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Abstract – Approximation in solving the infinite two-person 

non-cooperative games is studied in the paper. An approximation 

approach with conversion of infinite game into finite one is 

suggested. The conversion is fulfilled in three stages. Primarily 

the players’ payoff functions are sampled variously according to 

the stated requirements to the sampling. These functions are 

defined on unit hypercube of the appropriate Euclidean finite-

dimensional space. The sampling step along each of hypercube 

dimensions is constant. At the second stage, the players’ payoff 

multidimensional matrices are reshaped into ordinary two-

dimensional matrices, using the reversible index-to-index 

reshaping. Thus, a bimatrix game as an initial infinite game 

approximation is obtained. At the third stage of the conversion, 

the player’s finite equilibrium strategy support is checked out for 

its weak consistency, defined by five types of inequalities within 

minimal neighbourhood of every specified sampling step. If 

necessary, the weakly consistent solution of the bimatrix game is 

checked out for its consistency, strengthened in that the 

cardinality of every player’s equilibrium strategy support and 

their densities shall be non-decreasing within minimal 

neighbourhood of the sampling steps. Eventually, the consistent 

solution certifies the game approximation acceptability, letting 

solve even games without any equilibrium situations, including 

isomorphic ones to the unit hypercube game. A case of the 

consistency light check is stated for the completely mixed Nash 

equilibrium situation. 

 

Keywords – Approximate solution, equilibrium strategy 

support, game isomorphism, multidimensional matrix, solution 

consistency, two-person non-cooperative games, unit hypercube. 

 

I. INFINITE TWO-PERSON NON-COOPERATIVE GAMES, 

ISOMORPHIC TO THE UNIT HYPERCUBE GAME 

There is always the question of resource distribution under 

everlasting demands and wants. The contemporary game 

theory grants a powerful logical apparatus for distributing 

resources fairly and profitably within equilibrium stability [1]. 

However, having the solution of a conflict event, which is 

modleled mathematically with a game, does not assign a way 

to implement it [2]. For instance, a Nash equilibrium strategy 

or other equilibrium type strategy with its finite support 

probability measure might have been practiced only with an 

infinite number of recurring support pure strategies [3], [4]. In 

the case of the infinite support probability measure, the 

majority of the support pure strategies cannot be recurred even 

once as a number of the recurred ones constitute the zero-

measure set [5], [6]. However, for most classes of infinite two-

person non-cooperative games their solutions are unknown or 

at least are non-effectively computable [1], [2], [7]. Then, the 

conversion of the infiniteness into finiteness is needed 

anyway. This is approximation, i.e., conversion of an infinite 

two-person non-cooperative game into a finite one. 

Two-person non-cooperative games model a series of 

conflict events, involving economic competition [1], [2], [8], 

[9], political controversy [1], [10], social discrepancy [11], [12], 

environmental engineering [13], ecological incompatibility [2], 

[14], jurisprudential confrontation [15], etc. In these events, 

the player, personifying a side of the conflict, often possesses 

an infinite set of pure strategies, usually being 

multiparametric. These sets, if constituting the compacts, 

predetermine non-cooperative compact games [2], [16], [17], 

which are isomorphic to the two-person non-cooperative game 

on a hyperparallelepiped of the appropriate Euclidean finite-

dimensional space (EFDS). Particularly, single-parametric 

pure strategies predetermine games on rectangles of . The 

simplest case of the hyperparallelepiped is a unit hypercube. 

Thus, for solving infinite two-person non-cooperative games 

with compact players’ action spaces, it is sufficient [2], [18] to 

solve the two-person noncooperative game on a unit 

hypercube of the appropriate dimension. 

II. SOLVING THE TWO-PERSON NON-COOPERATIVE GAMES 

Exact methods of solving finite two-person non-cooperative 

games are based on linear programming or linear inequality 

manipulations, implying algorithms of Lemke – Howson [19], 

[20] or of Vorobyov [21] and Kuhn [22]. Such games can also 

be solved approximately [23]. Infinite games, if there are 

equilibrium strategies for both players, are solved in most 

cases approximately rather than exactly. Approximation of the 

game is a way of obtaining approximate equilibrium strategies 

of its players. Since it is much harder to implement the 

solution with infinite support, after approximation the players’ 

equilibrium strategies have finite supports [5], [24], [25]. 

