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Abstract. 

This paper deals with stability analysis of pin-joined beam, which is affected to   random pulsating 

load. Assuming the mathematical model of the beam caused by longitudinal force with Poisson 

characteristics and applying the stochastic modification of the second Lyapunov method, the 

stability conditions of the pin-joined beam are analyzed. 
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1. Introduction. 

Many engineering structures consist of  such elements which can be  modeled as a beam. To study 

the dynamic of this structural component under longitudinal parametrical excitations it has long 

been used (Timoshenko and Gere, 1961) well known Timoshenko partial differential equation 
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where 

 t is time,  

 x is axial coordinate,  

 E is Young modulus of elasticity,  

 J is axial moment of inertia, 

 ( )P t is disturbance longitudinal force,  

 m  is  mass of unit of beam length; 

 D is viscous damping coefficient. 

 The boundary conditions for the above equations depend on the beam fastening. For the simply 

supported beam with free warping displacement the boundary condition for (1) are  

2 2

2 2

( ,0) ( , ) 0; (2)

( ,0) ( , ) 0. (3)
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The disturbance longitudinal force usually is divided into two terms: 

0 1( ) ( )P t P P t  ,       (4) 

where bounded continuous function 1( )P t  satisfies assumption of zero mean, that is 

1

0

1
lim ( ) 0

t

t
P s ds

t
  .                                                   (5) 

The problem of elastic stability of beams may be formulated as the asymptotic stability problem of 

the trivial solution of the equation (1). Substituted the series  

1
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n

nx
u t x T t
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 
  

 
                                          (6) 



3 
 

in the equation (1) the authors reduce this problem to stability analyze of the second order 

differential equations of the  following type:  

2
2

2

( ) ( )
: ( ( )) ( ) 0n n

n n n

d T t dT tD
n N f t T t

dt m dt
     ,                (7) 

where 

2 2

2

0

1
n

n n
EJ P

m L L

 


    
          

  and 

2

1

1
( ) ( )n

n
f t P t

m L

 
  

 
. The most advanced results are 

reached for equation (7) with periodic or almost periodic function ( )nf t which is called 

(Bolotin,1964) the Mathieu-Hill equation with damping. This model has been analyzed in detail in 

many classical monographs and textbooks (see, for example, Timoshenko and Gere, 1961; Bolotin, 

1964; Leipholz, 1978). The asymptotic stability criterion for these equations can be formulated in a 

following form: for all free oscillation frequencies ,n n N  there exist such a positive numbers 

cr

nD  that with unlimited time increment nontrivial solutions of (7) tend to zero for all cr

nD D  and 

unboundedly increase for all cr

nD D . This means that there exists such critical value of dumping 

max cr

cr n
n

D D
which guaranties stability of bridge with dynamics (1) for all crD D

. Unfortunately 

there are no sufficiently efficient methods for analytical calculation of number 
cr

nD
 even for periodic 

continuous functions
( )nf t

. Most productive analysis of the equations (1) and (7) can be done under 

assumptions that the perturbation function 1( )P t  is sufficiently small. Substituted 1( ) ( )P t p t  the 

formula for ( )nf t  we may introduce a small positive parameter  in the equation (7) and to look for 

( )cr

nD   as an analytical function of   .  In this case we can  apply the very productive Krylov-

Bogolyubov method (Bogoljubov et al., 1976) of asymptotical analysis  and find the critical 

dissipation ( )cr

nD   as an  infinitesimal of the second order. Besides in reality there are some random 

factors that affect the beam dynamics. In this case we may not apply the Krylov-Bogolyubov 
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algorithm per se and  use proposed in (Skorokhod, 1989) a stochastic modification for this method. 

Thereby method  helpful for engineering applications  results  can be received under assumption that  

the small perturbation function 1( )P t in (1) be modeled as the continuous ergodic Markov process 

defined by the stochastic Ito differential equation (Ariaratnam, 1972;  Li et al.,  2004; Pavlovic and 

Kozic, 2003). In this paper we also propose the algorithm for calculation of the critical damping crD  

in (1) under assumption that perturbation is impulse type random process  given by formula 

1( ) ( ( ))P t h y t , where ( )y t  is the compound Poisson process (Dynkin, 1965) with the stationary 

uniform distribution. To achieve this result we apply the proposed in (Katafygiotis and Tsarkov 

1996) stochastic averaging procedure for impulse type Markov dynamical systems. This approach is 

schematically described in the second paragraph of this paper. Applying the proposed diffusion 

approximation algorithm for a scalar second order differential equation (7) we find in the third 

paragraph the critical damping cr

nD  and in the fourth  paragraph discuss the dependence of the 

critical damping  max cr

cr n
n

D D   on the parameters J, m, L in (1) , variance and intensity of 

perturbations.  

