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ABSTRACT 

The present study is devoted to the problem of damage localization by means of data classification. Commercial 

finite elements program ANSYS is used to make a model of a cantilevered composite plate equipped with 11 strain 

sensors. The plate is divided into 18 zones and for data classification purposes each of these zones houses 9 points 

at which a point mass with a magnitude of 5 % and 10 % fraction of plate mass is applied. At each of these points 

a numerical modal analysis is performed in which first 4 natural frequencies and 11 strain reading is extracted for 

each point. Point mass, similar to damage, causes local changes of stiffness. The data of strain for every point is 

an input for classification procedure involving 2 methods – k – nearest neighbors and decision trees. Classification 

model is trained and optimized by fine-tuning the key parameters for both algorithms. Finally, 2 new query points 

are simulated (by applying the point mass) and subjected to classification in terms of assigning a label of one of 

18 zones of the plate, thus localizing these points in terms of one of 18 zones. Damage localization results are 

compared for both algorithms and are in good agreement with the actual positions of application of point load.  
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1. INTRODUCTION 

 

Data classification algorithms, such as decision trees, k-nearest neighbors, Naïve Bayes, support vector machines 

and other hold a potential to be applied in damage detection methodologies based on relevant feature extraction 

from vibration signals of monitored structures. Decision trees along with the k-nearest neighbor methods are one 

of the most widely used classification techniques. Numerous examples of successful fault detection of rotating 

members in automotive and electrical engineering industry can be found in literature [1-5]. Decision tree 

classification was performed to extract the statistical features of vibration signals of hydraulic brake system of a 

commercial automobile [1], while in [3] the test object was a mono block centrifugal pump. In [2] the vibration 

signals were collected from machining tools and subjected to statistical feature extraction using principle 

component analysis and decision trees for service life prediction. k-nearest neighbors were applied to vibration 

signals of bearings in electric traction motors to detect and classify the type of degradation [4] and the problem of 

fault detection in induction motors employing a pattern recognition of current and voltage signatures by k-nearest 

neighbors was tackled in [5].  

Decision trees have been widely used in damage prediction for civil engineering applications, such as reinforced 

concrete buildings [6] exposed to seismic risk where the statistical damage classification is necessary to discern 

the buildings in need for retrofitting [7]. Mechbal et al. in [8] proposed to use multiclass support vector machines 

in conjunction with decision tree technique to obtain posterior probabilities of existence, as well as a location of 

damage in composite plate. Artificial damage of different severities was simulated and applied in different 

positions of the plate. The proposed method proved to successfully locate the damage in most cases. 

The present study, inspired by the results in [8] strives to employ a damage classification technique to eventually 

locate the damage in a composite plate. A numerical model of a cantilevered plate is created. Plate is divided into 

18 zones which are input as class labels for damage localization based on data classification. In each of these zones 

9 points are considered where a point mass of 5 % and 10 % fraction of plate’s mass is applied. Plate is equipped 
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with 11 strain sensors and for every loading event the strain is recorded. Modal analysis is conducted and 

mechanical strain is collected from all sensors along with the first 4 natural frequencies. The collected strain data 

serves as a training database for models based on k-nearest neighbors and decision trees. Eventually, damage is 

simulated in 2 unknown positions and is passed to trained classification models to find its location in terms of 

zones along with respective localization probabilities for every zone.     

 

 

2. DAMAGE LOCALIZATION METHODS 

 

 

2.1. Numerical model 

A cantilevered carbon fiber reinforced composite plate 360×100 mm is considered in this study. The laminate lay-

up for the plate is [90/90/0/0/45/45/-45/-45/-45/45/0/90]s. The ply thickness t = 0.1 mm, thus thickness of the plate 

is 2.4 mm. The elastic material properties are taken as follows: 𝐸𝑥 = 110 𝐺𝑃𝑎, 𝐸𝑦 = 7 𝐺𝑃𝑎, 𝐺𝑥𝑦 = 𝐺𝑦𝑧 =

4.5 𝐺𝑃𝑎, 𝜈𝑥𝑦 = 0.33, 𝜌 = 1560 𝑘𝑔 𝑚3⁄ . The plate is equipped with 11 strain sensors with the layout as shown in 

Figure 1. Location and orientation angle along X axis of the sensors are given in Table 1. It is assumed that sensors 

are embedded between layers 2 and 3. 

