

We performed forecasts of reservoir inflow using the four 
different approaches for the period from April 1, 2015 until 
October 31, 2015. The observed inflow during this period is 
shown in Fig. 3. During April the inflow was the highest due to 
spring floods and then sharply dropped from the end of April 
until June. This is typical for the particular hydropower reser-
voir and illustrates the large seasonal fluctuations of inflow. 
Besides that, the inflow is subject to significant annual varia-
tions. 

Table I summarises the mean errors for all the forecasts in-
cluding the conventional forecast, whereas Fig. 4–6 illustrate 
randomly selected examples of hourly forecasts for April 1–7, 
May 1–7 and September 1–7, 2015, respectively. Forecasting 
errors for the same time periods are presented in Table II–IV. 

The solid blue line in Fig. 4–Fig. 6 shows the observed in-
flow and the dotted red line presents the conventional forecast. 
The dashed lines illustrate forecasts we obtained with ANNs 

using four different types of input data as described before: (1) 
ambient temperature; (2) precipitation data; (3) forecast (1) 
used as input; (4) conventional forecast was used as input. It 
should be noted that the conventional forecast for a single day 
is provided in the form of a linear function with constant coef-
ficients for each day, thus forming a broken line over several 
days. 

On April 1–7, forecasting approach (3) provided the best 
results, whereas on May 1–7 the conventional forecast outper-
formed the ANN forecasts and on September 1–7 the least er-
ror was from the forecasting approach (2) which was based on 
precipitation forecast. Thus our hypothesis that the forecasting 
approaches (3) and (4) should perform better was true only on 
May 1–7. 

Performance indicators were mostly consistent and showed 
equal results using the MAPE and RMSPE error measures al-
most in all cases. However, it is obvious that RMSPE was al-
ways larger than the respective MAPE which is because the 
RMSPE penalises large errors more by squaring them. As 
shown in Fig. 4–6, the hourly deviations can be significant. 

As can be seen in the charts, all the forecasts obtained with 
ANNs have a similar performance and alike deviations from 
the observed inflow which is also reflected by errors in Table 
II–IV.  

On April 1–7, the ANN forecasts mostly under-forecasted 
the inflow, whereas on May 1–7 the same forecasts usually 
over-forecasted. This can be explained by the fact that data of 
the previous 2–4 weeks was used for training and the inflow 
was rapidly increasing at the beginning of April and sharply 
decreasing in May. Since training was carried out with the pre-
vious data when inflow was significantly less or more than 
during the forecast horizon, the ANN might tend to respective-
ly under-forecast or over-forecast the inflow during the transi-
tion period when the spring flooding is starting or ending. In 
contrast, forecasts for September 1–7 mostly form an average 
approximation of the actual inflow. 

At the meantime, it should also be noted that the observed 
inflow is subject to measurement errors since it is obtained by 
integrating measurements over 24 hours and then calculating 
the hourly inflow. 

On September 1–7, inflow forecast errors were 2–3 times 
larger than in April and May. Partly, it can be explained by 
larger relative inflow measurement errors, since the measuring 
system is more suitable for larger inflows (as seen in Fig. 3, the 
inflow in spring is even 10 times larger than during the rest of 
year). 

The actual inflow is also influenced by small HPPs in Bela-
rus upstream on the River Daugava. Operational data of these 
HPPs is not available, so it cannot be accounted for in our fore-
casts. 

For HPP scheduling optimisation, the inflow is converted to 
water head and, additionally, several forecast realisations are 
considered thus taking into account the uncertainty of forecasts. 
Consequently, the influence of the aforementioned errors on 
the optimisation is less than the actual error measures for sin-
gle-point forecasts. 
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Fig. 3. Observed inflow on April 1–October 31, 2015 
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Fig. 4. Forecasted and observed inflow on April 1–7, 2015 
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Fig. 5. Forecasted and observed inflow on May 1–7, 2015 
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Fig. 6. Forecasted and observed inflow on September 1–7, 2015 
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Fig. 7. Average daily forecasted and observed daily inflow on April 1–October 31, 2015 

TABLE I.  INFLOW FORECAST ERRORS (APRIL 1–OCTOBER 31, 2015) 

Forecasting approach 
Forecast error 

MAPE RMSPE 

ANN forecast 1 (temperature) 7.81% 13.16% 

ANN forecast 2 (precipitation ) 7.83% 13.12% 

ANN forecast 3 (on forecast 1) 7.81% 13.11% 

ANN forecast 4 (on conv. forecast) 7.88% 13.29% 

Conventional forecast 7.70% 13.08% 
 

TABLE II.  INFLOW FORECAST ERRORS (APRIL 1–7, 2015) 

Forecasting approach 
Forecast error 

MAPE RMSPE 

ANN forecast 1 (temperature) 4.07% 5.30% 

ANN forecast 2 (precipitation ) 4.08% 5.35% 

ANN forecast 3 (on forecast 1) 3.62% 5.12% 

ANN forecast 4 (on conv. forecast) 4.50% 5.70% 

Conventional forecast 3.96% 5.37% 
 

TABLE III.  INFLOW FORECAST ERRORS (MAY 1–7, 2015) 

Forecasting approach 
Forecast error 

MAPE RMSPE 

ANN forecast 1 (temperature) 5.45% 6.21% 

ANN forecast 2 (precipitation ) 5.57% 6.35% 

ANN forecast 3 (on forecast 1) 5.64% 6.49% 

ANN forecast 4 (on conv. forecast) 5.28% 6.06% 

Conventional forecast 3.95% 4.92% 
 

TABLE IV.  INFLOW FORECAST ERRORS (SEPTEMBER 1–7, 2015) 

Forecasting approach 
Forecast error 

MAPE RMSPE 

ANN forecast 1 (temperature) 14.06% 19.25% 

ANN forecast 2 (precipitation ) 13.66% 18.81% 

ANN forecast 3 (on forecast 1) 14.06% 19.28% 

ANN forecast 4 (on conv. forecast) 14.21% 19.48% 

Conventional forecast 14.76% 19.28% 
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Fig. 8. Forecast realisations of water inflow and the actual inflow 

Fig. 7 shows the average daily inflow forecasts and the ob-
served inflow demonstrating that when averaged all the fore-
casts are close to the actual inflow. It implies that the power 
production scheduling errors are less if looked at a daily resolu-
tion. However, hourly inflow is also important, since the power 
production bids are based on that, thus influencing the efficien-
cy of power plants and the revenues from sold energy. There-
fore we generated additional realisations of forecasts (Fig. 8) as 
described in section II. All of these prediction realisations are 
to be taken into account during optimal HPP scheduling to ac-
count for uncertainties. 

To achieve a better forecasting performance, further analy-
sis of the most suitable ANN structure and parameters as well 
as input data should be carried out involving large number of 
trial and error work as suggested in [1] an [5]. Additional data 
cleansing and pre-processing might also improve the forecasts. 

IV. CONCLUSION

Prediction of reservoir inflow by artificial intelligence tech-
niques allows to automate the forecasting process in compari-
son to labour-intensive empirical methods. Artificial neural 
networks with four different types of input data provided a 
satisfactory accuracy of hydropower reservoir inflow forecasts; 
however, additional studies of different network structures and 
parameters as well as input data selection are necessary to im-
prove predictions. 

Since the hourly forecasts are subject to uncertainty, it can 
be tackled by considering several realisations of the predicted 
inflow which are to be used in stochastic optimisation of HPP 
scheduling. 
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