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Abstract: The paper analyzes a model for isolated population with sexual reproduction 

under assumption that the extractions are random and going at random time moments. 

Applying the approximative procedures of stochastic analysis we construct an ordinary 

differential equation for population dynamics in the mean and a linear stochastic 

differential equation for deviations on the mean trajectories. This approximative model 

permits to analyze a population growth as the Gaussian process with  mean and variance 

given by ordinary differential equations. 
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1  Introduction  

The dynamics of  the two-sex  populations  has been discussed by many authors as the different 

forms of  difference or differential equations (see, for example, [1 - 12] and references there). 

As has been mentioned by authors of the above papers and books the mathematical models may 

be used for qualitative and quantitative analysis of ecosystem, but also to manage the problems 

of agriculture, forest, animal husbandry and fishery ecosystem.  The model construction is based 

on analysis of the increments 1( ) ( )k kx t x t  and 
1( ) ( )k ky t y t   for male and female densities  

{ ( ), }kx t k N and { ( ), }ky t k N , where {0 < t1 < t2<...< T} are real numbers. Our paper analyze 

the popular in mathematical biology the Liu two-sex population model [9] with jump type 

random extractions at the below defined (1.1) time moments. We assume that the dynamics of 

population is given by the system of equations for the male and female densities

{ ( ), ( ), 0}x t y t t . The corresponding to our model dynamical system may be described as 

follows:   

at time moment 
k

 the phase coordinates have jumps to point 

( ) ( ) ( ) ( ), ( ) ( ) ( ) ( )k k k k k k k kx x h x y y g y ,         (1.1) 

179



where  
1 1

1 1( ) : lim ( ), ( ) lim ( )
t t

x x t y y t ; 

 further, at any time interval 
1( , ),kk k N the population dynamics is given by differential 

equation  

1 1

1 1 2 2

( ) ( )
( ) ( ) ( ( ) ( )) ( ), ( ) ( ) ( ( ) ( )) ( )

dx t dy t
y t x t K x t y t x t y t K x t y t y t

dt dt
,       (1.2)  

where 
1
 and 

2
 are per capita birth rate for males and females, 

1
 and 

2
 are per capita death 

rate for males and females, K - is carrying capacity of population, { , }k k N  are uniform R(0,1) 

distributed random variables,{ ( ), ( ), [0,1]}h g are bounded nonnegative functions, 

1 1 1

2 2 2

1 2 1

0 0 0

1 1

2 2 2 2

2 12

0 0

{ ( )} ( ) , { ( )} ( ) , { ( )} ( ) ,

{ ( )} ( ) , { ( ) ( )} ( ) ( )

k k k

k k k

h h d g g d h h d

g g d h g h g d

E E E

E E

(1.3) 

and 
1{ , }k k k N are independent on { , }k k N independent identically exponentially 

distributed with parameter 1 . In the next section applying stochastic averaging procedure [15] 

we proof  that { ( ), ( )}x t y t  are such continuously dependent on parameter  functions , that   

there exists 

0 0
lim ( ) ( ), lim ( ) ( )p x t x t p y t y t        (1.4) 

and derive the ordinary differential equations for ( ), ( )x t y t . In the third section we proof that for 

any T>0 the distributions of the random processes 
( ) ( )

, [0, ]
x t x t

t T and 

( ) ( )
, [0, ]

y t y t
t T  may be approximated by distributions of  Gaussian processes, which 

satisfy the stochastic differential equations. The impulsive differential equation (1.1)-(1.2) 

defines  two dimensional homogeneous Markov process. This process may be uniquely defined 

by the infinitesimal generator [13], which one can find as the limit 

0

1
( ( ) )( , ) : lim { ( ( ), ( )) / (0) , (0) } ( , )

t
L v x y v x t y t x x y y v x y

t
E

for an arbitrary sufficiently smooth bounded function ( , )v x y .  Using the asymptotic equalities 
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1

1

1 1

1

1 1 1

( ( ) / (0) , ) ( ) ( ) ( ) ( ) ( ),

( ( ) / (0) , ) ( ) 1 ( ) ( ) ( )

t

t

t x t x t x e x o t

t x t x e o t t x o t

P P P P P

P P P

we can find the above infinitesimal operator as follows: 

1 1

1 1 2 2

1

1

0

( ( ) )( , ) ( , y) ( ) ( , ) ( ) ( )

{ ( ( ) , ( ) )} ( , )

x yL v x y v x y x K x y x v x y y K x y y

v x h x y g x d v x yE
     (1.5) 

2  The first approximation 

As it has been proved  in [14,15]  if  at any point 2{ , }x y R  for any sufficiently smooth function 

