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ABSTRACT 

 

Linear and weakly nonlinear stability analysis of shallow mixing layers is presented in 

the Doctoral Thesis. The flow is assumed to be slightly curved along the longitudinal 

coordinate. Linear stability is analysed from temporal and spatial points of view under the 

rigid-lid assumption. The friction coefficient varies with respect to the transverse coordinate 

(the case of constant friction coefficient usually analysed in the literature is a particular case 

of the analysis presented in the Thesis). The corresponding linear stability problems are 

solved numerically using pseudo-spectral collocation method based on Chebyshev 

polynomials. In addition, the problem is generalized for the case of two-component shallow 

flows under the assumption of large Stokes numbers.  

The effect of asymmetry of base flow profile on the stability characteristics is 

analysed. Two approaches to weakly nonlinear stability are presented as well. The first 

approach is based on the parallel flow assumption and can be applied for the case where the 

bed-friction number is slightly smaller than the critical value. Using the method of multiple 

scales an amplitude evolution equation is derived for the most unstable mode. It is shown that 

for slightly curved shallow mixing layers which contain or do not contain particles the 

amplitude equation is the complex Ginzburg-Landau equation. The coefficients of the 

equation are calculated explicitly in terms of integrals containing linear stability 

characteristics of the flow. Stability of plane wave solutions of the Ginzburg-Landau equation 

is analysed. Numerical solutions of the Ginzburg-Landau equation are presented for different 

initial conditions.  

The second approach takes into account slow longitudinal variation of the base flow. 

The analysis is based on weakly non parallel WKBJ approximation. A first-order amplitude 

evolution equation is derived. The solution of the amplitude equation is then used to obtain 

the first-order approximation in the perturbation field.  

Key words: Linear stability, weakly nonlinear theory, method of multiple scales, 

Ginzburg-Landau equation, collocation method 
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ANOTĀCIJA 

 

Promocijas darbā tiek veikta plūsmu lineārā un vāji nelineārā stabilitātes analīze 

seklos sajaukšanās slāņos. Plūsma tiek pieņemta kā nedaudz izliekta garenvirzienā. Lineārā 

stabilitāte tiek analizēta no laika un telpas aspektiem saskaņā ar „cieta-vāka” pieņēmumu. 

Atbilstošās lineārās stabilitātes problēmas tiek risinātas skaitliski, izmantojot pseido-spektrālo 

kolokācijas metodi, kas balstās uz Čebiševa polinomiem. Turklāt problēma ir vispārināta divu 

komponenšu seklām plūsmām ar lielo Stoksa skaitļu pieņēmumu. Berzes koeficients mainās 

šķērsvirzienā (literatūrā parasti ir analizēts konstanta berzes koeficienta gadījums, kas ir īpašs 

gadījums iesniegtā promocijas darbā analīzē). 

Ir analizēta bāzes profila asimetrijas ietekme uz stabilitātes parametriem. Tiek 

izskatītas divas pieejas vāji nelineārās stabilitātes analīzei. Pirmā pieeja pamatojas uz paralēlu 

plūsmu pieņēmumu. To var izmantot gadījumā, kad gultnes berzes koeficients ir nedaudz 

mazāks par kritisko vērtību. Izmantojot vairāku mērogu metodi, tiek iegūts amplitūdas 

evolūcijas vienādojums visvairāk nestabilajam režīmam. Parādīts, ka nedaudz izliektam 

seklam sajaukšanās slānim, kurš var saturēt vai nesaturēt sīkas daļiņas, amplitūdas 

vienādojums ir kompleksais Ginzburga-Landau vienādojums. Vienādojuma koeficienti tiek 

aprēķināti no integrāļiem, kas satur plūsmas lineārās stabilitātes parametrus. Tiek aplūkota 

plakanu viļņu stabilitāte Ginzburga-Landau vienādojumam. Parādīti Ginzburga-Landau 

vienādojuma skaitliskie aprēķini dažādām parametru vērtībām un sākuma nosacījumiem. 

Otra pieeja ņem vērā lēno garenvirziena bāzes plūsmas izmaiņu. Analīzes pamatā ir 

vāji neparalēla WKBJ aproksimācija. Tiek iegūts pirmās kārtas amplitūdas attīstības 

vienādojums. Amplitūdas vienādojuma atrisinājums tiek izmantots, lai iegūtu pirmās kārtas 

perturbācijas lauka aproksimāciju. 

Atslēgas vārdi: Lineārā stabilitāte, vāji nelineārā teorija, vairāku mērogu metode, 

Ginzburga-Landau vienādojums, kolokācijas metode 
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INTRODUCTION 

The Structure of the Thesis 

 

The main goal of the Doctoral Thesis is to develop mathematical models, which can 

be used to analyse linear and weakly nonlinear instability of shallow mixing layers for the 

case of a single-component flow or two-component flow. The flow is assumed to be slightly 

curved along the longitudinal coordinate and the friction coefficient is assumed to be a 

function of the transverse coordinate. Such a situation describes real flows in compound 

channels in case of floods. 

Chapter 1 (Introduction) presents a review of the literature used in the Doctoral 

Thesis. Basic equations used in the research are also described.  

In Chapter 2, the linear stability and weakly nonlinear methods for analysis of slightly 

curved shallow mixing layers are presented in detail. Numerical methods used for the solution 

of stability problems are analysed. 

Chapter 3 is devoted to the analysis of a similar problem for the case of slightly curved 

two-component shallow mixing layers. Linear and weakly nonlinear stability analysis is 

performed under the assumption of large Stokes numbers.  

Chapter 4 is devoted to the spatial stability analysis of slightly curved shallow mixing 

layers.  

Chapter 5 analyses linear and weakly nonlinear instability of shallow mixing layers 

with variable friction in the transverse direction. 

Chapter 6 is devoted to the numerical analysis of solution of Ginzburg-Landau 

equation. 

 

The Topicality of the Research 

 

The understanding of the interaction between fast and slow fluid streams in shallow 

mixing layers is important for the analysis of flows at river junctions and for design of 

compound channels. Real channels and rivers are not straight. Thus, the effect of curvature on 

the stability characteristics of shallow mixing layers should also be taken into account for 

proper design and analysis of compound channels. The case of non-uniform friction in the 

transverse direction is important from an environmental point of view. The friction coefficient 

in floodplain is usually higher than in the main channel (especially in case of floods). 
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Complex vortex structures can accumulate contaminants and residues, thereby adversely 

affecting the environment. Hence, there is a need for a model that describes the shallow flow, 

as well as methods that allow analysing the flow stability and following up the development 

of perturbations. 

 

The Objectives of the Doctoral Thesis 

 

1. Analysis of linear and weakly nonlinear stability of slightly curved shallow 

mixing layers. 

2. Investigation of linear and weakly nonlinear stability characteristics of slightly 

curved two-component shallow mixing layers. 

3. Study of spatial stability of slightly curved shallow mixing layers. 

4. Investigation of linear and weakly nonlinear instability of shallow mixing 

layers with variable friction. 

5. Numerical analysis of linear and weakly nonlinear models. 

 

Research Methodology 

 

A base flow with a relatively simple structure is selected. Equations of motion are 

linearized in the neighbourhood of the base flow. The linearized equations are solved by the 

method of normal modes. The corresponding linear stability problems are solved numerically 

using pseudo-spectral collocation method based on Chebyshev polynomials.  

Two approaches for weakly nonlinear stability analysis of single and two-component 

slightly curved shallow mixing layers are described. The first approach is based on the 

parallel flow assumption. Method of multiple scales is used in order to derive an amplitude 

evolution equation for the most unstable mode. It is shown that the amplitude equation is the 

complex Ginzburg-Landau equation. The coefficients of the equation are found in closed form 

in terms of integrals containing the following parameters and functions: 

1. Critical values of the bed-friction number, wave number and phase speed of the 

perturbation. 

2. Eigenfunctions of the corresponding adjoint problem. 

3. Solutions of three boundary-value problems for ordinary differential equations, 

one of which is resonantly forced. 
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4. Solution of the resonantly forced problem is found using singular value 

decomposition. 

5. The other two problems are solved by a collocation method based on Chebyshev 

polynomials. 

The second method takes into account a slow longitudinal variation of the base flow. 

The analysis is based on weakly non parallel WKBJ approximation.  

 

Scientific Novelty and Main Results 

 

- Linear stability problem for slightly curved shallow mixing layers, two-component 

slightly curved shallow mixing layers and shallow mixing layers with variable friction 

is formulated and solved numerically for different values of the parameters of the 

problem.  

- Linear stability calculations are performed using temporal and spatial approach. 

- It is shown that the amplitude evolution equation under the rigid-lid assumption in a 

weakly nonlinear regime is the complex Ginzburg-Landau equation. 

- Explicit formulas for the computation of the coefficients of the Ginzburg-Landau 

equation are obtained for slightly curved shallow mixing layers, for slightly curved 

two-component shallow mixing layers and for shallow mixing layers with variable 

friction. 

- Stability of shallow mixing layers with variable friction in linear and weakly nonlinear 

case is analysed. 

- Amplitude equation describing the evolution of the amplitude of the perturbation with 

respect to the longitudinal coordinate is derived. 

- The derived Ginzburg-Landau equation is solved numerically for different parameters 

of the problem and different initial conditions. 

- Stability of plane wave solutions of the Ginzburg-Landau equation is analysed. 

 

Applications 

 

Understanding stability characteristics and development of instability in shallow flows 

is important for design of compound channels. Since mixing layers also occur at river 

junctions and rivers are not straight, the analysis of the effect of curvature should also be 
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taken into account. In some cases, flows can contain heavy particles moving with the fluid. 

Linear and weakly nonlinear analysis of two-component shallow mixing layers performed in 

the Thesis explained the effect of particle loading parameter on the stability characteristics of 

the flow under the assumption of large Stokes numbers.  

Shallow water equations are nonlinear. Thus, numerical modelling of shallow water 

flows requires considerable computational resources since the number of parameters 

characterising the problem is large. Amplitude evolution equations for problems in thermal 

convection and Taylor-Couette flows are found to be quite useful in describing the dynamics 

of the corresponding flows at the initial stages of instability. Amplitude evolution equation in 

the form of a complex Ginzburg-Landau equation is derived in the Thesis from the equations 

of motion in a weakly nonlinear regime for the case of single or two-component slightly 

curved shallow mixing layers where the friction coefficient is constant or non-constant in the 

transverse direction. Since the Ginzburg-Landau equation is quite rich in terms of different 

solutions (depending on the values of the coefficients), in many cases it is used as a 

phenomenological equation for the analysis of spatio-temporal dynamics of complex flows.  