 

2. Stochastic averaging procedures for dynamical systems with impulse type Markov 

switching. 

Let { ( ), 0}y t t   be the Markov process    with values at the segment : [0,1]Y   defined for an 

arbitrary function { ( ), }v y yY  by  the infinitesimal operator (Dynkin, 1965): 

: ( )( ) [ ( ) ( )]y Qv y v z v y dz  
Y

Y ,                                 (8) 



5 
 

where  >0. Any realization of this Markov process (Dynkin, 1965) is a piecewise constant function 

having jumps at the increasing random time moments { , }j j N , which may be defined by 

formulae: 

0 1 10, ( / ( ) ) exp{ }j j jP t y y t                                             (9) 

The jump at any time moments 
j  is the uniform R(0,1) distributed random variable. We will deal 

with the impulse type dynamical system on the phase space  

1R S , 
1 : {0 2 / , (0) (2 / )}         S ,      (10) 

defined by the phase coordinates 
1{ ( ) , ( ) }nx t t  R S .   We assume that the random processes 

1{ ( ) , ( ) }nx t t  R S  satisfy:  

 the differential equations 

1

1

( ( ), , ) , (11)

( ( ), , ) , (12)

j

j

dx
A y x

dt

d
f y

dt


  


 

   


   









                                       

            for all 
1, ( , )j jj t   N ; 

 the jump equations 

1

1

( ) ( ) ( ( ), ( ), ) ( ), (13)

( ) ( ) ( ( ), ( ), ) (14)

j j j j j

j j j j

x x B y x

g y

    

   

       

        





    

   

                                    

 for all jN ; 

where   is small positive parameter, 0(0, )  ,  
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( , , ) ( , ) ( , ), ( , , ) ( , ) ( , ),

( , , ) ( , ) ( , ), ( , , ) ( , ) ( , )

A y A y A y f y f y f y

B y B y B y g y g y g y

         

         

   

   

 

and ( ) ( )y t y t  . 

Under the above assumption the triple { ( ), ( ), ( ), 0}y t x t t t     defines the homogeneous Markov 

process on the space 1 Y R S  (Skorokhod, 1989) with the weak infinitesimal operator  

( ) ( , , ) ( , , ) ( , , ) ( , , ) ( , , )

1
( , , ) ( , , ), (15)

v y x A y x v y x f y v y x
x

Qv y x G v y x

         


  


 
  

 

 

 

where  

( )
( , , ) [ ( , ( , , ) , ( , , )) ( , , )]

a y
G v y x v z x B y x g y v z x dz         


   

Y

 

The stochastic averaging approach is based on the limit theorem (Skorokhod, 1989) for the pair of 

random processes { ( ), ( ), 0}x t t t    under condition that 0  . The first step for asymptotic 

analysis of the  Markov dynamical system (11)-(14) is the averaging procedure based on the limit 

calculation  

 1

1 1 1
0

1 1 1 1 1

1 1 1 1 1

lim ( ) ( , ) ( , , ) : ( , ) ( ) ( , ) ( ) ( , ), (16)

( ) [ ( , ) ( ) ( , )] : [ ( , ) ( ) ( , )] , (17)

( ) [ ( , ) ( ) ( , )] : [ ( , ) ( ) ( , ))] , (18)

v x v y x v x A x v x F v x
x

A A y a y B y A y a y B y dy

F f y a y g y f y a y g y dy


        



    

    





 
   

 

   

   





Y

Y

 

for an arbitrary sufficiently smooth function ( , )v x   and  specially selected function 1( , , )v y x  . 