However, sometimes we cannot even find the solution, not 

mentioning the support finiteness. And just the approximation 

into the bimatrix game stands out the only route to solve. 

Finding the infinite game solution approximately is 

sometimes ambiguous. Thus, one wants to use the theorem 
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about existence of Nash equilibrium mixed strategies in the 

compact game [2] or to find  -equilibrium strategies with finite 

supports, and the other one attempts to convert the game into 

the bimatrix game with applying subsequently a solver for it 

[19], [21], [23], [26]. Obviously that the second way is more 

preferable as once the bimatrix game is suggested then any of 

algorithms for solving it exactly may be applied, whereas 

solving directly the infinite game is not always possible, notably 

for greater dimensions of EFDS. Thus, it is better to 

approximate into the bimatrix game, which is solved much 

effectively rather than checking strategic approximation [24] for 

existence. 

Another advantage of the game approximation through 

converting into the bimatrix game is that there is no universal 

technique for solving infinite two-person non-cooperative 

games [1], [2], [8], [16], [20], [27], [28]. Existence of Nash 

equilibrium solutions in compact games does not mean the 

existence of a technique to find one. However, solvers of 

bimatrix games of huge matrix format take large 

computational resources to get the exact solutions [23], [26]. 

However, more powerful cluster or cloud computers can 

accelerate the computational process even with non-square 

matrices [29]. Moreover, a particular class of bimatrix games 

with square payoff matrices is solved into completely mixed 

Nash equilibrium strategies just with the one statement [30], 

involving the inverse matrices of both players’ payoffs, if they 

are nonsingular, though. 

III. GOAL AND OBJECTIVES OF THE RESEARCH 

In order to solve infinite two-person non-cooperative 

games, being isomorphic to the non-cooperative game on unit 

hypercube of EFDS, a method of the game approximation 

should be developed. For this reason, there are the following 

items to be fulfilled: 

1. To define the players’ payoff functions on unit hypercube 

of the appropriate EFDS. 

2. To sample the players’ payoff functions with specified 

sampling steps along every dimension of the unit hypercube. 

3. To avoid removing distinctive features of the players’ 

payoff functions in the sampling. 

4. To reshape the players’ multidimensional payoff 

matrices, approximating their payoff functions into two-

dimensional matrices. 

5. To suggest conditions of its acceptance for the drawn 

bimatrix game, implying consistency of the player’s 

equilibrium strategy support (ESS) under some form of utility 

equilibrium. 

6. To discuss the acceptability of infinite two-person games 

approximation under possibilities for expanding the stated 

approximation concept. 

IV. SAMPLING THE PLAYERS’ PAYOFF FUNCTIONS VARIOUSLY 

Let the r -th player’s payoff function  ,rK X Y  be defined 

on  1 2M M -dimensional unit hypercube 

   
1 2

1 2

1 21 1

0; 1 0; 1

M M

M M

m m

U U

 

   
   

      
      
   

  (1) 

by 

  and  

  at  , 

where the r -th player’s pure strategy set is 

   for   1, 2r . (2) 

Functions     1 2, , ,K KX Y X Y  are assumed to be 

bounded and measurable on (1). Hence, there is an infinite 

two-person non-cooperative game 

    
1 2 1 2, , , , ,M MU U K KX Y X Y , (3) 

which is isomorphic to any two-person non-cooperative game 

on a nonzero-measure hyperparallelepiped of  with the 

bounded and measurable functions of the players’ payoffs, 

defined on this  1 2M M -dimensional hyperparallelepiped. 

Each of the functions  1 ,K X Y  and  2 ,K X Y  is 

presumed to be differentiable with respect to any of variables 

    1 2

1 2
1 21 1

,
M M

m m
m m

x y
 

. There are also mixed derivatives of 

each of those functions by any combination of variables, 

where every variable is included no more than just once. 

These conditions are applied to requirements below, which 

must be followed to sample the players’ payoff functions. 