 

 
Table 1 – Location and orientation of strain sensors. 

 

Sensor No. 1 2 3 4 5 6 7 8 9 10 11 

X, mm 100 100 100 180 180 240 270 270 310 310 350 

Y, mm 5 50 95 5 95 50 5 95 5 95 50 

Angle, 0 15 0 -15 0 0 0 -45 45 0 0 90 

 

Numerical modal analysis is carried out by using the commercial FE software ANSYS. The finite element model 

of the plate consists of 8-node shear-deformable shell elements. The plate is divided into 72×20 elements and the 

clamped boundary conditions are applied at one of the edges of the plate. Damage is simulated as a pseudo defect 

– an artificial mass with 5 % and 10 % fractions of plate’s mass is placed at selected nodes of the plate, thus giving 

rise to local stiffness changes. Additional mass is applied by using MASS21 finite element. The modal analysis 

with block Lanczos mode-extraction method is applied to determine eigenfrequencies and eigenmodes. 

 

 
 

Figure 1 – Scheme of a cantilevered composite plate equipped with sensors (all dimensions in mm). 
 

 

Damage is simulated as a pseudo defect – an artificial mass with 5 % and 10 % fractions of plate’s mass is placed 

at selected nodes of the plate, thus giving rise to local stiffness changes. A numerical modal analysis is conducted 

and first 4 natural frequencies along with strain values from all sensors are extracted. A partition of plate into 18 

zones, according to Figure 1 is applied – these zones serve as class labels for data classification procedure. 9 points 

are chosen to represent each zone in order to build a family of data corresponding to each class label for 

classification purposes. For each zone of the plate the artificial mass is placed at each of these 9 points and modal 

response is calculated, thus yielding 18 x 9 = 162 data sets, each comprising of 11 strain values and 4 natural 

frequencies. Thus a matrix of 162 modal response points x 11 strain values is used as predictor values in this study. 

 



2.2. Data mining and training 

Generally, the whole dataset can be divided into 3 parts [9]: 

 Training data which is used to build classifiers; 

 Validation data to optimize parameters of classifier; 

 Testing data which was not used in the formation of the classifier; it is used to calculate the error rate of the 

final, optimized model to predict the performance of the classifier on a new data.  

In general, the larger the training sample, the better the classifier, although the returns begin to decrease once a 

certain amount of data is exceeded. Also, the larger the test sample, the more accurate the error estimate. 

 

 

2.2.1. k-nearest neighbors algorithm 

The nearest-neighbor method was first used by statisticians in early 1950’s. In 1960’s it was adopted as a 

classification scheme and since then has been widely used in pattern recognition [9]. k-nearest-neighbor algorithm 

is a form of learning where training instances are stored and each new instance is tested on resemblance to the 

existing instances through the means of a distance metric. This new instance is labelled as one of the classes of 

instances based on the closest distance to an instance (nearest neighbor) of the same class. If more than one nearest 

neighbor is used, then the majority class of the closest k neighbors is assigned to the new instance [9].  

 

 

2.2.2. Decision trees algorithm 

Nodes in a decision tree involve testing a particular attribute, usually this attribute is compared with a constant. 

Leaf nodes give a classification that applies to all instances that reach the leaf. To classify an unknown instance, 

it is routed down the tree according to the values of the attributes tested in successive nodes and when a leaf is 

reached the instance is classified according to the class of a leaf.  