The coefficients of the equation are estimated using experimental data, and the 

equation then can be used to model complex phenomena in fluid mechanics. It is shown in the 

Thesis that the coefficients of the Ginzburg-Landau equation can be calculated in closed form 

using linear stability characteristics of the flow. Thus, varying the parameters of the problem 

and re-calculating the coefficients of the Ginzburg-Landau equation one can use the equation 

to analyse spatio-temporal dynamics of the flow in a weakly nonlinear regime. 
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1. MATHEMATICAL FORMULATION OF THE PROBLEM 

1.1 Literature Survey 

 

Linear stability theory is widely used in order to analyse the behaviour of fluid flows 

(see, for example, [9], [11], [52] and [60]). In many engineering applications of fluid 

mechanics the transverse length scale of the flow is much larger than water depth. Such flows 

are usually referred to as “shallow flows”. Curved shallow mixing layers are of a particular 

interest (flows in compound and composite channels and flows at river junctions represent 

typical examples of shallow mixing layers). Methods of analysis of shallow mixing layers 

include experimental investigation, numerical modelling and stability analysis [41]. 

Experimental investigation of shallow mixing layers is conducted in many papers (see, for 

example, [6], [64] and [65]). It is shown in these papers that bottom friction plays an 

important role in suppressing perturbations. In addition, the rate of growth of the mixing layer 

is also reduced in comparison with the case of free mixing layers.  

Linear stability analysis of shallow flows is performed in [5], [7], [33], [43], [46] and 

[57]. Rigid-lid assumption is used in [7] to determine the critical values of the bed friction 

number for wake flows and mixing layers. The applicability of the rigid-lid assumption to the 

stability analyses of shallow flows is analysed in [33], where it is shown that for small Froude 

numbers the error in using the rigid-lid assumption is quite small. The effect of Froude 

number of the stability of shallow mixing layers in compound and composite channels is 

studied in [43]. Theoretical results and numerical computations presented in [5], [7], [33], 

[43], [46] and [57] confirm experimental observations: the bed friction number stabilizes the 

flow and reduces the growth of a mixing layer. 

Centrifugal instability can also occur in shallow mixing layers. The effect of small 

curvature of the stability of free mixing layers is investigated in [35], [40] and [53]. It is 

shown in [53] that curvature has a stabilizing effect on a stably curved mixing layer and 

destabilizing effect on unstably curved mixing layer.  

Linear stability analysis can be used to determine how a particular flow becomes 

unstable. Critical values of the parameters (for example, critical bed friction number, critical 

wave number and so on) are also estimated from the linear stability theory. Development of 

instability above the threshold cannot be analysed by linear theory. Weakly nonlinear theories 

[36], [62] are used in order to construct an amplitude evolution equation for the most unstable 

mode. These theories are based on the method of multiple scales [42] and are applicable if the 
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flow is unstable but the value of the parameter (for example, Reynolds number for channel 

flows or bed friction number for shallow flows) is close to the critical value. In this case the 

growth rate of unstable perturbation is small and one can hope to analyse the development of 

instability by means of relatively simple evolution equations. Such an approach is used in [62] 

for plane Poiseuille flow, in [2] and [49] in order to analyse instability of waves generated by 

wind and in [30], [33], [45], [46] and [55] for shallow wake flows. In fact, amplitude 

equations are used in the literature in two ways. First, a particular form of the evolution 

equation is selected a priori and the coefficients of the equation are estimated from 

experimental data. Then the equation with estimated coefficients is used to model the 

phenomenon of interest. Second, one can actually derive an evolution equation from the 

equations of motion. This approach is used in [46], [62], [2], [30] and [47] where it is shown 

that for two-dimensional cases the evolution equation is the complex Ginzbrug-Landau 

equation. 

Ginzburg-Landau equation is often used to model spatio-temporal dynamics of 

complex flows. In many cases the Ginzburg-Landau equation is used as a phenomenological 

model, that is, it is assumed but not derived from the equations of motion. Experimental data 

are often used in such cases in order to estimate the coefficients of the equation.  

In other cases the Ginzburg-Landau equation can be derived from the equations of 

motion (examples are given in [50], [58] and [61]). The coefficients of the equation are 

calculated in a closed form as integrals containing characteristics of the linearized problems.  

Ginzburg-Landau equation and its properties are extensively studied in the literature 

(see, for example, [1] and [10]). Numerical analysis of the Ginzburg-Landau equation is 

simpler than numerical solution of the equations of motion. In addition, analysis of stability of 

some simple (for example, periodic) solutions of the Ginzburg-Landau equation allows 

researchers to simplify the analysis of spatio-temporal dynamics of complex flows in fluid 

mechanics. 

Linear instability of shallow mixing layers is analysed in [4], [7], [33], [43] under the 

assumption that bottom friction is modelled by means of the Chezy formula [51] where the 

friction coefficient is assumed to be constant. Usually the friction coefficient is obtained from 

semi-empirical formulas [59] which relate the value of the friction coefficient to the Reynolds 

number of the flow and roughness of the surface. In such a case the friction coefficient is 

assumed to be constant in the whole region of the flow.  
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In some applications friction varies considerably in the transverse direction. One 

particular example is related to shallow flows under condition of partial vegetation. This 

situation often occurs during floods [66]. Friction force in a partially vegetated area is larger 

than in the main channel. It is shown in this case that the base flow profile is distorted and 

becomes asymmetric [66]. The difference in friction forces between partially vegetated area 

and the main channel is modelled in [66] by a step function. Linear stability analysis is 

conducted in [66] under the assumption that the base flow profile is symmetric. 

 

1.2 Shallow Water Equations 

 

Shallow water equations are depth-averaged equations which are obtained by 

integrating equations of fluid mechanics with respect to the vertical coordinate. Since 

integration takes place over water depth it is necessary to specify stresses at the free surface 

and at the bottom. Stresses at the free surface are usually much smaller than the stresses at the 

bottom so that only bottom stresses are usually taken into account in shallow water equations. 

Empirical formulas (such as Chezy or Manning formulas) are used in practice in order to 

represent bottom friction. The detailed derivation of shallow water equations is given in [4].  

Shallow water equations under the rigid-lid assumption in the presence of a small 

curvature have the form  
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, (1.3) 

where  x, y – geometric coordinates;  

t – time; 

u and v – the depth-averaged velocity components in the x and y directions; 

p – the pressure; 

h – water depth; 

cf – friction coefficient (can be constant or function of y); 

B – particle loading parameter (see [67], [68]);  

up  and vp – the components of particle velocities; 
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1
1

*

* 
RR


 – small parameter; 

*R – the radius of curvature of the centreline of the curved mixing layer; 

* – the thickness of the mixing layer. 

It is assumed in (1.2), (1.3) that the flow can contain heavy particles. The “lumped” 

effect of the particles is represented by the particle loading parameter B . Equations 

(1.1)-(1.3) are written under the assumption of large Stokes number which implies that there 

is no dynamic interaction between the particles and the carrier fluid. 

Water surface in (1.1)-(1.3) is treated as the “rigid-lid” (in other words, water depth is 

assumed to be constant). Bottom friction in (1.2), (1.3) is modelled by means of the Chezy 

formula (see [4]).  

As it is shown in [33], the rigid-lid assumption (from a linear stability point of view) is 

valid for small Froude numbers.   

Following [67], [68] we assume that the following conditions are satisfied with respect 

to the distribution of particles within a carrier fluid: 

1. The particles are spheres with small diameters. 

2. The diameters are small in comparison with the dimensions of large-scale 

structures. 

3. The particles and the flow are in a dynamic equilibrium at the beginning of the 

transient. 

4. The material density of the particle is much larger than that of the fluid. 

5. The small perturbations imposed on the flow have no effect on the particles during 

the initial moment. 

Friction coefficient cf in some applications varies in the transverse direction. Examples 

include shallow flows under conditions of partial vegetation during floods where water flows 

through partially vegetated area [67] or flows in compound and composite channels [43]. In 

such cases the resistance force in the main channel is usually smaller than in the vegetated 

area of a composite channel or in the shallower area of a compound channel. The variability 

of the friction coefficient in the transverse direction is modelled by a smooth differentiable 

shape function )(f yc . 
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2.  STABILITY OF SLIGHTLY CURVED SHALLOW MIXING LAYERS 

2.1 Linear Stability 

 

Consider shallow water equations under the rigid-lid assumption in the presence of a 

small curvature in the form (1.1)–(1.3), where B = 0 ([15], [16], [17], [26]).  

Eliminating the pressure p  (differentiating (1.2) with respect to y and (1.3) with 

respect to x ) we obtain: 
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Subtracting the second equation from the first we obtain: 
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Simplifying the resulting equation we get 
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Introducing the stream function ),,( tyx  by the relations 
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 ,       (2.1) 

and using the notation yyxx    we rewrite (1.1)–(1.3) in the form 
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where the subscripts indicate the derivatives with respect to the variables yx,  and t . 

Here the parallel flow assumption is used. Experiments [64], [65] show that the base 

flow slightly changes downstream. The parallel flow assumption implies that the base flow 

does not change in the longitudinal direction. As pointed out in [50] this approximation is the 

leading-order solution in a multiple-scale expansion which takes into account slow flow 

divergence.  

Consider the stream function ),,( tyx  of the form 

'0   ,       (2.3) 

where the quantity with prime represent small perturbations.  

Substituting (2.3) into (2.2) we obtain the following equation: 
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We assume that perturbations are small so that quadratic or higher terms in the 

equations may be ignored. Using the Maclaurin series ...
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Thus, 
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Dropping the primes we obtain the following equation 
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Following the method of normal modes [11] we assume a perturbation of the form 

)(e)(),,( ctxikytyx  ,      (2.5) 

where )(y  – the amplitude of the normal perturbation; 

k  – the wave number; 

c  – the phase speed of the perturbation.  

The derivatives of   with respect to x , y  or t  are 
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  (2.6) 

Substituting (2.5) and derivatives (2.6) into (2.4) and using the notation  

yU 0 ,      (2.7) 
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we obtain: 

    ,0'
2

''2'2
2

'''' 2f33   ikU
R

UUUk
h

c
ikUikikUikccik yyy  

or 

   ,0
2

2
'''

2
33 



















SUk
ikUUikcikSUikU

R
SUcUik yyy  (2.8) 

where 
h

c
S *f  – the bed-friction number; 

*  – the width of the mixing layer.  