Let the function  ,rK X Y  be sampled along 

  1 sign 1 rM r m   -th dimension of hypercube (1) with the 

sampling step determined by the number  r rS m  of intervals 

between the selected points in   1 sign 1 rM r m   -th 

dimension. It is conventional that endpoints of the unit 

segment  0; 1  are included into the sampling necessarily, so 

 1,r rm M  . If we count the sampling 

step  
1

r rS m


    invariable along   1 sign 1 rM r m   -th 

dimension for  1, 2r  then in 
1m -th dimension the first 

player instead of the segment  0; 1  of values of 
1m -th 

component of its pure strategy X  acquires the set of points 
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    
 

 
1 1

1 1

1

1 1
1

0; 1
S m

s

m m
s

D S m x



 

X
  by   

 
 1

1 1

1s

m

s
x

S m


   1 11,m M  . (4) 

Simultaneously, in 
2m -th dimension the second player 

instead of the segment  0; 1  of values of 
2m -th component of 

its pure strategy Y  acquires the set of points 

    
 

 
2 2

2 2

1

2 2
1

0; 1
S m

s

m m
s

D S m y



 

Y
  by   

 
 2

2 2

1s

m

s
y

S m


   2 21,m M  . (5) 

Now the r -th player instead of the infinite set (2) possesses 

the finite set of its pure strategies, included   
1

1

r

r

M

r r

m

S m



  

points of hypercube (2). Consequently, infinite game (3) is 

substituted with the finite one 

         
1 2

1 2

1 2

1 1 2 2 1 2

1 1

, , , , ,

M M

m m

m m

D S m D S m K K

 
 X Y

X Y X Y 

          
1 2

1 2

1 2

1 1 2 2 1 2

1 1

, , , , ,

M M

m m

m m

D S m D S m K K

 
 X Y

X Y X Y  (6) 

by 

   
1

1

1

1 1

1

M

m

m

D S m



 X
X   and    

2

2

2

2 2

1

M

m

m

D S m



 Y
Y , (7) 

defined on the lattice 

     
1 2

1 2

1 2

1 1 2 2

1 1

M M

m m

m m

D S m D S m

 

   
   

    
      
 X Y

 

 
1 2M MU U  . (8) 

However, now at  or  the game (6) 

by (7) still is not bimatrix inasmuch as the players’ payoff 

values  1 ,K X Y  and  2 ,K X Y  by (7) are not arranged as 

ordinary flat matrices. The sampling on hypercube (1) down to 

lattice (8) with (4) and (5) is just the primary and incomplete 

step in converting the infinite game into the bimatrix game. 

Sampling the players’ payoff functions variously due to 

distinct numbers 

    
 1
1, 2

r

r

M

r r m
r

S m




 (9) 

may also help in constructing square bimatrix games. 

V.    REQUIREMENTS TO THE SAMPLING 

It is clear that numbers (9), defining the sampling steps 

   
 

1

1
1, 2

r

r

M

r r
m

r

S m





 
   

 
 (10) 

to get the finite game (6) by (7), shall not be chosen 

incautiously. The sampling with steps (10) must not erase 

specificities of the players’ payoff functions, particularly 

consisting in local extremums and gradient over hypersurfaces 

  
 1, 2

,r r
K


X Y . In sampling, the sampling steps (10) are 

required that  1, 1r rs S m    by 1,r rm M  there would 

be 

  or  

  
1 1 1

1
;

s s

m m mx x x
  

 
  and   

 
2 2 2

1
;

s s

m m my y y
  

 
,   1, 2r . (11) 

Of course, requirements (11) are very formal as they mean 

that any extremum of the player’s payoff function, existing off 

the boundary of the hypercube (1), must be reached at points, 

which have only components 

 
    

  
1 2

1 1 2 2

1 2

1 2

2 2
1 1

,

M M
S m S m

s s

m m
s s

m m

x y
 

 

  
 
  

 

and nothing else. Such requirements can hardly be satisfied 

along a hypercube (1) dimension. They might have been  

met for the artificially retrofitted payoff functions 

  
 1, 2

,r r
K


X Y  before, though. 