If the attribute that is tested at the node is numeric, this test determines whether its values is greater or less than 

some constant, giving a 2-way split (binary trees).  

Each leave contains a numeric value that is the average of all the training set values to which the leaf applies. 

Decision trees that predict numeric quantities are called regression trees [9]. 

 

 

2.2.3. Validation and performance metrics 

The parameters of a classifier are optimized through validation of a classification model. Several validation 

techniques are available and cross-validation is used in this work. In cross-validation one decides on a fixed 

number of folds to partition the data in. For K number of folds, the data is split into K approximately equal partitions 

and each in turn is used for testing while the remainder is used for training. The whole procedure is repeated K 

times so that every instance has been used exactly once for testing. It is K-fold cross-validation [9]. The standard 

approach is to apply 10 folds, although it is debatable whether this number fits all cases. In present study the 

selection of number of folds for K-fold cross-validation is based on error estimates as explained in Section 3.  

In this study, various analyses are performed in order to improve the classification accuracy of classifiers. Namely, 

two accuracy metrics are considered – resubstitution loss which is a fraction of misclassifications over all set of 

instances on the training data from the predictors of classification model and cross-validation loss which is an 

average loss of each cross-validation model when predicting on data that is not used in training [10]. Resubstitution 

loss is calculated by resubstituting the training instances into a classifier that was constructed from them [9].  

There are four different outcomes of classification [9]: 

 true positives (TP) – data is correctly classified as positive; 

 true negatives (TN) – data is correctly classified as negative; 

 false positives (FP) – outcome is incorrectly classified as positive when it is actually negative; 

 false negatives (FN) - outcome is incorrectly classified as negative when it is actually positive; 

TP and FP are correct classifications, while classifications FP and FN are incorrect.  

Overall success rate (SR) is computed as 

 

𝑆𝑅 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                                                                                                                                                  (1) 

 

And error rate is equal to 1- success rate. 

In multiclass prediction the result in a test set is displayed as a 2D confusion matrix with a row and column for 

each class. Each matrix element shows the number of test samples for which the actual class is the row and 

predicted class is the column. Good results correspond to large numbers down the main diagonal and, ideally zero, 

off-diagonal elements [9]. 



ROC (receiver operating characteristics) curves are used to characterize the trade-off between hit rate and false-

alarm rate. They plot the TP rate tp on vertical axis vs FP rate fp on horizontal axis, all expressed in %. ROC curves 

depict the performance of a classifier. The area under the ROC curve (AUC) represents the probability that the 

classifier ranks a randomly chosen positive instance above a randomly chosen negative one. The closer AUC value 

is to 1, the better the model [9]. 

 

𝑡𝑝 =
𝑇𝑃 × 100%

𝑇𝑃 + 𝐹𝑁
, 𝑓𝑝 =

𝐹𝑃 × 100%

𝐹𝑃 + 𝑇𝑁
                                                                                                                         (2) 

 

Specific parameters for each of methods have to be considered. For example: 

 resubstitution loss is influenced by number of nearest neighbors and type of distance metric, which is used to 

calculate a distance between points in feature space and a point whose class is yet to be determined for k-NN 

method and by the number of maximum node splits for decision tree method; 

 cross-validation loss is affected by number of data partitioning folds for every classification method. 

Optimization of these parameters is imperative for successful classification of data.  

Damage classification procedure is summarized in block diagram in Figure 2. As a point mass with severities of 5 

% and 10 % of plate mass is applied in each of 162 points, the strain data from 11 sensors is collected and passed 

to the classification scheme. In classification procedure, a matrix consisting of 11 columns of predictor values 

(strain signals), each corresponding to 162 rows of class labels (zone points on the plate) is considered. 9 points 

are considered for every zones in order to gather more data for every zone, thus it is easier for a classifier to 

separate the different zones from one another. A classification model based on k-nearest neighbors (k-NN) and 

decision trees is built with some preliminary parameter values. These models are later optimized by minimizing 

the resubstitution and cross-validation errors through fine-tuning the parameters (number of nearest neighbors k 

and type of distance metric for k-NN and tree depth for decision trees) and the number of cross-validation folds 

for both methods. Once the optimization of models is complete, their performance is evaluated through 

computation of ROC curves and confusion matrices. Finally, the localization of damage is achieved by simulation 

of two new data points through the addition of point load of 5 % and 10 % fraction of plate mass and passed to the 

trained classifiers in order to assign them a class label – one of 18 zones of the plate in order for this damage to be 

localized.  