Dividing the equation by ik we obtain: 
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The boundary conditions are 

.0)(        (2.10) 

Using linear stability theory one can determine the conditions under which a particular 

flow becomes unstable. The eigenvalues ir iccc   determine the linear stability of base 

flow. The base flow is said to be linearly stable if all 0i c , and unstable, if at least one 

0i c . Numerical solution of the corresponding eigenvalue problem (2.10) – (2.9) allows one 

to obtain the critical values of the parameters of the problem and determine the structure of 

the unstable mode. However, linear theory cannot be used to predict the evolution of the most 

unstable mode above the threshold. In the unstable region perturbation grows exponentially 

with time (see (2.5)). If the growth rate is large then nonlinear effects quickly become 

dominant and there is little hope to analyse the development of instability analytically. 

However, if the growth rate of the unstable mode is relatively small then weakly nonlinear 

theories can be used in order to develop an amplitude evolution equation for the most unstable 

mode.  

In a classical theory of hydrodynamic stability [11] the base flow is usually a simple 

solution of the equations of motion. As an example we consider the Navier-Stokes equations 

where the velocity vector has only one nonzero component which is a function of a radial 
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coordinate only. Solving the Navier-Stokes equations we obtain a parabolic velocity 

distribution (the Poiseuille flow). This approach does not work for shallow water equations: it 

is not possible to find a simple analytical solution )(yU of (1.1) – (1.3). Base flows in the case 

of shallow water equations are usually chosen in the form of relatively simple model velocity 

profiles such as hyperbolic tangent profile for shallow mixing layers or hyperbolic secant 

profile for shallow wake flows. These profiles are chosen on the basis of careful analysis of 

available experimental data. The following two base flow profiles will be used below: 

yyU tanh2)(         (2.11) 

and  

yyU tanh2)(  .       (2.12) 

a)      b) 
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Fig. 2.1. Base flow profile a) yyU tanh2)(   and b) yyU tanh2)(   

 

Velocity profile (2.11) – Fig.2.1 a) corresponds to stably curved mixing layer (in this 

case the high-speed stream is on the outside of the low-speed stream). Profile (2.12) – 

Fig.2.1 b) represents the opposite situation (the high-speed stream is on the inside of the 

low-speed stream). It is shown in [15] that experimentally observed base flow velocity profile 

has similar shape to that of the plane mixing layer.  

 

2.2 Numerical Method for Linear Stability 

 

In this subsection we describe a numerical method for the calculation of the marginal 

stability curves and growth rates of unsteady perturbations. 
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The pseudospectral collocation method based on Chebyshev polynomials is used to 

solve eigenvalue problem (2.9)-(2.10) numerically. The interval  y  is transformed 

into the interval )1,1(  by means of the transformation yr arctan
2


 . The solution to (2.9) 

is then sought in the form 
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where rjrT j arccoscos)(   – the Chebyshev polynomial of the first kind of degree j; 

ja  – unknown coefficients.  

The factor 21 r  guarantees that the boundary conditions (2.10) in terms of the new 

variable r  are satisfied automatically at 1r . The use of the base functions that satisfy the 

given zero boundary conditions considerably reduces the condition number of the matrix 

obtained after discretization [38]. 

Using the chain rule we compute the derivatives of the first and second order of   
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The derivatives of   with respect to r  are evaluated using (2.13): 
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Substituting (2.15) into (2.14) the derivatives of the first and second order of   with 

respect to y  will be as follows: 
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The following set of collocation points is used to solve (2.9), (2.10): 
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In order to evaluate the function )(r  and its derivatives up to the second order we 

need to compute the values of the Chebyshev polynomial )(rT j  and its derivatives at the 

collocation points (2.17): 
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Substituting (2.13-2.18) into (2.9) we obtain the linear system of the equations 

( Nm ,...,2,1 ) in the form: 
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Simplifying the obtained equation we get 
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Reshuffle terms which contain the factor c we obtain the linear system of the 

equations ( Nm ,...,2,1 ) in the form: 
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We obtain the generalized eigenvalue problem of the form 

,0)(  acDB     (2.19) 

where B  and D  are complex-values NN  matrices  and  T110 ...  Naaaa .  

There are at least two reasons why solutions of the form (2.13) are more convenient 

than those obtained by “classical” collocation methods [3]:  

1. The use of the base functions that satisfy the given zero boundary conditions 

considerably reduces the condition number [39].  

2. The matrix D in (2.19) is not singular.  
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Problem (2.19) is solved numerically by means of the IMSL (International 

Mathematics and Statistics Library) routine DGVCCG (Computes all of the eigenvalues and 

eigenvectors of a generalized complex eigensystem BzAz  ). 

The results of numerical computations for the case of stably curved shallow mixing 

layer (base flow velocity profile (2.11) – Fig. 2.1.a) are shown in Table 2.1.  

Table 2.1. The Results of Numerical Computations for the Case of Stably 

Curved Shallow Mixing Layer (Base Flow Velocity Profile (2.11)). 

k S(1/R=0) S(1/R=0,01) S(1/R=0.02) S(1/R=0.03) S(1/R=0.04) 

0.1 0.0260 0.0230 0.0205 0.0194 0.0258 

0.2 0.0441 0.0408 0.0377 0.0348 0.0321 

0.3 0.0554 0.0519 0.0485 0.0452 0.0421 

0.4 0.0609 0.0572 0.0536 0.0501 0.0466 

0.5 0.0612 0.0574 0.0536 0.0499 0.0462 

0.6 0.0568 0.0529 0.0490 0.0451 0.0412 

0.7 0.0482 0.0442 0.0402 0.0361 0.0322 

0.8 0.0357 0.0316 0.0275 0.0234 0.0224 

0.9 0.0196 0.0154 0.0150 0.0142 0.0138 

 

The results of numerical computations for the case of stably curved shallow mixing 

layer (base flow velocity profile (2.11)) are shown in Fig. 2.2. Three marginal stability curves 

are shown in Fig. 2.2 for the three values of the parameter R/1 , namely, 02.0,0/1 R  and 

0.04, respectively (from top to bottom). The region of instability is below the curves [16].  

 

Fig. 2.2. Marginal stability curves for base flow profile (2.11) 

The values of the parameter R/1  are 0, 0.02 and 0.04, respectively (from top to bottom). 

As can be seen from Fig. 2.2 curvature has a stabilizing influence on stably curved 

shallow mixing layer: the critical values of the bed-friction number S  decrease as the 

parameter R/1  increases.  
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Marginal stability curves for unstably curved shallow mixing layer (base flow profile 

(2.12)) are shown in Fig. 2.3.  

 

Fig.2.3. Marginal stability curves for base flow profile (2.12)  

The values of the parameter R/1  are 0.04, 0.02 and 0, respectively (from top to bottom) 

The results shown in Fig. 2.3 indicate that the increase of the parameter R/1  has a 

destabilizing influence on unstably curved base flow profile (2.12): the critical values of the 

bed-friction number increase for larger R/1 .  

Results of numerical computations show that the curvature stabilizes the flow in the 

case of stably curved mixing layer while for unstably curved mixing layer the curvature has a 

destabilizing effect on the flow.  

 

2.3 Weakly Nonlinear Methods for Analysis of Shallow Flows 

 

Weakly nonlinear theories are usually constructed in the neighbourhood of a critical 

point (see Fig. 2.4). Such equations are obtained in the past for the case of plane Poiseuille 

flow, shallow water flows, waves on the surface generated by wind and in some other 

situations (see [2], [30], [34], [46], [47], [49], [62]).  

stable

S

cS

ck k

unstable

 
Fig. 2.4. A typical marginal stability curve for shallow water flow.  
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Suppose that cc ,kS  and cc  are the critical values of the stability parameter, wave 

number and wave speed, respectively. Then the most unstable mode (in accordance with the 

linear theory) is given by (2.5) with cc , kkSS   and ccc   where the eigenfunction )(y  

can be replaced by )(yC . The constant C  cannot be determined from the linear stability 

theory. In order to analyse the development of instability analytically in the framework of 

weakly nonlinear theory we consider a small neighbourhood of the critical point in the 

),( Sk -plane where parameter S  is assumed to be slightly below the critical value:  

).1( 2

c  SS      (2.20) 

The constant C  in this case will be replaced by a slowly varying amplitude 

function A . Following the paper by Stewartson and Stuart [62] we introduce the “slow” time 

  and longitudinal coordinates   by the relations 

),(,2 tcxt g             (2.21) 

where gc  is the group velocity.  

Thus, ),( AA   and the function   in (2.5) now has the form 
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  (2.22) 

where the abbreviation c.c. means the complex conjugate.  

The stream function in (2.5) can be represented as follows: 

)).(),,(,,,( ttxtyx       (2.23) 

Using the chain rule we can rewrite the derivatives of   with respect to t  and x  in 

the form 
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In other words, the differential operators 
t
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x


 are replaced by 
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A perturbed solution   is sought in the form 
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Using the following formulas 
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Similarly:  
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Substituting all expressions into (2.2) we obtain the following equation: 
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Collecting the terms of orders  , 2 , 3  we obtain the following three equations:  
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Let 
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then equation (2.28) can be rewritten as follows: 
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Using the notation yU 0 , we rewrite (2.28) in the form  
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Equation (2.29) is rewritten in the form 
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Note that the operator L  on the left-hand side of (2.34) is the same as in (2.32) and it 

will be the same for all orders of  .  

In terms of the operator L  equation (2.30) can be rewritten as follows 
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First, we solve the linear stability problem. In equation (2.33) the solution will be 

sought in the form    ctxiky  e11  . 

Substituting derivatives into the equation (2.33) we obtain: 
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where 
h

c
S *f  – the bed-friction number; 

*  – the width of the mixing layer.  

The boundary conditions are 

.0)(1        (2.37) 

Numerical solution of (2.36), (2.37) is obtained in Section 2.2. We can find the critical 

values of the cS , ck  and cc (stability parameter, wave number and wave speed, respectively).  

Assume now 
1  in the form (2.22). Next, we consider the solution of (2.34). 

Derivatives of the right side of the equation are:  
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We substitute the derivatives in the right-hand side of the equation (2.34) and 

simplify: 
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Terms proportional to AA have the form: 
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Similarly, terms proportional to 
 ctxikA  e are as follows: 
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Finally, terms proportional to  ctxikA  22 e have the form: 
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The following three groups of terms will emerge:  

a) the terms that are independent on time;  
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b) the terms proportional to the first harmonic )(e ctxik   (here and in sequel we drop the 

subscripts and use the notation ckk   and ccc   for convenience); 

c) the terms proportional to the second harmonic )(2e ctxik  .  

Thus, the function 2  should also contain the same three groups of terms. More 

precisely, we seek the solution to (2.34) in the form 
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where )(),( )1(

2

)0(

2 yy   and )()2(

2 y are unknown functions of y ; 

*A denotes the complex conjugate of A ;  

the superscript reflects the index of the harmonic component; 

the subscript represents the order of approximation.  