If the payoff functions   
 1, 2

,r r
K


X Y  cannot be 

retrofitted to requirements (11) then there are less severe 

requirements to the sampling. Shall the numbers (9) be chosen 

so that  1, 1r rs S m    by 1,r rm M  there would be 

  
1 1 1

1
;

s s

m m mx x x
  

 
  and   

 
2 2 2

1
;

s s

m m my y y
  

 
,   1, 2r . (12) 

Here in (12) the aggregate tolerable unsteadiness (ATU) of 

the players’ payoff functions is denoted by the value 0  , 

being the function of the range value 

 
 

1 2
1, 2

max max max ,
M M

r
r U U

v K
  

 
X Y

X Y  

 
 

 
1 2

1, 2
min min min ,

M M

r
r U U

K
  


X Y

X Y . (13) 
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ATU is preset as a sufficiently small part of the range  

value (13). For instance, ATU may be conventionally preset  

to  or , depending on practical 

argumentations. Nevertheless, the satisfied requirements (12) 

are not the concluding step in converting the infinite game (3) 

into the bimatrix game. We should firstly arrange the finite 

game (6) by (7) into the bimatrix game. Secondly, acceptance 

of the drawn bimatrix game depends on features of its 

solution, approximating a solution of the infinite game (3). 

VI. RESHAPING THE MULTIDIMENSIONAL MATRICES  

INTO TWO-DIMENSIONAL MATRICES 

After having   1
1

r

r

M

r r
m

S m




   -sampled the hypersurface 

 ,rK X Y , the r -th player’s payoff function has become 

 1 2M M -dimensional matrix  

by 

        1 2

1 2
1 1 2 21 1

0 ,
M M

m m
S S m S m

 
  

of the format 

 . (14) 

The matrix  elements 

    0 ,
r

J rp S K X Y   by  
 
1

1

1 1

1m

m

j
x

S m


    

 1 11,m M    and  
 

1 2

2

2 2

1M m

m

j
y

S m

 
   2 21,m M   (15) 

have their indices 

  1 2

1

M M

k k
J j




 ,      

1 sign 1
1, 1

r
r rM r m

j S m
  

     

 1,r rm M    by   1, 2r . (16) 

Finite game (6) by (7) is solved outright as a bimatrix game  
 

if 
1 2 1M M  . For  or  game (6) by 

(7) ought to be arranged into the bimatrix game through 

reshaping  1 2M M -dimensional matrices   1 0SP  and 

  2 0SP  into ordinary two-dimensional matrices. The 

reverse index-to-index reshaping is also needed because the 

bimatrix game solution will be imposed on game (6) by (7). 

Theorem 1.  1 2M M -dimensional matrix  

  

of the format (14) with elements (15) is unambiguously 

reshaped into the ordinary flat matrix 

  (17) 

of the format 

  (18) 

with elements      
1 2

0 0
r r

u u Jg S p S , using indices 

     
0

1

1

1 1

1 1 sign 1

rr

r

r

mM

r r r M m r

m n

u S M n j m



 

 

 
       
 
 

     

 at  0

1

r

i

i

M M



   by   1, 2r . (19) 

This reshaping is reversible. 

Proof. It is obvious that for any set (16) of indices of the 

element 
r

Jp  value (19) is integer and unique. Moreover, 

 and, explicitly,   
1

1, 1

r

r

M

r r r

m

u S m



   by  1, 2r . 

Thus, let the function  ,a b  by 0b   round the fraction 
a

b
 

to the nearest integer towards zero. And let 

   , ,a b a b a b    . 

Then from integer (19) we get indices in set (16): 

         
0

, 1 1 1 sign , 1M r r r r r r r rj u S M S M u S M            at  0

1

r

i

i

M M



   and   

 

    

  
 

0 0

1

0

1

1

1 1

1

1 1 1

1 , 1

1 1

r

r r

m n

r M r r M n

n n

M m r r rm

r r

n

u j S M n j

j S M m

S M n





 





  
        

  
      

 
   

 
 

 


  1, 1r rm M   . (20) 
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Therefore statements (19) and (20) define the reversible 

map of any set (16) into the set  1 2,u u . The theorem has 

been proven. 