 

• Input strain values for each subzone 
--------------------------------------------------------- 

→ • 162 subzones × 11 strain sensors 

-------------------------------------------- 

• Build a classification model 
 

 

--------------------------------------------------------- 

→ 

→ 

 

• k-NN (define k and distance) 

• decision trees (define max number 

of splits) 

--------------------------------------------- 

• Calculate resubstitution loss 
 

 

 

--------------------------------------------------------- 

→ 

 

→ 

 

• k-NN (update k and distance to 

yield min) 

• decision trees (update max number 

of splits to yield min) 

--------------------------------------------- 

• Cross-validate the model 
 

--------------------------------------------------------- 

→ • k-NN and decision trees (update K 

to yield min cross-validation error) 

--------------------------------------------- 

• Make prediction for future data 
 

 

--------------------------------------------------------- 

→ 
 

→ 

• Compute confusion matrix and 

ROC curve 

• Estimate posterior probabilities 

--------------------------------------------- 

• Classify new unknown data in terms of 

affiliation to any of 18 zones 
--------------------------------------------------------- 

→ 

→ 

• Perform k-NN search 

• Build a decision tree 

---------------------------------------------- 

Make a decision regarding location of damage based on majority voting for 5 % 

and 10 % damage severities 
------------------------------------------------------------------------------------------------------- ---- 

 
Figure 2 – Block scheme of the damage localization based on data classification algorithms. 

 

 

 

 



3. RESULTS 
 

During the modal analysis procedure, 4 natural frequencies of the cantilevered composite plate are computed for 

all 162 mass application points on the plate. A spatial frequency distribution is calculated and for the 1st frequency 

is shown in Figure 3. The statistical measures for all frequencies are shown in Table 2. As expected, the lowest 

frequency variation is observed at the clamped end of the plate due to restriction of movement.  

 

        
 

Figure 3 – Spatial distribution of 1st resonant frequency values for different damage severities. Left: 5 %, right: 10 %. 

 

 
Table 2 – Statistical measures of spatially distributed resonant frequencies for different damage severities. 

 

 5 % mass 10 % mass 

Frequencies 1st 2nd 3rd 4th 1st 2nd 3rd 4th 

Maximum (Hz) 15.84 96.55 100.16 276.79 15.84 96.55 100.16 276.78 

Minimum (Hz) 14.56 86.03 96.55 254.90 13.54 79.99 96.55 237.08 

Average (Hz) 15.49 94.01 98.95 270.37 15.18 91.27 98.76 264.69 

Standard deviation (Hz) 0.40 2.33 1.30 5.40 0.73 4.04 1.36 10.00 

Coefficient of variation (%) 2.58 2.48 1.31 2.00 4.80 4.43 1.38 3.78 

 

 

3.1. Minimization of classification error 

The success of data classification heavily relies on selection of optimum parameter values for each classification 

scheme. Misclassification of data is indicated by resubstitution and cross-validation error, each of which are 

affected by definite parameters of classifiers. 

 

 

3.1.1. Resubstitution error 

For k-NN algorithm these parameters include the number of nearest neighbors (k) and the type of distance metric. 