Derivatives on the left side of the equation (2.34) are:  
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2 2 2 2 22 2
ik x ct ik x ct ik x ct ik x ct

xy y y y yA ike A ike A ike A ike     
     

     

               1 2 2 1 2 * 22 2 2 2 * 2 2*

2 2 2 2 24 4
ik x ct ik x ct ik x ct ik x ct

xx k A e k A e k A e k A e     
     

      

                   0 1 2 2 0 * 1 * 2 * 22 * 2*

2 2 2 2 2 2 2

ik x ct ik x ct ik x ct ik x ct

y y y y y y yAA A e A e AA A e A e       
             

                   0 1 2 2 0 * 1 * 2 * 22 * 2*

2 2 2 2 2 2 2

ik x ct ik x ct ik x ct ik x ct

yy yy yy yy yy yy yyAA A e A e AA A e A e       
             

               1 2 2 1 * 2 * 23 3 2 3 * 3 2*

2 2 2 2 28 8
ik x ct ik x ct ik x ct ik x ct

xxx ik A e ik A e ik A e ik A e     
     

      

               1 2 2 1 * 2 * 22 * 2*

2 2 2 2 22 2
ik x ct ik x ct ik x ct ik x ct
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2 2 2 2 28 8
ik x ct ik x ct ik x ct ik x ct
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               1 2 2 1 * 2 * 22 * 2*

2 2 2 2 22 2
ik x ct ik x ct ik x ct ik x ct

yyt yy yy yy yyikcA e ikcA e ikcA e ikcA e     
     

     . 
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Substituting the derivatives on the left-hand side of the equation (2.34) we obtain: 
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Terms proportional to AA : 
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Terms proportional to 
 ctxikA  e : 

           

      .22
2

2

1

2

1

2

1

2

2f

1

2

1

2

1

2

1

2

31

2

1

2

3

yyyy

yyyyyyy

UUUk
h

c

U
R

ikikUikUUikikccik









 (2.43) 

Terms proportional to  ctxikA  22 e : 
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Collecting the terms proportional to *AA  on the left-hand side of the equation (2.34) 

and using (2.38) we obtain the equation for  0

2 : 
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transformed to the form: 
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The boundary conditions are  

.0)()0(

2           (2.46) 

Similarly, collecting the terms proportional to )(e ctxik   on the left-hand side of the 

equation (2.34) and using (2.39) we obtain the following equation for the function )1(

2 : 
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Dividing both sides by ik we obtain: 
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with the boundary conditions 

.0)()1(

2           (2.48) 
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Finally, collecting the terms proportional to  ctxik 2e  we obtain: 
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Dividing both sides by ik the following equation for the function )2(

2  is obtained: 
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(2.49) 

with the boundary conditions 

.0)()2(

2        (2.50) 

Comparing (2.47) and (2.36) one can see that the left-hand side of (2.47) is exactly the 

same as the left-hand side of (2.36) if )()1(

2 y  is replaced by )(1 y . Thus, (2.47) is resonantly 

forced and solvability condition should be applied at this stage to guarantee the existence of 

the solution. Using the Fredholm’s alternative [69] we conclude that equation (2.47) has a 

solution if and only if the left-hand side of (2.47) is orthogonal to all eigenfunctions of the 

corresponding homogeneous adjoint problem. 

The adjoint operator aL  and adjoint eigenfunction a
1  are defined by the relation 

.a

1

a

11

a

1 dyLdyL   








     (2.51) 

The left-hand side of (2.51) is equal to zero since 01 L . Thus, the adjoint equation 

is defined by the formula 

0a

1

a L .       (2.52) 

Integrating the left-hand side of (2.51) by parts and using the boundary conditions 

(2.37) we obtain: 
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Hence, the adjoint operator is  
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  (2.53) 

The boundary conditions are 

.0)(a

1         (2.54) 

The adjoint eigenfunction 
a

1  is the solution of the problem (2.53), (2.54).  

Applying the solvability condition to (2.47) we obtain  
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Equation (2.55) defines the group velocity:  
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or 
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Solving three boundary value problems (2.45) - (2.46), (2.47) - (2.48) and (2.49) - 

(2.50) numerically we obtain the functions )(),( )1(

2

)0(

2 yy   and )()2(

2 y . The function 2  

(the second order correction) is then given by (2.41).  

Let us consider the solution at the third order in  . Equation (2.35) also has a solution 

if and only if the right-hand side of (2.35) is orthogonal to all eigenfunctions a

1  of the 

corresponding homogeneous adjoint problem (2.53), (2.54). Applying the solvability 

condition to (2.35) we obtain: 
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The derivatives of (2.22) and (2.41) are: 
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Substituting the derivatives into the right-hand side of (2.35) we obtain: 
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Collect the terms proportional to  ctxikA e  
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Collect the terms proportional to  ctxikA e  
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Collect the terms proportional to  ctxikA e  
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Nonlinear terms proportional to 
2
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The equation (2.60) is rewritten in the form: 
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Using (2.61) - (2.64) equation (2.65) is rewritten as the amplitude evolution equation 

for slowly varying amplitude function ),( A  of the form: 
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Equation (2.66) is the complex Ginzburg-Landau equation with complex coefficients 

 ,  and   : 

.,, 111














        (2.67) 

where irir ,  ii   and ir  i  are complex coefficients which can be 

computed using linearized characteristics of the flow.  
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Coefficients 11 ,  1  and   are given by: 

  ,22
2

111

2a

11 dyUUUk
S

yyyy   




   (2.68) 

 

  ,

2
32

32

2

1

222)1(

2

)1(

2

)1(

2

a

11 dy

S
UikUikcikc

ikSUUUkckck

R

U
Uc

g

yyg

yyyg





































 










   (2.69) 

 
   

 

 

 
 

,

22

22

2

3
3

2

22

326

*

1

)2(

2

)0(*

2

)0(

21

)2(

2

*

1

)0(*

2

)0(

21

*

1

2

1

0

4
)2(

2

*

1

2)0(*

2

)0(

21

2

1

)0(

2

*

1

)2(

2

)2(

2

*

1

)2(

2

*

1

)0(*

2

)0(

21

*

1

)2(

2

)0(*

2

)0(

21

)0(*

2

)0(

21

3)2(

2

*

1

3)2(

2

*

1

*

1

)2(

2

3

a

11 dy

u

k
kk

S

R

ik
ikik

ikikik

ikikikik

yyyyyyyy

yyyyyyy

yyy

yyyyyyyyyy

yyyyyyyyyyyyy

yyyyyyy











































































 

















(2.70) 

dykyy )( 1

2

1

a

1   




.    (2.71) 

The constant r  is known as the Landau constant in the literature. If 0r   then finite 

saturation of the amplitude is possible and (2.66) can be useful in analyzing the development 

of instability. There are many examples in fluid mechanics including rotating convective 

flows [54], [56] and shallow water flows [30], [46], where the constant 0r  . However, for 

plane Poiseuille flow 0r   (see [33]) so that (2.66) is not useful at all since higher-order 

terms become important as well.  

Formulas (2.67) represent the coefficients of equation (2.66) in terms of the 

characteristics of the linear stability of the flow. More precisely, in order to obtain  ,  and 

  we need to perform the following calculations:  
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1. Solve the linear stability problem (2.36) - (2.37) and determine the critical values 

of the parameters cSk ,,  and the corresponding eigenfunction )(1 y ;  

2. Solve the homogeneous adjoint problem (2.53) - (2.54) and determine the adjoint 

eigenfunction a

1 ; 

3. Solve three boundary value problems (2.45) - (2.46), (2.47) - (2.48), (2.49) - (2.50) 

and determine the functions )(),( )1(

2

)0(

2 yy  and )()2(

2 y ;  

4. Evaluate the integrals in (2.67).  

Ginzburg-Landau equation is often used to model spatio-temporal dynamics of 

complex flows. The reason is that (2.66) exhibits a rich variety of solutions depending on the 

values of the coefficients  ,  and  . In addition, it contains the terms representing linear 

growth, diffusion and nonlinearity. In many cases the Ginzburg-Landau equation is used as a 

phenomenological model, that is, it is assumed but not derived from the equations of motion. 

Experimental data are often used in such cases in order to estimate the coefficients of the 

equation.  

In other cases the Ginzburg-Landau equation can be derived from the equations of 

motion (examples are given in [50], [58] and [61]). The coefficients of the equation are 

calculated in a closed form as integrals containing characteristics of the linearized problems.  

Ginzburg-Landau equation and its properties are extensively studied in the literature 

(see, for example, [1] and [10]). Numerical analysis of the Ginzburg-Landau equation (see 

section 6) is simpler than numerical solution of the equations of motion. In addition, stability 

of some simple (for example, periodic) solutions of the Ginzburg-Landau equation allows 

researchers to simplify the analysis of spatio-temporal dynamics of complex flows in fluid 

mechanics. 

 

2.4 Numerical Method for Weakly Nonlinear Stability 

 

In this subsection we present a numerical method for the calculation of the coefficients of the 

Ginzburg-Landau equation. The solutions of linear stability problem (2.36)-(2.37), adjoint problem 

(2.53)-(2.54), boundary value problems (2.45)-(2.50) are sought in the same form (2.13), where 

)(r  represents any of the functions ),(1 r  ),(a

1 r  ),()0(

2 r  ),()1(

2 r  )()2(

2 r  (recall that 

yr arctan
2


 ). Using the chain rule we compute the derivatives of the first, second (2.14) 

and third order of   with respect to y : 
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The derivatives of the first, second (2.15) and third order of   with respect to r are 

evaluated using (2.13): 
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In order to evaluate the function )(r  and its derivatives up to the third order we need 

to compute the values of the Chebyshev polynomial )(rT j  and its derivatives at the 

collocation points (2.13): 
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 (2.74) 

The values of )(1 r , its derivatives up to order two inclusive and the coefficients of 

equation (2.37) at the collocation points (2.13) can be evaluated using formulas (2.72) - (2.74) 

so that the elements of the matrices B and D (see (2.19)) can be computed and the generalized 

eigenvalue problem (2.19) can be solved numerically. Similar approach can be used in order 

to solve boundary value problems (2.45) - (2.46) and (2.49) - (2.50). System of linear 

algebraic equations of the form 

GFa        (2.75) 

is obtained in each case after discretization where T

110 )...(  Naaaa . The matrix F  is not 

singular for problems (2.45) - (2.46) and (2.49) - (2.50). Therefore, any linear equation solver 

can be used in order to find a . Thus, the functions )()0(

2 y  and )()2(

2 y  can be evaluated by 

means of the expansions of the form (2.13).  