Theorem 1 allows considering finite game (6) by (7) as a 

bimatrix one. Therefore, let   0
ruz S  be the r -th player’s 

pure strategy, corresponding to its pure strategy in initial 

infinite game (3) with components in (15), whose indices are 

included into set (16). Hence, the first 
1M  indices  

1

1
1 1

M

m
m

j


  

 

in set (16) correspond to components of the first player’s pure 

strategy with its number 
1u , and the last 

2M  indices 

 
2

1 2
2 1

M

M m
m

j 


 in set (16) correspond to components of the 

second player’s pure strategy with its number 
2u . 

VII. INFINITE TWO-PERSON NON-COOPERATIVE GAME 

APPROXIMATION 

With the help of Theorem 1, finite game (6) by (7) is 

mapped into the bimatrix one 

      
 

     1 2

1
1, 2

0 : 1, 1 , 0 , 0

r

r

M

u r r

n
r

z S u S n S S




 
 

  
  

 G G  (21) 

of the format (18) and inversely. Game (21), approximating 

game (3), has many solutions in forms of utility or equity 

equilibrium – Nash equilibrium, strong Nash equilibrium [7], 

[23], [31], [32], Pareto equilibrium [2], [6], [33], [34], 

Mertens-stable equilibrium [35], trembling hand perfect 

equilibrium [36], perfect Bayesian equilibrium [9], [37], [38], 

Markov perfect equilibrium [39], [40] and many others. For 

further action, let us denote by 

        
 

*

1
1, 2

0 : 1, 1

r

r

M

r u r r

n
r

q z S u S n




 
 

  
  

  (22) 

one of those solution types, where    * 0
rr uq z S  is 

probability of applying the pure strategy   0
ruz S  by the  

r -th player, letting at   
1

1, 1

rM

r r

n

u S n



   reach the 

determinate equilibrium. It might seem that game (3) had been 

approximately solved using solution (22) of bimatrix game 

(21), but what would be conditions of acceptance of such an 

approximation? Naturally, the r -th player’s payoff in 

equilibrium situation (22) 

             
  1 2

1 2 1 2

1 2

, 0 , 0

* *

1 2

1 1

0 0 0 0

M M

r

r u u u u

u u

v S g S q z S q z S

 

 

      

 
                      

          

* * * *
1 2 1 2

* * * *
1 1 2 2

* *

1 20 0 0 0

0 0 0 0

0 0 0
r

u S u S u S u S

u S Q S u S Q S

g S q z S q z S

 

 
   
 
 

  ,   1, 2r , (23) 

where 

    
1

, 0 1

rM

r r

n

M S n



   , 

                       *

* * * * *

0
0 0 1, , 0 : 0 0, 0 0 0

rr
r r r r r u r ru S

Q S u S M q z S q z S u Q S       , 

is not a factor of the acceptance, because the players’ genuine 

payoffs in game (3), taken by the situation whose 

approximation is (22), may be unknown. Henceforward,  

the infinite two-person non-cooperative game approximation 

(21) with its solution (22) should be studied whether the r -th 

player’s ESS (regarding the corresponding probabilities) 

 
       

     
*

* *

*

0
0 0

0
r

r r

r u S
u S Q S

q z S


 (24) 

is consistent to other supports under 

        1 2

1 2
1 1 2 21 1

,
M M

m m
S S m S m

 
         

 by  . (25) 

The r -th player’s payoff (23) shall be subjoined, too. 

VIII. CONSISTENCY OF THE PLAYER’S ESS 

Apparently, there is nothing except two sets (24) for 

 1, 2r  generating the payoffs    
 1, 2

0r
r

v S


 by (23) to 

pretend to the game approximation acceptance. The question 

is, what the approximation would be by a lesser sampling step. 
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To be stricter, it is rather “should” than “would”, though: the 

accepted approximation must have properties that will not be 

confused under more scrupulous approximations. 

For every specified sampling step, being determined with 

integers (9), its minimal neighbourhood can be considered. 

Due to denotation (25), this neighbourhood is determined  

with sets     1 , 1S S   of integers. And for the first  

priority, the game approximation is acceptable if the  
 

players’ payoffs in the bimatrix game change no more by 

decreasing minimally the sampling steps along every 

dimension of unit hypercube (1) than if the sampling steps 

were increased minimally: 

 

 ,   1, 2r , (26) 

where 

             
  1 2

1 2 1 2

1 2

, ,

* *

1 2

1 1

M M

r

r u u u u

u u

v S g S q z S q z S

   

 

          

                      
          

* * * *
1 2 1 2

* * * *
1 1 2 2

* *

1 2

r

u S u S u S u S

u S Q S u S Q S

g S q z S q z S
   

     

 
      
 
 

  , 

    
1

, 1

rM

r r

n

M S n



      , 

                       *

* * * * *1, , : 0, 0
rr

r r r r r u r ru S
Q S u S M q z S q z S u Q S


             . 