Now we can construct the system of equations for an average motion:  
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1

1

( ) ( ) ( ), (19)

( ) ( ) (20)

d
x t A x t

dt

d
t F

dt



 





 

and define the averaging principle:  

 for any 0, 0T C    

  
0 0

lim sup | ( ) ( ) | | ( ) ( ) | 0
t T

P x t x t t t C 


   
  

     ; 

 if  the trivial solution of  the equation (19) is asymptotical stable then there exist such a 

positive number  0  that  

1
P lim ln | ( ) | 0 1 , (21)

t
x t

t




 
  

 
 

              for any 0(0, )  . 

If 
1( ) 0A    we can apply the diffusion approximation (Carkovs and Stoyanov, 2005) for the  

Markov dynamical system (11)-(14). For that we should look for  the limit 

 2 1

1 2
0

lim ( ) ( , ) ( , , ) ( , , ) ( , ),v x v y x v y x v x


       


    

where  is a diffusion operator, which is given by equality 

2
2 2

1 2

2 2
2 2 2

2 122

ˆ( , ) : ( ) ( , ) ( ) ( , ) 0.5( ( ) ( , )

( ) ( , ) 2 ( , )) (22)

v x A x v x m v x x v x
x x

v x x v x
x

       


    
 

  
   

  

 
 

  

 

for an arbitrary sufficiently smooth function ( , )v x  . This operator defines the system of stochastic 

differential Ito equations (Dynkin, 1965): 
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1 1 12 2

2 1 12 2

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( ) ( ( )) ( ) ( ( )) ( ) ( ) ( ( )) ( ) ( ), (23)

ˆ ˆ ˆ ˆ( ) ( ( )) ( ( )) ( ) ( ( )) ( ), (24)

dx t A t x t dt t x t dw t t x t dw t

d t m t dt t dw t t dw t

    

     

  

  

                                               

where 2 ( )w t  and 2 ( )w t  are the independent standard Wiener processes. The finite dimensional 

distributions of initial processes { ( ), ( )}x t t   for sufficiently small 0  may be approximated 

(Tsarkov, 1993) by the corresponding distributions of the processes ˆˆ{ ( ), ( )}x t t . Besides for 

sufficiently small  positive  the asymptotic stability of the trivial solution of the equation (4) 

follows the asymptotic stability of the equation (23).  

 

3. Stability analysis of the random linear oscillator subjected to small random switching of 

frequency.    

As it has been mentioned in the first paragraph we assume that 1( ) ( ( ))P t h y t  where   is a small 

positive parameter and ( )y t is defined by the weak infinitesimal operator (8) Poisson process. 

Substituted 22D m   will be looking for the critical dumping ( )cr

nD   as an infinitesimal of the 

second order. After substitution the decomposition (6) in (1) we have to deal with the second order 

random differential equation of the following form: 

2 2( ) ( ) 2 ( ) ( ) ( ( ))x t x t x t x t p y t      .     (25) 

To take advantage of the proposed in previous paragraph diffusion approximation method we have 

to rewrite the above equation in the polar coordinates.  Substituted  

( ) ( )
( ) ( ) cos ; ( ) ( ) sin

2 2

t t
x t r t x t r t

 
                                    (26) 

we may rewrite the second order differential equation (25) as a system of two differential equations:  
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 

 

2

2

1
2 [1 cos ] ( ( )) 2 sin ,

1
1 cos ( ( ))sin .

2

27

(28)

p y t

r r rp y t

      


    



   




    


 

To analyze α-exponential stability of the solution for equation (25) we will apply the second 

Lyapunov  method (Carkovs and Stoyanov, 2005) with Lyapunov function ( , , ) ( , )F r y r V y   . 

By definition  

 

 

2

2

1
( )( , , ) 1 cos sin ( ) ( , )

2

1
2 [1 cos ] ( ) 2 sin ( , ) ( , )

( ) ( , ) ,

F r y r p y V y

r p y V y r QV y

r V y

 

   

 

      


       
 

 

 
     

 

 
      

 



L

                      (29) 

where 

 

 

2

0 1 2

0

1

2

( ) ,

: 2 ,

1 1
: ( )sin [1 cos ] ( ) , (31)

2

: 2 1 cos 2 sin . (32)

30

Q Q Q

Q Q

Q p y p y

Q

  




  
  

   


  


 




  




   



 