The same form of the expansion (2.13) is used to solve boundary value problem 

(2.47) - (2.48). Equation of the form (2.19) is also obtained after discretization in this case, 

but the matrix F  is singular since the corresponding homogeneous part of (2.47) has a 

nontrivial solution at cc , kkSS   and ccc  . Equation (2.75) is solved in this case by 
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means of the singular value decomposition method [3]. It is known that if F  is a complex 

NN   matrix, then there exist orthogonal NN   matrices U  and V  such that 

,H  VFU       (2.76) 

where ),...,,( 21 Ndiag  . 

Equation (2.76) is called the singular value decomposition of the matrix F  and 

N ,...,, 21  are the singular values of F . In our case only the last of the singular values will 

be equal to zero ( 0... 121   NN  ). Hence, the solution to (2.75) in this case can 

be written in the form 

,H1 GUVa  
      (2.77) 

where the last column of V , the last row of HU , the last column and the last row of 1 are 

deleted. In component form the solution to (2.77) is 

,
1

1

H








N

i i

ii VGU
a


      (2.78) 

where H

iU  and iV  are vectors (columns of the matrices HU  and V , respectively).  

Hence, the values of the function )()1(

2 y  can be computed using formula (2.13) where 

the coefficients ja  are the components of the vector a  in (2.78).  

The final step of the computational procedure involves the calculation of integrals in 

(2.67). Adaptive quadrature formula described in [31] can be used to compute the integrals in 

(2.67).  
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3. LINEAR AND WEAKLY NONLINEAR INSTABILITY OF SLIGHTLY 

CURVED TWO-COMPONENT SHALLOW MIXING LAYERS  

3.1 Linear Stability 

 

Consider the two-dimensional shallow water equations in the presence of a small 

curvature under the rigid-lid assumption (1.1) – (1.3) [13], [14] and [28]. It is assumed that 

the carrier fluid contains small heavy particles. The assumptions that are used in the 

derivation of the governing equations are summarized in Section 1.2. Eliminating the pressure 

p  and introducing the stream function ),,( tyx  (see 2.1) system (1.1) – (1.3) can be reduced 

to one equation 
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2
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22

22

f

22f
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xxxxyyxyyy

yx
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 (3.1) 

A perturbed solution to (3.1) is sought in the form 

...,),,(),,(),,()(),,( 3

3

2

2

10  tyxtyxtyxytyx    (3.2) 

where   – a small parameter which will be defined later.  

Substituting (3.2) into (3.1) and linearizing the resulting equation in the 

neighbourhood of the base flow we obtain (see 2.1): 

,01 L       (3.3) 

where 
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A hyperbolic tangent velocity profile of the form )(0 yUy    

y
UUUU

yU tanh
22

)( 1221 



     (3.4) 

is often used in practice in order to represent the base flow for the case of a mixing layer. 

Here 1U  and 2U  are the velocities of undisturbed flow at y  and y , respectively.  
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The solution to (3.3) is sought in the form of a normal mode 

.e)(),,( )(

11

ctxikytyx       (3.5) 

Using (3.3) and (3.5) we obtain 

,01 L         (3.6) 
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The boundary conditions are 

.0)(1           (3.7) 

Here 
h

bc
S f  – the stability parameter.  

Note that (3.6), (3.7) is an eigenvalue problem (the complex eigenvalues are 

ir iccc  ). Base flow (3.4) is said to be stable if all 0i c  and unstable if at least one 0i c . 

Marginal stability of flow (3.4) is described by the relation 0i c . Problem (3.6), (3.7) is 

usually solved numerically (details of numerical algorithm based on collocation method are 

given in Chapter 2). Thus, solution of (3.6), (3.7) allows one to obtain the critical values of 

the parameters ccc ,, ckS . A typical marginal stability curve for shallow water flows is a 

convex curve with one maximum (the coordinates of the maximum point in the ),( Sk  plane 

are ckk   and cSS  ).  

 

3.2 Weakly Nonlinear Stability 

 

Assume that the bed-friction number is slightly smaller than the critical value: 

).1( 2

c  SS      (3.8) 

Now the role of the parameter   in (3.2) becomes clear: it characterizes how close is 

the parameter S  to the critical value cS . In addition, (3.8) implies that base flow (3.4) is 
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unstable if the bed-friction number is equal to S . However, since   is small, the growth rate 

of the most unstable perturbation is also small. Hence, one can try to characterize the 

development of instability analytically by means of weakly nonlinear theory. 

Following [62] we introduce the following “slow” variables 

),(,2 tcxt g       (3.9) 

where gc  is the group velocity.  

The stream function 1  in (3.5) is replaced by 

,e)(),(),,,,( )(

11

ctxikyAtyx       (3.10) 

where )(1 y  is the eigenfunction of the marginally stable normal perturbation with 

cc , kkSS   and ccc  . The objective is to derive equation for the evolution of the 

amplitude function ),( A . 

Using (3.9) we replace the derivatives with respect to x  and t  in (3.1) by the 

following expressions 
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Using (3.1), (3.2), (3.11) and collecting the terms that contain 2  we obtain 
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Analyzing the structure of the right-hand side of (3.12) and using (3.10) we conclude 

that 2  in (3.12) should be sought in the form 

,e)(e)()( )(2)2(

2

2)()1(
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ctxikctxik yAyAyAA          (3.13) 
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where *A  is the complex conjugate of A  and )(),( )1(

2

)0(

2 yy   and )()2(

2 y  are unknown 

functions of .y  Substituting (3.13) into (3.12) and collecting the time-independent terms we 

obtain the following ordinary differential equation for the function )()0(

2 y : 
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   (3.14) 

The function )()0(

2 y  satisfies the following boundary conditions: 

.0)()0(

2           (3.15) 

Substituting (3.13) into (3.12) and collecting the terms containing the first harmonic 

we obtain the equation 
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(3.16) 

with the boundary conditions 

.0)()1(

2         (3.17) 

Finally, using (3.13) and (3.12) for the terms that contain the second harmonic, we 

obtain  
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  (3.18) 

The boundary conditions are 

.0)()2(

2        (3.19) 

Comparing (3.6) and (3.16) we see that the left-hand sides of both equations are the 

same. Thus, (3.21) has a solution if and only if the right-hand side of (3.16) is orthogonal to 
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all eigenfucntions of the corresponding adjoint problem (see [69]). The adjoint operator aL  

and adjoint eigenfunction a

1  are defined as follows: 

1 1 1 1 .a a aL dy L dy   
 

 

         (3.20) 

The adjoint problem is  

,0a

1

a L        (3.21) 
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Integrating the left-hand side of (3.20) by parts and using boundary conditions (3.7), 

(3.22) we obtain  
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Solvability condition for (3.16) has the form 
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Hence, the group velocity gc  can be found from (3.24).  

Using (3.1), (3.2), (3.11) and collecting the terms that contain 3  we obtain: 
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The evolution equation for the amplitude function ),( A  is determined from the 

solvability condition at the third order. Multiplying the right-hand side of (3.25) by a

1 , using 

(3.13) and the solutions of the boundary value problems (3.14)-(3.19) we obtain the complex 

Ginzburg-Landau equation for the amplitude ),( A  of the form 
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2
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where  














 111 ,,       (3.27) 

and the complex coefficients 111 ,,   and   are given by 
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The coefficients of the Ginzburg-Landau equation (3.26) can be computed using 

formulas (3.27) - (3.31). Note that in order to perform calculations it is necessary to solve the 

linear stability problem (3.6) - (3.7), the corresponding adjoint problem (3.21) - (3.22), three 

boundary value problems (3.14) - (3.19) and numerically evaluate integrals in (3.27) - (3.31).  
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4. SPATIAL STABILITY OF SLIGHTLY CURVED SHALLOW MIXING 

LAYERS 

4.1 Linear Case 

 

There are two basic approaches for the analysis of linear stability of a base flow in 

fluid mechanics: (a) temporal stability analysis and (b) spatial stability analysis [11]. In both 

cases the analysis is performed using the method of normal modes: perturbations are assumed 

to be proportional to   txi  exp , where both parameters   and   may be complex: 

ir  i , ir  i . 

In case (a) the wave number r   is real while   is complex. For the case of spatial 

stability analysis r   is real and the wave number   is complex: ir  i . From a 

computational point of view temporal stability analysis is simpler since the corresponding 

eigenvalue problem is linear with respect to eigenvalue  . On the other hand, spatial 

eigenvalue problem is nonlinear in  . However, spatial growth rates are usually evaluated 

experimentally so that spatial stability characteristics should be calculated for a proper 

comparison with experimental data. 

M. Gaster [32] suggested a transformation which can be used to approximate spatial 

growth rates if temporal growth rates are known. However, Gaster’s transformation can be 

used only in the vicinity of the marginal stability curve.  

A spatial stability problem for the case of slightly curved shallow mixing layers is 

solved in this chapter. Spatial growth rates are calculated for different values of the 

parameters of the problem. The effect of curvature on the stability of the base flow is 

analysed.  

Shallow water equations under the rigid-lid assumption in the presence of a small 

curvature have the form (1.1) – (1.3) [12], [20], [21], [22] and [27]. Introducing the stream 

function (see Chapter 2.1) by the relations (2.1) we can rewrite (1.1) – (1.3) in the form (2.2). 

Consider a perturbed solution to (2.2) of the form  

...),,()(),,( 10  tyxytyx       (4.1) 

where )(0 y  – the base flow solution, 

1  – a small unsteady perturbation.  
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Substituting (4.1) into (2.2) and linearizing the resulting equation in the 

neighbourhood of the base flow we obtain (see Chapter 2.1) 

,011 L       (4.2) 

where  

 
xyyyyyyoyyxxy

xyyyyyxoyxxxyyytxxt

Rh

c

L





000
f

001

2
22

2




.  

Method of normal modes is used to solve (4.2), that is, the perturbation 1  is 

represented in the form 

 )(exp)(),,(1 txiytyx   ,       (4.3) 

where )(y  – the amplitude of the normal perturbation.  

Since spatial stability analysis is used, assumes that r   is the real frequency of the 

perturbation and ir  i  is a complex number.  

Substituting (4.3) into (4.2) and denoted yU 0  we obtain the following differential 

equation 

  0
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    (4.4) 

with the boundary conditions 

,0)(        (4.5) 

where 
h

bc
S f  – the bed-friction number; 

b  – a characteristic length scale (in this case width of the mixing layer).  

Problem (4.4), (4.5) is an eigenvalue problem. Base flow )(yU  is said to be linearly 

stable if all 0i   and unstable if at least one 0i  .  

As it is mentioned above, the corresponding problem is linear with respect to   but 

nonlinear with respect to  . Hence, the following computational procedure is suggested for 
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the solution of the problem. Assuming that both   and   are complex of the 

form ir  i , ir  i , for each fixed r,S  and r  we calculate i  such that 0i  . 