Furthermore, with the minimal decrement of the sampling 

steps the cardinality of ESS (24) shall not decrease: 

   by   1, 2r . (27) 

Notwithstanding exclusive importance of (26) and (27) for 

the game approximation acceptance, ESS (24) may change 

heavily in comparison with 

 
       

     
*

* *

*

1
1 1

1
r

r r

r u S
u S Q S

q z S


 (28) 

or with (28) and 

 
       

     
*

* *

*

1
1 1

1
r

r r

r u S
u S Q S

q z S


  

  (29) 

jointly. Thus, acceptance of game (21) solution as an 

approximate solution of game (3) necessitates a sufficient 

closeness of the player’s ESS, being obtained within minimal 

neighbourhood of the sampling steps. For the closeness 

consideration we need to regard a piecewise linear 

hypersurface   , 0r rh u S  whose vertices are in points 

 
 

 
   1 sign 1 *

1

1
, 0

r

r

r

r

M

M r m

r u

r r m

j
q z S

S m

  



    
  
    

 (30) 

in  for  1, 2r . Additionally we will mark out the 

nonzero vertices among (30) as points of hypercube 
rMU , 

matching the set   * 0rQ S . For this reason, having unrolled 

every index      * *0 0r ru S Q S  by (20) back to indices’ set 

   
* 0

1

r
r

r

r

M
u S

m
m

j


, the index      * *

1 10 0u S Q S  is matched to 

the point 

  

  
  

 

*
1

*
1 1

*
1 11

1

1

0

0

0
1 1 1

1

1
u S

u S m

m Mu S
M

M

j
x U

S m



      
    

 

X   

     * *

1 10 0u S Q S  , 

and the index      * *

2 20 0u S Q S  is matched to the point 

  

  
  

 

*
2

*
2 1 2

*
2 22

2

2

0

0

0
1 2 2

1

1
u S

u S M m

m Mu S
M

M

j
y U

S m







      
    

 

Y   

     * *

2 20 0u S Q S  . 

Furthermore, let the points 
   

     
*

* *1
1 1

0
0 0

u S
u S Q S

X  and 

   
     

*
* *2
2 2

0
0 0

u S
u S Q S

Y  be sorted into sets 

   
     

  

 
     

*
1

1

*
* *1
1 1

* *1
1 1

0

0
0 0

1 1
1

0 0

1
u S

m

u S
u S Q S

M
u S Q S

j

S m




      
    

X  

   
     

*
* *1
1 1

0
0 0

u S
u S Q S

 X  
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and 

   
     

  

 
     

*
2

1 2

*
* *2
2 2

* *2
2 2

0

0
0 0

2 2
1

0 0

1
u S

M m

u S
u S Q S

M
u S Q S

j

S m








      
    

Y  

   
     

*
* *2
2 2

0
0 0

u S
u S Q S

 Y  

that the value 

     
     

     

 

* **

** *

** *

2
0 0

0 0
1

0 0

min

r rr

r r

r r

r
r r

u S u SM

m m

u S Q S
r rm

u S u S

j j

S m




 
 
 
 

  

is reached at 

  
     
     

      
*** *

*** *

** *** *

0 0

0 0

0 arg min 0 0
r r

r r

r r r
u S Q S

u S u S

u S u S u S




     

           * * *0 0 \ max 0r r ru S Q S Q S   (31) 

by  1, 2r . Thus, the game approximation is acceptable if 

the players’ ESS piecewise linear hypersurfaces change no 

more by decreasing minimally the sampling steps along every 

dimension of the unit hypercube (1) than if the sampling steps 

were increased minimally: 

 

  (32) 

and 

 

   in   (33) 

by  1, 2r . With the minimal decrement of the sampling 

steps into  1S  there should not be decrement in density of 

points with nonzero probabilities of their selection on the 

hypercube (2): 

  (34) 

at 

  
     
     

      
*** *

*** *

** *** *

1 1

1 1

1 arg min 1 1
r r

r r

r r r
u S Q S

u S u S

u S u S u S




     

           * * *1 1 \ max 1r r ru S Q S Q S   (35) 

and (31). 