If there exists such a function ( , )V y  , which satisfies inequalities 

2 2

1 1
( , ) ( , )r r F y r F y

c c

                                  (33) 

and  

( ) ( , ) 1V y     ,                    (34) 

then (Carkovs and Stoyanov, 2005) for any initial condition 0(0)r r  the solution of the equation 

(28) tends to zero with probability one. To find a solution of the equation (34) we apply the 
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proposed in (Carkovs and Matvejevs, 2015) algorithm. We will look for the solution of this equation 

as a singular at the point 0  function 

2 1

1 2( , ) ( , ) ( , )V y q V y V y         ,                                  (35) 

where q is a constant. Substituted (35) in (34) and equating the coefficients near 1   we will have an 

equation for unknown function 1( , )V y  

  
1

1
2 ( , ) ( )sin

2
Q V y q p y   

 

 
   

 
.               (36) 

Not so difficult to insure that by definition (8) ( ) ( )Qp y p y  . Therefore we can look for a 

solution of  (36)  in a following form  

 1 1 2

( )
( , ) sin cos

2

p y
V y q C C


  


      

with unknown coefficients 1C  and 2C . Substituted this function in (36) and equating the coefficients 

near  sin  and cos  we can find  a solution of the equation (36) as follows: 

 1 2 2
( , ) ( ) sin 2 cos

2 ( 4 )
V y qp y


    

  
 


.   (37) 

Now we should look for a solution of the equation 

0 2 2 1 1( , ) 1 ( , )Q V y Q q QV y      

Substituted there the formulae (31), (32) and (37) we  have to look for a solution of the equation                            

0 2 ( , ) ( , )Q V y G y   ,                                                                       (38) 

where 
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 

 2 2

( , ) 1 2 1 cos 2 sin

1 1
( )sin [1 cos ] ( ) ( ) sin 2 cos

2 2 ( 4 )

G y q

p y p y qp y

    



      

     

 
     

 

  
    

   

 

According to Fredholm alternative this equation has a solution if and only if the right part in  (38) 

satisfies equality: 

2 1

0 0

( , ) 0G y dyd



    . 

This equality permits to find an unknown constant q:  

1
2

1

2 2 2

( 2)

8 ( 4 )
q

 
 

  



  
  

 
,                               (39) 

where 
1

2 2

0

( )p y dy   . Remember that we look for the Lyapunov function 

 2 2

1 2( , , ) : ( , ) ( , ) ( , )F r y r V y r q V y V y            , 

where functions 1( , )V y  and 2 ( , )V y are bounded by definition and q is given by formula (39). 

Therefore if parameter 0   is sufficiently small  the solution of the Lyapunov equation satisfies 

inequality (33) if and only if  
2

2 2 2

( 2)

8 ( 4 )

 


  





. As far as in the above formula  is an arbitrarily 

chosen positive number we can insure that there exists such a critical value for damping   

 
2

2 2 2
,

4 ( 4 )
cr




  



                                   (40) 

that  P lim ( ) 0 1
t

r t


  ,  if  cr   and  P lim ( ) 1
t

r t


   ,  if  cr  . 
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4.  Stability analysis of pin-joined beam with random pulsating load. 

After substitution the series 
1

( , ) ( )sinn

n

nx
u t x T t

L





 
  

 
  in the equation (1) we proceed to equations 

(7) for the amplitudes { ( ), }nT t nN of the longitudinal oscillations  

2 2( ) 2 ( ) ( ) ( ( )) ( ) 0n n n n n nT t T t T t h y t T t       ,            (41) 

where  

2 2 2

2

0 2

1 1
, ( ) ( ),

2
n n

n n n D
EJ P h y p y

m L L m L m

  
 

 

      
                

                 (42) 

Remember that 1( ) ( ( ))P t p y t  where ( )y t  is a piecewise constant stationary process with uniform 

R(0,1) distribution  and  
2 2{ ( ( )} 0, { ( ( )}p y t p y t  E E  . Now we can apply the achieved in the 

previous section necessary and sufficient condition for the almost sure asymptotic stability of the 

longitudinal oscillations in a form of inequality:    

2

2 2 2
:

4 ( 4 )

crn
n

n n


 

  
 


,          (43) 

where  

4

2 22
n

n

m L


 