This is achieved by solving linear generalized eigenvalue problem and selecting the new 

approximation to i  using bisection method. Then we change r  (for the fixed value of S ) 

and repeat the calculation. The region of spatial instability is described by the relation .0i   

The base flow is selected in the form 

 yyU tanh1
2

1
)(  .     (4.6) 

The first set of calculations is performed for the case without bottom friction ( 0S ). 

The growth rates i  versus r are shown in Fig.4.1. It follows from Fig. 4.1 that curvature 

has a stabilizing influence on the flow (the growth rates decrease as the curvature increases). 

 

     i  

 

r  

Fig. 4.1. Growth rates i versus r  for three values of 
R

1
= 0; 0.025 and 0.05  

(from top to bottom). 

 

The growth rates i  versus r  are shown in Fig. 4.2. As can be seen from Fig. 4.2, 

the increase of the values of S  also leads to more stable flow – the growth rates decrease as 

the parameter S  grows.  
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    i    

 

r  

Fig. 4.2. Growth rates i  versus r  for three values of S = 0; 0.05 and 0.1 

(from top to bottom). 

It is shown that both the bottom friction and flow curvature have a stabilizing 

influence on the flow. 

Following M. Gaster [32] we denote by (T) and (Sp) the solutions to (4.4), (4.5) 

corresponding to temporal and spatial problems, respectively. It is shown in [32] that near the 

marginal stability curve: 

   SpT rr   ,    SpT rr   ,  
 
 Tc
T

Sp i
i


  ,  

where     
 
 T
T

Tc
r

r




 . 

It follows from the Gaster’s transformation that on the stability boundary either spatial 

or temporal stability analyses can be used since in this case     0ii  TSp  . If the 

objective of the analysis is to construct a marginal stability curve then it is recommended to 

use temporal stability analysis (which is a simpler method from a computational point of view 

than spatial stability analysis). However, the use of the Gaster’s transformation away from the 

marginal stability curve can result in relatively large errors. We have computed temporal and 

spatial growth rates for the case S = 0.05, B = 0 and 1/R = 0. The relative percentage errors   

in using Gaster’s transformation are shown in the Table 4.1. 
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Table 4.1: Relative Errors in Using 

Gaster’s Transformation. 

r   %  

0.1 11.6 

0.2 15.4 

0.3 16.3 

0.4 15.0 

0.5 12.7 

 

It is seen from Table 4.1 that errors in using Gaster’s transformation for the calculation 

of growth rates away from the marginal stability curve can be quite large.  

 

4.2 Weakly Nonlinear Case 

 

In this Chapter we describe the second approach which can be used in order to derive 

an amplitude evolution equation under the assumption that the base flow is not parallel but 

slightly changes downstream.  

Consider the system of shallow water equations of the form (1.1) – (1.3). Let 

),,( tyx  be the stream function of the flow. The velocity components can be written in the 

form (2.1). Using (2.1) and eliminating the pressure from (1.1.) - (1.3) the system of shallow 

water equations reduces to the following equation for the stream function 

.0)2(
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 (4.7) 

Assume that   is the wave length of a perturbation and l  is the length scale of the 

longitudinal variation of the base flow. In shallow mixing layers (see [64], [65]) the following 

condition is usually satisfied: l . Thus, a small parameter   can be defined as follows: 

l/  . Following [36] we introduce a slow longitudinal coordinate X  by the relation 

xX  . The base flow velocity components are ),( XyU  and ),( XyV , respectively.  

The stream function ),,( tyx  is represented as the sum of the basic part ),(0 Xy  

and fluctuating part ),,(' tyx : 

),,('),(),,( 0 tyxXytyx    ,     (4.8) 
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where xX   – a slowly varying coordinate; 

– the small dimensionless parameter that characterizes the non-parallelism 

of the base flow; 

),(0 Xy  – the stream function of the base flow; 

),,(' tyx  – a perturbation. 

In addition, 
y

XyU



 0),(


 and 

X
XyV




 0),(


. 

Using (4.8) the derivatives of   with respect to x, y and t we get in the form 

(linearizing equation the effect of the perturbation '  and is small, therefore the quadratic or 

higher terms of the '  and  may be ignored): 
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Substituting all this expressions into (4.7) we obtain: 
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 (4.9) 

Simplifying the expression (4.9), grouping the terms and denoting the primes, we get: 
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 (4.10) 

Using the WKBJ approximation (see [36]) we represent the stream function in the 

form 

















 t
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)(
exp),(),,( ,    (4.11) 

where ),( Xy  – a slow-varying amplitude function; 



 )(X
 – a fast-varying phase function.  

The amplitude function ),( Xy is expanded in a power series of the form 

...),(),(),( 21  XyXyXy      (4.12) 

Substituting (4.11) and (4.12) into (4.10) we obtain the following equation at the 

leading order: 

,01 L       (4.13) 

where  

 
  .''2''2

2

'
2''

''

111

2f

1111

2

11












UUUk
kUh

ic

k
U

ik
BU

R

k
U

U
kL














  (4.14) 

Here primes denote the derivatives with respect to y  and .kx   Using equation 

(4.12) with zero boundary conditions at   we obtain linear stability problem where X  
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appears as the parameter. The corresponding eigenfunction of the linear stability problem, 

),(1 Xy , is represented in the form 

),()(),(1 XyXAXy  ,    (4.15) 

where )(XA  – slowly varying amplitude; 

),( Xy  – a normalized eigenfunction.  

At the next order the following equation is obtained: 

,2 FL         (4.16) 

where 

 

































































































































)2(

'222
2

'''
'

2'
'

''
''

3

32

2
'

2

''''32

f

2

2

2

dX

dk
i

X
ikB

ikVU
dX

dk
i

X

U
ik

X
iUk

h

c

kV
XR

U

X

U

X
U

X
U

dX

dk
Uk

x
Uk

dX

dk

X
k

A
kU

i

ikB
h

iUK
c

R

U

UUUkk

dX

dA

kU

i
F

f









 

Equation (4.16) has a solution if and only if the right-hand side F  is orthogonal to all 

eigenfunctions 
~

 of the corresponding adjoint problem: 






 .0
~

dyF      (4.17) 

Using (4.16) and (4.17) we obtain the following equation for unknown amplitude 

)(XA : 

,0)()(  AXN
dX

dA
XM     (4.18) 

where 
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As a result, the fluctuating part of the stream function has the form 
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   (4.22) 

Formula (4.22) takes into account (in asymptotic form) slow longitudinal variation of 

the base flow. It is shown in [8] that in a similar asymptotic formula the growth rate and phase 

speed of a perturbation depend not only on the choice of flow quantities but also on the 

location of the point ),( yx , where these quantities are calculated. This fact has to be taken 

into account for a proper comparison of (4.22) with experimental data.  

A few important conclusions can be drawn from the asymptotic analysis (see [8]):  

1. Each multiplier on the right-hand side of (4.22) contains information related to both 

amplitude and phase of the perturbation.  

2. The selection of the perturbed quantities plays an important role in the calculation of the 

growth rate and phase speed of the perturbation.  

3. The growth rate and the phase speed of the perturbation depend not only on the perturbed 

quantity (velocity component or pressure), but also on the location of the downstream 

station where the quantities are calculated.  

Hence, a meaningful comparison of the weakly nonlinear model (4.18) can be made 

only if a particular quantity of interest Q  is selected (for example, longitudinal velocity 

component or pressure). In this case (see [8]) a local wave number Lk  can be defined by the 

formula 
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       (4.23) 

where LiLrL ikkk  .  

The values of Lrk  and Lik  are interpreted as the local phase speed and local spatial 

growth rate, respectively. Thus, in order to compare weakly nonlinear model (4.18) with 

experimental data the following steps should be performed:  

- select a flow quantity Q ;  

- measure the quantity Q at some point ),( yx ;  

- compute the right-hand side of (4.23) at the same point ),( yx .  

In summary, weakly nonlinear model (4.18) can be validated if detailed experimental 

data or numerical results of the solution of nonlinear shallow water equations are available.  
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5. STABILITY OF SHALLOW MIXING LAYERS WITH VARIABLE 

FRICTION 

5.1 Linear Case 

 

Linear and weakly nonlinear stability problem for the case where the friction 

coefficient is varied in the transverse direction by an arbitrary differentiable shape function 

depending on transverse coordinate is analysed in this chapter.  

Consider the system of shallow water equations under the rigid-lid assumption 

(1.1) - (1.3) [18], [19], [23] and [29]. The dependence of the friction coefficient )(f yc  on the 

transverse coordinate y  is assumed to be of the form 

),()(
0ff ycyc       (5.1) 

where )(y  - arbitrary differentiable “shape” function.  

Introducing the stream function   by the relations (2.1) and eliminating the pressure 

from (1.1)-(1.3) we obtain (see Chapter 2.1): 
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(5.2) 

where )()(
0ff ycyc

y
   - the derivative of )(f yc  with respect to y .  

Consider a perturbed solution to (5.2) of the form 

...,),,(),,(),,()(),,( 3

3

2

2

10  tyxtyxtyxytyx    (5.3) 

where )()( 0 yyU  - the base flow solution.  

Substituting (5.3) into (5.2) and linearizing the resulting equation in the 

neighbourhood of the base flow )(yUU   we obtain 

,011 L        (5.4) 

where  
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Using the method of normal modes we represent the function 1  in the form  

 ,)(exp)(),,(1 txiytyx      (5.5) 

where )(y  - the amplitude of the normal perturbation;  

             - the complex wave number of the form ir  i ; 

         r    - real (spatial stability analysis).  

Substituting (5.5) into (5.4) and denoted yU 0  we obtain the following differential 

equation  

 

,0
2

'

2
32 












SUi
UU

SUiSUiSUiU

yy

yyyyy






   (5.6) 

where 
h

bc
S 0f
  - the bed-friction number; 

           b  - the half-width of the mixing layer.  

The boundary conditions are 

.0)(         (5.7) 

The following profiles of the base flow velocity )(yU  and shape function )(y  are 

used to compute growth rates of unstable perturbations: 

),tanh1(
2

1
)( yy        (5.8) 

).tanh1(
2

1
)( yyU       (5.9) 

The choice of the shape function )(y  in (5.9) is based on the following. First, with a 

stronger resistance force the base flow velocity becomes smaller so that (5.8) and (5.9) are 

consistent. Second, we would like to remove discontinuity in the friction force used in [66] 
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and consider more realistic case of a continuous resistance which is changing with respect to 

the transverse coordinate. 