Generally, the standard Euclidean distance is used which, however assumes that the attributes of instances are 

equally important [9]. In present study, however, Chebychev distance metric is adopted as it gives the smallest 

resubstitution error. Chebychev distance 𝑑 between vectors 𝑥𝑠 and 𝑦𝑡  is defined as follows [11]: 

 

𝑑𝑠𝑡 = 𝑚𝑎𝑥𝑗{|𝑥𝑠𝑗 − 𝑦𝑡𝑗|}             (3) 

 

It is found that the optimum number k for nearest neighbors in our case should be 3 for both severities of damage 

as it yields no resubstitution error. The key parameter for data classification with decision trees is tree depth which 

is characterized by number of node splits. Figure 4 shows the resubstitution error with respect to maximum number 

of node splits. IT is seen, that this error decreases with the increasing complexity of the tree, reaching minimum 

at 20 nodes and giving an error of 1.23 % for both severities of damage. 

 

 



 
 

Figure 4 – Resubstitution loss vs maximum number of leaf splits for 10 % damage severity.  

 

 

3.1.2. Cross-validation error 

In this study, K-fold cross-validation scheme is adopted to validate the classification model. In order to select the 

appropriate number of folds (K), it is decided not to rely on the classical approach for K = 10 but instead perform 

an analysis of how the variation of K influences the cross-validation error. These results for both damage severities 

(5 % and 10 %) are shown in Figure 5. The values for cross-validation error are calculated for discrete values of 

K as integers obtained from division of total number of features (162) by integer values. Therefore, K is assigned 

the values of 2, 3, 6, 9, 18, 27, 54, 81 and 162. The minimum possible number of folds is 2, as at least 1 fold must 

be reserved for testing the data. As it can be seen, this error drops significantly with increasing number of 

partitioning folds and the minimum error of cross-validation for k-NN algorithm 0.62 % corresponds to number 

of folds K = 9 for both severities of damage. Thus 9 folds are selected for optimization of k-NN model, while K = 

27 folds are selected for decision tree scheme for 5 % and 10 % damage severities, leading to cross-validation 

error of 16.67 % and 15.43 %, respectively.  

 

                     
 

Figure 5 – K-fold loss vs number of K-folds. Left: k-NN, right: decision trees. 

 

 

All information regarding error assessment for both algorithms is shown in Table 3 and Table 4. 

 

 

 

 



Table 3 – Loss assessment for k-NN algorithm. 

 

Damage severity 10 % 5 % 

Number of K-folds 9 9 

K-fold loss (%) 0.62 0.62 

k 3 3 

Resubstitution loss (%) 0 0 

 
Table 4 – Loss assessment for decision tree algorithm. 

 

Damage severity 10 % 5 % 

Number of K-folds 27 27 

K-fold loss (%) 15.43 16.67 

Maximum number of splits 20 20 

Resubstitution loss (%) 1.23 1.23 

 

 

3.2. Evaluation of classification performance 

In this study, two tools are used to measure the quality of classification: 

 confusion matrices; 

 ROC curves. 

 

 

3.2.1. Confusion matrices 

In our case, confusion matrices consist of 18x18 elements (real 18 zones of the plate x predicted 18 zones of the 

plate). For a match between each pair of classes a maximum value of 9 can be reached, meaning that all 9 mass 

application points are predicted correctly for each of 18 zones of the plate. A perfect classification is achieved 

using k-NN algorithm – for both damage severities predicted class is completely matched with a true class for both 

severities of damage. As for decision trees, a slight misclassification is attributed to classes no. 2 and 4 where 1 of 

9 subzones is classified as belonging to class (zone) no. 1, when it is actually no. 2 and 1 of 9 subzones is attributed 

to class no. 3, when it is actually no. 4. These results are depicted in Figure 6 for both classification algorithms for 

both damage severities. 