Definition 1. Solution (22) of game (21) is called weakly 

consistent under set  0S  for being game (3) approximate 

solution if there are true inequalities (26), (27), and (32)–(34) 

at (35), (31) by  1, 2r . If these inequalities are true for a 

player’s ESS then this player’s ESS or the strategy itself is 

called weakly consistent under set  0S . 

This is a definition of the most primitive consistency for the 

approximate solution of game (3). It could be strengthened in 

(27) and (34) with the part of  1S  , which would make  

the cardinality of every player’s ESS and their densities be 

non-decreasing within minimal neighbourhood of the 

sampling steps. 

Definition 2. Weakly consistent under set  0S  solution 

(22) of game (21) is called consistent for being game (3) 

approximate solution if 

 , (36) 

  (37) 

at (31) and 

   
     
     

      
*** *

*** *

** *** *

1 1

1 1

1 arg min 1 1
r r

r r

r r r
u S Q S

u S u S

u S u S u S
  

  

      (38) 

by  1, 2r . If these inequalities are true for a player’s 

weakly consistent ESS then this player’s ESS or the strategy 

itself is called consistent under set  0S . 
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Clearly, controlling  0 -consistencyS  requires more 

computational resources than controlling weak 

 0 -consistency.S  Therefore, it is senseless to check whether 

 

ESS is consistent or not, if a researcher is not sure about its 

weakly  0S -consistency. 

Theorem 2. If in the game 

     
 

     1 2

1
1, 2

1 : 1, 2 , 1 , 1

r

r

M

u r r

n
r

z S u S n S S




 
 

  
  

 G G  (39) 

there is a completely mixed Nash equilibrium situation, then 

for checking the weak  0 -consistencyS  of the Nash 

equilibrium situation in game (21) it is sufficient to check 

inequalities (26), (32), (33). 

Proof. Inasmuch as the Nash equilibrium situation is 

completely mixed then 

 

, 

that gives us (27). At the same time, density of all the points of 

lattices 

  
1

1

1

1 1

1

1

M

m

m

D S m



 X
 

and 

  
2

2

2

2 2

1

1

M

m

m

D S m



 Y
 

is greater than density of all the points of sparser lattices 

  
1

1

1

1 1

1

M

m

m

D S m


 X

 

and 

  
2

2

2

2 2

1

M

m

m

D S m


 Y

, 

that confirms (34) at (31) and (35). The theorem has been 

proved. 

Remarkably that the completely mixed Nash equilibrium 

situation in game (39) is unique by 

      
1 2

1 2

1 1 2 2

1 1

2 2

M M

m m

S m S m N

 

      (40) 

and   1det 1 0S G ,   2det 1 0S G , where [30] 

   
  

1
T

1
1

1
r

N r N

v S
S




   I G I
  by   1, 2r , (41) 

      
1

* *

1 1
1

1 1u
N

S q z S


  
 

Q  

      
1

2 21 1Nv S S


     I G , (42) 

      
2

* *

2 2
1

1 1u
N

S q z S


  
 

Q  

       
T

1
T

1 11 1 Nv S S


    G I , (43) 

that speeds up checking the weak  0S -consistency of the 

Nash equilibrium situation. Consistent solution (22) is 

nonetheless more confident for game (3) approximation than 

weak consistent solution (22). Weak  0S -consistent solution 

(22) is at least an argument for its acceptance in game (3) 

approximation. 

IX. DISCUSSING THE ACCEPTABILITY  

OF INFINITE TWO-PERSON GAME APPROXIMATION 

Finding Nash equilibria in an infinite game is not 

commonly computable. Therefore, any approach to solve such 

games is considered a valuable contribution to the game 

theory and its practical applications. The solution will be 

approximate, but the rate of approximateness is adjustable 

owing to sampling. Consistency of the solution and its 

conditions are criteria of approximability. If game (3) is 

approximable then it is acceptable. 