Fig. 5.1 plots spatial growth rates for the unstable mode for three value of the 

parameter S : 0.05, 0.10 and 0.15 (from top to bottom). It is seen from the figure that with 

smaller S  the growth rate is larger. This is understandable since the parameter S  is 

proportional to the friction coefficient 
y

cf 0f
c .  

 

    i   

 r  

Fig. 5.1. Growth rates for the three values of S : 0.05, 0.10 and 0.15  

(from top to bottom) for the shape function given by (5.12). 

In order to see the effect of varying friction more clearly we plot in Fig. 5.2 growth 

rates for the most unstable mode for the same three values of S , namely, 0.05, 0.10 and 0.15 

(from top to bottom) under the assumption that 1)( y  (that is, for the case of constant 

friction coefficient).  

 

i  

 r  

Fig. 5.2. Growth rates for the three values of S : 0.05, 0.10 and 0.15  

(from top to bottom) for constant friction coefficient. 
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It is seen from Fig. 5.2 that the increase in S  has a stabilizing influence on the flow 

(growth rates are getting smaller as S  increases). 

 

                               i  

      r  

 

Fig. 5.3. Growth rates for the case 1.0S   

(variable friction – top curve, constant friction – bottom curve). 

 

However, comparing Figs. 5.1 and 5.2 the overall growth rates for the case of non-

uniform friction are larger than for the case of uniform friction. This fact is clearly seen from 

Fig. 5.3 where growth rates for 1.0S  are plotted for the case of variable friction (top curve) 

and constant friction (bottom curve).  

In the previous example, we considered the case of a symmetric profile, however, 

experimental data [66] showed that the base flow velocity profile is asymmetric with respect 

to the transverse coordinate. One example of such a flow is the flow in open channel with 

vegetation in floodplains [66]. The two-layer structure of the base flow is identified in [66]. A 

boundary-layer type of flow is observed in the outer layer (that is, in the main channel) and is 

characterized by relatively small velocity gradients. On the other hand, rather large velocity 

gradients are present in the inner layer due to the presence of vegetation in floodplains. 

Two-parameter profiles of the base flow velocity )(yU  are used to compute growth 

rates of unstable perturbations: 
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Here r is the velocity ratio, and   is the “shape” parameter which reflects the two-

layer structure described in [66]. Note also that the function )(yU  and its first and second 

derivatives are continuous at 0y . 

Following [66] we assume that the drag force has the form 
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where   - the density of the fluid;  

DC  - the mean drag coefficient; 

a  - the average solid frontal area per unit volume in the plane perpendicular to 

the flow [66].  

The drag differential between the layer with vegetation and the main channel is 

described by a dimensionless parameter 

hcaC
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D

D

/2 f
  .     (5.12) 

In addition, the total resistance can be measured by the generalized bed-friction 

number 
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where b  - the width of the shear layer. 

Using the linear stability problem (2.9) - (2.10) for R =   we rewrite equation (2.9) in 

the form 
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where 
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This eigenvalue problem has complex eigenvalues of the form ir iccc  . Flow (5.11) 

is said to be linearly stable if 0i c , and unstable if 0i c . Problem is solved numerically by 

means of a collocation method based on Chebyshev polynomials (see Chapter 2.2). Software 

package IMSL is used to solve this problem. In order to avoid discontinuity at 0y  the 

values of H  are replaced by a hyperbolic tangent function of the form ytanh  with large   

values. 

In order to compare the results obtained for asymmetric velocity profile (5.10) with 

the symmetric case we used the following symmetric velocity profile 

y
rrrr

yU tanh
2222

1)( 










.     (5.16) 

Both profiles (5.10) and (5.16) have the same asymptotes as .y  The graphs of 

the base flow velocity profiles (5.10) and (5.16) have shown in Figs. 5.4 and 5.5 for two 

values of  . 
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Fig. 5.4. Base flow velocity profiles calculated by means of (5.10) and (5.16) 

(top and bottom curves, respectively) for the case 8.0,8.0   . 
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Fig. 5.5. Base flow velocity profiles calculated by means of (5.10) and (5.16) 

(top and bottom curves, respectively) for the case 6.0,8.0   . 
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The role of the parameter   is clearly seen from Figs. 5.4 and 5.5: for smaller values 

of   the horizontal asymptote is reached at larger values of y  if the base flow velocity 

profile is asymmetric with respect to the transverse coordinate y .  

Stability curves in the ),( Sk  plane for different values of the parameters of problem 

(5.18), (5.14) are shown in Figs. 5.6 - 5.8. Marginal stability curves are shown for the 

symmetric case (base flow of the form (5.16), solid curve) and asymmetric case (base flow of 

the form (5.10), dashed curve). 

Fig. 5.6 plots the marginal stability curves for the case 8.0,8.0   . As can be 

seen from Fig. 5.6, asymmetry of the base flow velocity distribution results in more stable 

flow (the flow is stable above the curves in Figs. 5.6 - 5.8 and unstable below the curves).  
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Fig. 5.6. Marginal stability curves for the case 8.0,8.0   . 

The stabilizing influence of asymmetry of the base flow is clearly seen also in Figs. 

5.7 and 5.8. The asymmetric flow becomes more stable since the critical value of the 

parameter S  becomes smaller. In addition, the range of unstable values of k  also decreases. 
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Fig. 5.7. Marginal stability curves for the case 6.0,8.0   . 
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Fig. 5.8. Marginal stability curves for the case 4.0,8.0   . 

Numerical calculations showed stabilizing influence of asymmetry of the base flow 

profiles: both critical values of the stability parameter and the range of unstable wave 

numbers decrease as the asymmetry becomes more pronounced. 

 

5.2 Weakly Nonlinear Case 

 

Linear stability analysis of shallow mixing layers is performed in the previous section. 

It is assumed that the friction coefficient is not constant but varies in the transverse direction. 

It is seen from the comparison of Figs. 5.1 and 5.2 that non-uniform friction (presence of 

vegetated layers in the flow) results in larger growth rates than the case of uniform friction. 

The next question to answer is how this fact affects development of instability above the 

threshold. It is known from the previous studies on shallow water flows [30], [34], [46], that 

weakly nonlinear models can provide some insight into the development of instability in the 

case where the bed-friction number S  is slightly smaller than the critical value (that is, the 

flow is linearly unstable but the growth rate of the most unstable mode is very small). Using 

the method of multiple scales an amplitude evolution equation is obtained following the 

procedure described in [62].  

Consider the system of shallow water equations under the rigid-lid assumption (1.1)-

(1.3). Introducing the stream function   by the relations (2.1), and eliminating the pressure 

from (1.1) - (1.3), we obtain equation (5.2). Next is the derivation of the equations of the 

second and third approximations, as in Chapter 2.2. Then only one new term we must add 

compared with equation (2.6): 
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Introducing all expressions into (5.2) we obtain the following equation: 
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Collecting the terms of order  , 2 , 3  we obtain the following expressions: 
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Note, then yU 0  we obtain the following equation: 
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Collecting the terms of order 2 we obtain the following equation for the function 2 : 
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      (5.22) 

Note that the operator L  on the left-hand side of (5.22) is the same as in (5.21) and it 

will be the same for all orders of  .  

First we solve linear stability problem - the solution of the equation (5.21) will be 

sought in the form (2.5). 

Substituting derivatives into the equation and simplifying we obtain: 

    0)
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(''' 1

233

11   U
S

ikkUUkckSUSUiSUickUk yyyy (5.23) 

The boundary conditions are 

.0)(1        (5.24) 

Details of the numerical solution of (5.23), (5.24) can be found in Section 2.1. We can 

find the critical values of the cS , ck  and cc (stability parameter, wave number and wave 

speed, respectively).  

Assume now 1  in the form (2.22). 

Next, we consider the solution of (5.22). Substitute the derivatives in the right-hand 

side of the equation and simplify: 
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Terms proportional to AA : 
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Thus, the function 2  should contain three groups of terms. More precisely we seek 

the solution to (5.22) in the form (2.41). 
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Substituting the derivatives in the left-hand side of the equation we obtain: 
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Collecting the terms proportional to *AA yields in the left-hand side of the equation 

(5.22) and in the right-hand side we obtain the equation for  0

2 (using: 
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S 0f
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The boundary conditions have the form 

.0)()0(

2       (5.26) 

Similarly, collecting the terms proportional to )(e ctxik   on the left-hand and right-hand 

sides of equation (5.22) we obtain the equation for the function )1(

2 : 
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The adjoint operator aL  and adjoint eigenfunction 
a

1  are defined by the relation 
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The left-hand side of (5.29) is equal to zero since 01 L . Thus, the adjoint equation 

is defined by the formula 
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Integrating the left-hand side of (5.29) and using the boundary conditions (5.24) we 

obtain: 
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We obtain the adjoint operator in the form 
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The boundary conditions are 

0)(a

1  .     (5.32) 

The adjoint eigenfunction a

1  is the solution of the problem (5.31), (5.32).  

Applying the solvability condition to (5.27) we obtain  
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Equation (5.33) defines the group velocity:  
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Finally, collecting the terms proportional to )(2e ctxik   we obtain: 
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with the boundary conditions 
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2        (5.38) 
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Solving three boundary value problems (5.25) - (5.26), (5.27 - (5.28) and 

(5.37) - (5.38) numerically we obtain the functions )(),( )1(

2

)0(

2 yy   and )()2(

2 y . The function 

2  (the second order correction) is then given by (2.41).  

Let us consider the solution at the third order in  . Similarly, collecting the terms of 

order 3  we obtain the following equation for the function 3 : 
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   (5.39) 

Equation (5.39) also has a solution if and only if the right-hand side of (5.39) is 

orthogonal to all eigenfunctions 
a

1  of the corresponding homogeneous adjoint problem. 

Applying the solvability condition to (5.39) we obtain: 
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Comparing (5.40) with (2.60) we see that only the last term is added to (5.40): 
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Using (5.40) we collect the terms proportional to: 
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(5.44) 

We rewrite (5.40) in the form: 

 

 

 

 

.

2
2

2222

22

2
2

3

2

2

3

2
2

22
2

2
2

33

22)(

122121

f

11121121

1221

1112

2

11
21

f
11

122111211112

112112121121

a

1

1

f

111
fa

1

12
f

2212

11222

a

1

11

a

1
















































































































































dy

h

c

U

h

c

dyU
h

c
UUU

h

c

dy

UU
h

c

UUUU

cc

dy

yyxxx

y

xyxyxyxxyx

yyyyyy

yxyxx
xxx

yxx

yyy

yyyxyyyxxyxxxyxxxyxxyx

yyyyyxyyyxyxxxyxxyxxxy

yxxyyyy

x

yyyyxxx

txgtxyyxxg

yyxx

y




















































(5.45) 



 92 

Using (5.41) - (5.44) equation (5.45) is written in the form of an amplitude evolution 

equation for slowly varying amplitude function ),( A  of the form: 
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Equation (5.46) is the complex Ginzburg-Landau equation with complex coefficients 
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where irir ,  ii   and ir  i  are complex coefficients which can be 

computed using linearized characteristics of the flow.  