 

 

3.2.2. ROC curves 

ROC curves are computed for each of 18 classes (zones of the plate). Also, the average values for Area Under 

Curve (AUC) is given, accounting for all 18 classes. AUC is a useful metric of classifier performance as it is 

independent of the decision criterion selected and prior probabilities and it does not depend on the imbalance of 

the training set [12]. As one can see in Figure 7, average AUC is equal to 1 for k-NN based classification, indicating 

a perfect classification. Whereas for decision trees this value is about 0.9995 for both severities of damage. This 

fact is confirmed by analysis of confusion matrices; AUC values for all classes are 1, except for classes no. 1, 2, 3 

and 4. For these classes AUC = 0.9978, suggesting only a very slight misclassification.  

 

                     
 



                     
 

Figure 6 – Confusion matrices for k-NN and decision tree algorithms. Left: 5 % damage, right: 10 % damage. 

 

 

                     
 

                     
 

Figure 7 – ROC curves for k-NN algorithm. Left: 10 % damage, right: 5 % damage. 

 

 

3.3.  Damage localization 

The presents study is focused on developing a methodology of damage localization based on data classification. 

After the model of classification is trained, validated and optimized, new data is assigned to belong one of the 

class labels (one of 18 zones of the composite plate). For this purpose, the damage is simulated by the application 

of artificial point mass at 2 points of unknown coordinates (in the range of plate dimensions) and this information 



is passed to already trained k-NN and decision tree models. The coordinates of these points are shown in Table 5 

for both damage cases. 

 

 
Table 5 – Coordinates of new points subjected to classification for damage localization. 

 

Damage severity 10 % Damage severity 5 % 

X1 0.34 Y1 0.005 X1 0.13 Y1 0.035 

X2 0.2 Y2 0.05 X2 0.32 Y2 0.07 

 

 

3.3.1. Localization with k-NN 

k- nearest neighbor search is performed, involving the following steps: 

 selection of predictor pairs that yields the best separation of class groups – strain data of sensor 3 with respect 

to sensor 2 is selected to build scatter plots, so that the 18 classes (zones of the plate) are well separated with 

9 points (subzones in each zone) for each class; 

 the query points from Table 5 are plotted in this domain of feature space; 

 query points are surrounded by a circle denoting a radius of distance metric so that the selected number of 

nearest neighbors (3) is inside the circle; 

 these query points are assigned a class based on majority voting – the class of majority of 3 nearest points 

(either 3 out of 3 or 2 out of 3);  

The scatter plots are shown in Figure 8 along with the classification results for unknown query points for damage 

severities 5 % and 10 %. 

The computations of classification models are performed in MATLAB. In k-nearest neighbor search the results 

for the assignment a class label to a query point are displayed in the manner shown in Table 6. The number of 

nearest neighbors that fall within the distance denoted by a circle is depicted for each class as long as the total 

number of nearest neighbors found match the set number of k (3 in our case). When all (3) nearest neighbors of a 

query point are found, the program stops classification and no further classes are considered. This is marked as 

“Not relevant (NR)” for these classes. Cases when all nearest neighbors correspond to the same class are marked 

as 3/3 or 100 % and shaded in darker green, meaning 100 % confidence that the query point under consideration 

belongs to that particular class (zone of the plate). If, on the other hand, the query point is assigned a class based 

on 2/3 nearest neighbors or 66.67 %, this is marked as light green because of the majority voting. If only 1/3 

nearest neighbors are found in the particular class, this class is not assigned to the query point and is dismissed 

(indicated by orange shading). The results are as follows: 

 for 5 % damage severity – the first query point belongs to zone no. 7 and the second query point – most likely 

to zone no. 16; 

 for 10 % damage severity – the first query point belongs to zone no. 17 and the second query point – most 

likely to zone no. 10. 

 

 
Table 6 – Damage localization results for k-NN algorithm. 

 

Class 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

Count 

5 % 
QP1 0 0 0 0 0 0 3/3 NR 

QP2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2/3 1/3 NR 

10 % 
QP1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3/3 NR 

QP2 0 0 0 0 0 0 0 0 0 2/3 1/3 NR 

 



                     
 

                     
 

Figure 8 - k-NN search for 2 query points.  