Note that the limit 

   lim rv S


  (44) 

existence is still non-asserted. In general, it has not been 

proven yet that (weak) consistency of the r -th player’s ESS is 

necessarily followed by that limit 

   lim ,r rh u S


 . (45) 

Even though limit (45) exists, we do not know how close it 

is (in sense of metric in the corresponding functional space) to 

the r -th player’s genuine equilibrium strategy in game (3). 
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Similarly, if there is limit (44) there is no certainty about that 

this limit is the r -th player’s genuine payoff in game (3), 

taken by the suggested equilibrium situation whose 

approximation is (22). Moreover, any consistency of the 

player’s ESS is incomprehensible whether it involves the other 

player’s ESS into any consistency. Nevertheless, these lacks 

do not depreciate that the defined consistency helps reveal 

natural properties of infinite two-person game approximation. 

These properties include bounded variation of payoff, of ESS 

cardinality and its density, functional closeness of ESS by (32) 

and (33). 

In fact, the case when 

      
1 2

1 2

1 1 2 2

1 1

1 1

M M

m m

S m S m

 

     (46) 

and   1det 0 0S G ,   2det 0 0S G , is very favourable 

for solving bimatrix game (21) in one statement [30]. In this 

case, numbers (9) should be adjusted at (46). A version of how 

to do that is taking 

 2 2 0S m S   2 21,m M   

and 

 1 1 0S m S   1 11, 1m M      

at      2 1 1

1 1 0 1 1
M M

S M S
 

    

for 
1 2M M . 

Eventually, the stated consistency concept is possible to 

expand on any form of equilibrium of utility or equity 

equilibrium. However, the consistency result of these forms 

will be different. If solution (22) appears non-consistent even 

weakly, then numbers (9) of intervals between the selected 

points on the hypercube (1) should be increased. Note, only 

one or a few of those numbers (not all) could be increased, and 

that might make the solution consistent. This question needs a 

separate investigation, as well as the question of ability of the 

consistency to become disappeared after increments within a 

subset of numbers (9). 

X. CONCLUSION 

The proposed concept of the solution consistency is a 

necessary condition to regard acceptability of an infinite two-

person game approximation. The sufficiency is connected with 

unproved limits (44) and (45). First of all, it is necessary to 

check the tolerable closeness of ESS for both players when 

numbers (9) are changed minimally. Subsequently, the 

consistent solution certifies the game approximation 

acceptability, enabling one to solve even games without any 

equilibrium situations [2], [30], [41], [42], including isomorphic 

ones to the non-cooperative game on unit hypercube of EFDS. 

The suggested sampling for solving approximately the 

infinite two-person game (3) on unit hypercube (1) is fulfilled 

in three stages. Primarily, payoff functions   
 1, 2

,r r
K


X Y  

are sampled by sets (9) according to requirements (11) or (12). 

Then, having obtained sets of points (4) and (5),  1 2M M –

dimensional matrices    
 1, 2

0r
r

S


P  with their elements 

(15) and indices (16) are reshaped into ordinary flat matrices 

(17) of format (18), using new indices (19). At the third stage, 

game (21) solution (22) is checked out for its weak 

consistency by inequalities (26), (27), and (32)–(34) at (35) 

and (31) by  1, 2r . If it is necessary, weakly consistent 

solution (22) is checked out for its consistency by inequalities 

(36) and (37) at (31) and (38) by  1, 2r . 

An unclosed item of solution consistency is a possibility to 

determine (weak) consistency of the player’s ESS when the 

other player’s ESS consistency (maybe, weak) has been 

already determined. And shall one player use its (weakly) 

consistent ESS while the other player’s ESS is not consistent 

(or just weakly consistent)? These questions motivate further 

contribution to sampling and approximating the infinite two-

person non-cooperative games in EFDS. Furthermore, 

generalisation in sampling (open and semi-open) hypercubes 

1MU  and 
2MU  non-uniformly is going to be stated. The 

furthermost vista is to state “wider” consistency concept, 

entailing sets  for . However, it will 

be anyway impossible to sweep the players’ ESS in a very 

wide range of numbers (9). That is why the stated study has 

been restricted to 1L  . 
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