Coefficients 11 ,  1  and   are given by: 
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dykyy )( 1
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Especially important in this case is the sign of the real part of   (known as the 

Landau constant in the literature). The Landau constant had the “wrong sign” in [62] which 

means that finite amplitude saturation was not possible and higher order terms (with respect 

to A ) quickly become important so that (5.46) can be used for a very short time (in other 

words, practical application of (5.46) is very limited). In contrast to [62] it is shown in [30], 

[34], [46] that for shallow water flows the Landau constant in (5.46) has the “right sign” so 

that (5.46) can be used (and was successfully used in [30], [34] [46]) in order to describe 

some important features of shallow wake flows.  

Experimental data presented in [66] showed that coherent structures exist in shallow 

mixing layers adjacent to a porous layer. Since Ginzburg-Landau equation has a rich variety 

of solutions depending on the values of the coefficients [1] it would be quite interesting to see 

whether predictions based on the Ginzburg-Landau model (5.46) will match experimental 

observations.  
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6. NUMERICAL RESULTS  

 

In this Chapter we consider numerical aspects of weakly nonlinear analysis performed 

in the previous Chapters. One of the fundamental questions to answer is: “When does weakly 

nonlinear theory is applicable”? It is clear from the discussion in Chapter 2 (Section 2.3 and 

Fig. 2.1) that weakly nonlinear approach can be used in a small neighbourhood of the critical 

point. Thus, we can apply the theory and compute the coefficients of the Ginzburg-Landau 

equation. However, is there a criterion which can be used to convince us that the Ginzburg-

Landau model can adequately represent the dynamics of a fully nonlinear model at least at the 

initial stage of transition period when the base flow becomes linearly unstable? The answer to 

this question (at least partially) is given in the paper by Suslov and Paolocci [63]. They 

proposed a relatively simple criterion for determination whether the Ginzburg-Landau 

equation can be used to analyse the dynamics of a linearly unstable flow. The criterion is as 

follows: if growth rates of an unstable perturbation can be well approximated by a parabola in 

the whole range of unstable wave numbers then the Ginzburg-Landau equation can be used to 

analyse the dynamics of the flow (at least in the beginning of the nonlinear regime).  

In order to test this assertion we computed growth rates for the range of unstable wave 

numbers for the following values of the parameters of the problem for stability of slightly 

curved shallow mixing layers for base flow profile (2.11). The results of calculations are 

shown in Fig. 6.1 ( cSS  ) for ci ( ir iccc  , when 0i c ). As can be seen from the figures, 

the curve representing growth rates and parabolic fit are almost indistinguishable. Thus, we 

conclude that the Ginzburg-Landau equation can be successfully used to analyse the dynamics 

of the flow above the threshold. 

0.4 0.5 0.6 0.7
k

0.01

0.02

0.03

0.04

Ci

 

Fig. 6.1. Quadratic approximations of the growth rates for the following values 

of the parameters S=0.09, 0.08, 0.07 and 1/R=0.03 (from top to bottom).  
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Here we present the results of numerical calculations (Table 6.1) of the coefficients of 

the Ginzburg-Landau equation (2.66) using formulas (2.67) - (2.71). The results are shown for 

the base flow profile (2.11) (see Fig. 2.1) for the values of 1/R in the range from 0 to 0.04. 

 

Table 6.1. Linear and Weakly Nonlinear Stability Characteristics for 

Different Values of 1/R (Chapter 2) and Base Flow Profile (2.11). 

1/R  0.00  0.01  0.02  0.04 

k  0.456  0.453  0.449  0.440 

S  0.123  0.116  0.108  0.094 

c  1.954  1.965  1.977  2.004 

   0.184 – 0.016i  0.173 – 0.015i  0.163 –0.013i  0.141 – 0.009i 

   2.861 + 0.494i  3.046 + 0.539i  3.244+ 0.590i  3.673 + 0.720i 

cg  1.927  1.924  1.922  1.914 

   6.487+13.238i  6.014+13.757i 5.472+14.447i 4.124+16.524i 

 

 

We also present here the calculations in a weakly nonlinear regime for the case of the 

problem considered in Chapter 5 (the case of non-uniform friction). The following “shape” 

profile )(y is used to model non-uniform friction (see formula (5.1)): 

)tanh(
2

1

2

1
)( yy 








 . 

The results of the numerical computations of the linear stability characteristics and the 

coefficients of the Ginzburg-Landau equation are shown in Table 6.2 below. 

 

Table 6.2. Linear and Weakly Nonlinear Calculations for 3.0 . 

   0.25  0.5   1.0  1.5  

k  0.442  0.437  0.438  0.437 

S  0.198   0.205  0.211   0.214  

c  1.972  1.985  2.004  2.018 

   0.195 – 0.487i  0.195 – 0.080i  0.183 – 0.133i  0.174 – 0.173i 

   2.374 + 0.690i  2.151 + 0.687i  2.090 + 0.516i  2.092 + 0.262i 

cg  1.956  1.981  2.007  2.018  

   7.077+13.243i  7.330 +12.434i  7.403+10.752i  7.255 + 9.645i 

 

After rescaling [1], the equation (5.46) for the complex amplitude A
~

 has a form: 
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Some closed form solutions of (6.1) are known in the literature [1], [10]. One of the 

simplest solutions is the solution of the form 

  ~~
exp

~
0 iiqaA  ,    (6.2) 

where 

2

0 1 qa  ,   2

212 qccc  . 

Stability of (6.2) can be investigated by assuming that [38] 

       ~~
exp~~

expˆ~~
expˆ

~ *

0 iiqikaikaaA  ,   (6.3) 

where â  and *â  denote the amplitudes of the small perturbations. 

Substituting (6.3) into (6.1) we obtain equation for  . For the case of small k  the 

stability condition has the form: 

01 21  cc       (6.4) 

provided that q  satisfies the inequality 

2

2

212

2

1

c

cc
q


        (6.5) 

Condition (6.4) is known as the Benjamin-Feir stability condition. If (6.4) is not 

satisfied, than plane wave solutions of the form (6.2) are unstable (and, therefore, cannot be 

observed in experiments).  
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Numerical solutions of the Ginzburg-Landau equation (6.1) are presented below for 

different values of the parameters 1c , 2c  and different initial conditions. The problem is 

formulated as follows: find the solution of (6.1) for the given boundary conditions: 

0|
~

,0|
~

~
0

~ 
 L

AA


      (6.6) 

and the initial condition: 

).
~

(|
~

0~  fA        (6.7) 

Method of lines implemented in Mathematica 5 is used for the numerical solution to 

problem (6.1), (6.6), (6.7).  

Table 6.3 shows numerical values of the coefficients 1c  and 2c for different values 

of . As can be seen from Table 6.3, condition (6.4) is satisfied for all cases considered. 

 

Table 6.3. Numerical Values of the Coefficients c1 and c2 of 

the Ginzburg-Landau Equation for 3.0 . 

  0.3000 0.3000 0.3000 
0.3000 

  
0.25 0.5 1.0 

1.5 

r

i
1




c  1.8713 1.6963 1.4524 1.3294 

r

i
2 


c  0.2906 0.3194 0.2469 

0.1252 

211 cc  2.1619 2.0157 1.6993 
1.4547 

 

 

The first computation is performed for the case 1c = 1.3293 and 2c =0.1251. The 

values of these parameters are taken from Table 6.3. The function )
~

(f in (6.7) is assumed to 

be a small random noise of order 0.01. The results are shown in Fig. 6.3. Since the parameters 

of the problem satisfy (6.4) and (6.5) (in other words, are in the region of stability), the 

modulus of the amplitude reaches constant value. 
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Fig. 6.3. Plot of the A
~

. 

 

The second set of computations corresponds is performed for the case 


~

2 e1)
~

( iqqf   where q = 0.5. The results are shown in Fig. 6.4.  
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Fig. 6.4. Plot of the A
~

. 

 

 

Finally, we consider the case where the Benjamin - Feir stability condition (6.4) is not 

satisfied. The values of the parameters are taken from [46]: 1c = -0.799564 and 2c =2.189654 

(these parameters correspond to weakly nonlinear analysis of wake flows). Random noise of 

order 0.01 is used as the initial condition. The results are shown in Figs. 6.5 and 6.6. As can 

be seen from the figure, stabilization of the amplitude does not occur in this case. 
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Fig. 6.5. Plot of the A
~

. 
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Fig. 6.6. The final configuration of A
~

 

 

These examples illustrate the well-known fact that the Ginzbureg-Landau model is 

quite rich in terms of different solutions. Illustrative computations in Figs. 6.3-6.6 show that 

both initial conditions and the values of the coefficients are responsible for spatio-temporal 

dynamics of the amplitude. The domain of applicability of the Ginzburg-Landau equation has 

to be defined. The equation is derived in a small neighbourhood of the critical point. 

Comparison of fully nonlinear simulations with predictions based on the Ginzburg-Landau 

model is required in order to test the validity of the model. This is left for future research. 
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CONCLUSION 

 

The main conclusions from the linear stability analysis are as follows: 

- Flow curvature effect is twofold: calculations show that the curvature gives a 

destabilizing effect on the unstable curved mixing layer and stabilizing effect on the stable 

curved mixing layer.  

- Particle loading parameter has a stabilizing influence on the flow. 

- Spatial stability analysis has been performed in the Thesis as well. One of the 

objectives has been to estimate the accuracy of Gaster’s transformation away from the 

marginal stability curve.  

- It is shown that the base flow asymmetry has a stabilizing influence on the flow.  

- Calculations show that growth rates for the case of non-constant friction are higher 

than growth rates for the case of uniform friction.  

Two methods of weakly nonlinear theory have been used in the Thesis for the stability 

analysis of shallow mixing layers. The first method uses parallel flow assumption. Using the 

method of multiple scales, the complex Ginzburg-Landau equation is derived from shallow 

water equations for slightly curved shallow water flow mixing layers, for two-component 

slightly curved mixing layers, for mixing layers with non-uniform friction. The coefficients of 

the equation are expressed in terms of integrals containing linearized characteristics of the 

flow. 

The second method is based on the assumption that the wave length of perturbation is 

much smaller than the length scale of longitudinal evolution of the base flow. Perturbed 

stream function at the leading order is decomposed in this case into a slow-varying amplitude 

function and a fast-varying phase function. Solvability condition at the second order gives 

amplitude equation for the unknown amplitude of the most unstable mode.  
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