 

 

3.3.2. Localization with decision trees 

First, a decision tree classifier is trained and these decision tree structures are shown in Figure 9. Decision trees 

are rather complex with a total of 41 nodes, consisting of 21 leaf nodes which contain information about the label 

class label and 20 branching nodes where the decision about the root down the tree from top to bottom is made 

based on the result of inequality involving predictor values (in our case xi) is made by examining the inequality 

relations for both severities of damage. The letters “xi” denote the numeration of strain sensor data. The numeration 

of nodes starts at the top node, also called the root node and proceeds in direction from left to right. 

The result of query point (Table 5) classification is shown in Table 7. Decision trees algorithm yields only 1 value 

of the class label that is assigned to the query point, meaning that the probabilities for all other classes will be 0. 

The results of classification can be summarized as follows: 

 for 5 % damage severity – the first query point belongs to zone no. 7 and the second query point – to zone no. 

18; 

 for 10 % damage severity – the first query point belongs to zone no. 17 and the second query point – to zone 

no. 9. 

 

 
Table 7 – Damage localization results for decision tree algorithm. 

 

Class 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

Probability of detection 

5 % 
QP1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

QP2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

10 % 
QP1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

QP2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 



 
 

 
 

Figure 9 – Decision tree classification. Top: damage severity 5 %, bottom: damage severity 10 %. 

 

 

3.3.3. Comparison of localization performance 

For 5 % damage severity the agreement between performance of both algorithms is tracked in classification of the 

first new query point to belong to class label no. 7, while the second query point is classified somewhat differently 

(k-NN – label no. 16 and decision trees – label no. 18) with the classification difference of 2 labels. By examining 

a scheme of the plate (Figure 1), it is seen that zones no. 16 and 18 are neighboring ones. The width of a zone is 

40 mm, meaning that the uncertainty of coordinate x for this result can lie anywhere from 80 mm to 0 mm (at the 

boundary between both zones). As it can be seen from Table 5, the coordinate x for a second query point is indeed 

0.32 m = 320 mm which corresponds to the boundary of zones no. 16 and 18. That is why a classification algorithm 

can yield either label no. 16 or label no. 18 and both of these will be correct. 

For 10 % damage severity both classification algorithms have classified the first query point as to belong to zone 

no. 17. which is correct according to Figure 1. The second query point actually lies in the intersection of 4 zones 

(9, 10, 11 and 12), meaning that the results of classification are equally likely for all these zones. The decision 

trees algorithm has classified the point as to belong to zone no. 9, whereas k-NN – most likely to zone no. 10, 

although there is some probability that is in zone no. 11. These results suggest that both classifiers performed in 

good agreement with one another.  

 

 

 



4. CONCLUSIONS 

In present study, the damage localization methodology for plate structures based on data classification is proposed. 

A numerical model of composite cantilevered plate is partitioned into 18 zones that serve as class labels in 

classification process. A point mass of 2 different severities (5 % and 10 % of plate’s mass) is applied at 9 points 

for each of 18 zones to collect more data for each class. Next, the modal analysis is performed and for each event 

of loading a mechanical strain is recorded from 11 sensors, embedded into the plate. All strain data is collected 

and passed to the k-nearest neighbors and decision trees classifier algorithms. Classifier models are built and their 

parameters are optimized to minimize the resubstitution and cross-validation errors.  The performance of classifiers 

is assessed through ROC curves with accompanying area under curve metric and confusion matrices. These metrics 

suggest a high quality of classification for both, k-nearest neighbors and decision trees. Finally, two artificial 

damage events through application of point mass are simulated and this information is passed to classifier 

algorithms to assign a class label to these query points based on trained data. It is found that there is a good 

agreement between the localization results of both classifiers and these results are in accordance with the actual 

coordinates of query points for both severities of damage (5 % and 10 %). 
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