 
  

 
.  Substituted (42) in this formula we can derive the necessary and 

sufficient  condition for the longitudinal oscillations (41) exponential decay  in a form of inequalities   

22
2

0 2 2 2

2

0 0

( , , , , ) :
2 4

cr

n

n
D D L P m

L n n n
EJ P EJ P

L m L L

  
 

  


 
   

           
                        

           (44) 
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for each nN . Not so difficult to insure that 
2 2

0 1 0max ( , , , ) ( , , , )cr cr

n
n

D L P D L P    for any 0P >0, 

0  , 2 0  , and 0L  .  Therefore the necessary and sufficient  condition for beam stability may 

be written in a form of inequality for a dissipation parameter: 

22
2

0 2 2 2

2

0 0

( , , , , ) :
2 4

crD D L P m
L

EJ P EJ P
L m L L

  
 

  


 
   

           
                        

        (45) 

The critical dissipation 2

0( , , , , )crD L P m   is an increasing function of a mass parameter m and of a 

variance 2  of the longitudinal force,  and is a decreasing function of  the constant component 0P   

of the  longitudinal force.  But a dependence of this  function on  switching intensity   and length 

L  has  a form rather like a mountainous surface (mountain ridge): 

 

Fig. 1. Dependence of the critical dissipation border on  length L and intensity   2

0( 1, 1, 1)P m    

To be ensure of a beam stability under longitudinal impulse type perturbations of any intensity we 

need the critical value of dissipation  

 

2 2
2 2

0 0 3/2
0 2 2

0

( , , , ) : max ( , , , , )
8

cr cr

L m
D L P m D L P m

EJ P L


 
  


 


                       (46) 
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Fig. 2. Dependence of the maximal critical dissipation border on  length L 2

0( 1, 1, 1)P m    

Not so difficult to be sure that for any values of the parameters 2

0,P  , and m the critical value of 

dissipation (46)  is unimodal function on  length L (see the example at Fig.2)  having the maximum 

for  a length 
1

02L EJP  : 

2 1 2
0

2
2 2 2

0 0 0 20
0

ˆ ( , , ) : max ( , , , ) ( , , , )
12 3

cr cr cr L EJPL

m
D D P m D L P m D L P m

P EJ


  


             (47) 

 

Therefore if we have  only given by statistical observations expected value and variance of the 

switched by random  Markov process longitudinal force we may be insure on the beam  stability if 

and only if 

 

2 2

3/2
2 2

08

L m
D

EJ P L

 





. But if need to be ensure on stability for the beam of any length 

we need more dissipation: 
2

012 3

m
D

P EJ


 .  

Remark. It should be mentioned that the linear equation (1) allows to analyze only small 

deformations of beam. As it has been shown in (Katafygiotis and Tsarkov, 1996) the solutions of the 

linear second order equations of type (41) for sufficiently small 0   have an exponential behavior.  
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Therefore, if equilibrium of the equation (1) is no stable the beam vibration amplitudes 

exponentially increase and we cannot assume the beam deformations to be small. In this case, we 

should apply non-linear Euler-Bernoulli beam theory including the effects of mid-plane stretching 

(Rao, S. S., 2007). This approach requires involving a non-linear term -
22

2

0
2

L
E u u

dx
L x x

  
 

  
  in 

the equation (1) and we cannot analyze the resulting equation applying the substitution (6). We will 

revert to the equilibrium instability problem later using in our next paper.  
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 GADĪJUMA  PULSĒJOŠAI SLODZEI PAKĻAUTU AR ŠARNĪRIEM PIESTIPRINĀTU SIJU 

STABILITĀTI 

 

Šajā rakstā pētīti stabilitātes nosacījumi ar šarnīriem piestiprinātās sijās, kurās garenvirziena spēks 

pakļauts gadījuma perturbācijām, modelējot to kā saliktu Puasona procesu ar mazām nejaušām 

amplitūdām. Pieņemot, ka amplitūdas ir savstarpēji neatkarīgas un nav atkarīgas arī lēcienu laiku 
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momentos, mēs lietojām   otrās Ļapunova metodes modifikāciju gandrīz droša līdzsvara 

asimptotiskās stabilitātes analīzei.    

 

 