( , )v x y there exists limit 
0

lim( ( ) )( , ) : ( , )L v x y Lv x y and L is  the first order linear differential 

operator ( , ) ( , )L a x y b x y
x y

then we can approximate accurate within ( )o the 

expectations with the solutions of  the smooth dynamical system with the vector flow 

{ ( , ), ( , )}a x y b x y .  Corresponding to (1.5) limit operator for our Markov dynamical system (1.1)-

(1.2) has a form 

1 1

1 1 1 2 2 2( )( , ) ( ) ( ) ( , ) ( ) ( ) ( , y)Lv x y y x K x y x v x y y K x y y v x
x y

 (2.1) 

Therefore, the above mentioned approximative dynamical system has a form: 

1

1 1 1

1

2 2 2

( )
( ) ( ) ( ) ( ( ) ( )) ( ),

( )
( ) ( ) ( ( ) ( )) ( )

dx t
y t x t K x t y t x t

dt

dy t
y t K x t y t y t

dt

       (2.2) 

If  { ( ), 0}x t t  and { ( ), 0}y t t  are the solutions of the equation (2.2) with initial conditions 

0 0(0) { (0)}, (0) { (0)}x x y yE E then 
0 0

lim sup | { ( )} ( ) | | { ( )} ( ) | 0
t T

x t x t y t y tE E

for any T>0.  The equation (2.2) has two equilibrium points: 
1 {0,0}A and 

2 { , }A x y , where 

1 2 2 2 2 2 2 1 1 2 2 2

1 1 1 2 2 2 1 1 1 2 2 2

( ) ( )( )
,

K K
x y (2.3) 

The numbers (2.3) are positive  if  and only if the birth rate for females is sufficiently large:

2 2 2
.  Not so difficult to ensure that under the above assumption the point 1 {0,0}A is 

unstable knot and  point A2  is stable knot.  The Fig. 1 contains two graphics: the solid lines are 
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the solutions of equation (2.2) and dot lines are sample trajectories for solution of random 

impulsive differential equation (1.1) - (1.2) for parameters 

 

 0.01, 10,K 1 1 1 2 2 20.7, 0.4, 0.2, 1, 0.4, 0.2 .             (2.4) 

 

 
 

Fig. 1. The solution of  equation (2.2)  and the sample trajectories for solutions of the Markov 

dynamical system (1.1)-(1.2) for parameters (2.4). 

 

As we can see there are sufficiently large deviations on population size averaged trajectory. To 

estimate these deviation, we need next step of the stochastic approximation procedure. 

 

 

3 The normalized deviations on the first approximation  

 

The second step for asymptotic analysis of the Markov impulsive differential equations (1.1)-

(1.2) is  diffusion approximation   of  the normalized deviations [14,15]:    

 

( ) ( ) ( ) ( )
( ) : , ( ) :

x t x t y t y t
z t u t                      (3.1) 

                                                                                        

The impulsive differential dynamical system for these processes has form ordinary differential 

equations:   

 

1

1 1 1

1

1

2 2 2

1

( ) 1
[ ( )] { ( ) ( ) [( ( ) 2 ( )) ( ) ( ) ( )]}

{ ( ) ( ) ( )}

( ) 1
[ ( )] {( ) ( ) [( ( ) 2 ( )) ( ) ( ) ( )]

( ( ) ( )) ( )

dz t
x t u t z t K y t x t z t u t x t

dt

K z t u t z t

du t
y t u t K x t y t u t z t y t

dt

K z t u t u t

   (3.2) 
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for 
1( , ), ,k kt k N  and equations for jumps: 

 

( ) ( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ) ( )

k k k k k k

k k k k k k

z z h x h z

u u g y g u
        (3.3) 

 

for k N . The  system of equations (2.2)-(3.2)-(3.3) defines on the probability space 

( , , , , 0)t tPF F four dimensional homogeneous Markov process { ( ), ( ), ( ), ( ), 0}x t y t z t u t t . 

The weak infinitesimal operator for this process is defined by formula: 

 

0

1 1

1 1 1 2 2 2

1

1 1 2 2

1
( ( ) )( , , , ) lim { ( ( ), ( ), ( ), ( ))} ( , , , )

[ ( ) ( ) ] ( , , , ) [( ) ( ) ] ( , , , )

{ [(2 ) ]} ( , , , ) {( )

zu

xy
t

v x y z u v x t y t z t u t v x y z u
t

y x K x y x v x y z u y K x y y v x y z u
x y

u z K x y z ux v x y z u u K
z

EL

1

1 2

1

1

0

[( 2 ) ]} ( , , , )

1 1
[ ] ( , , , ) [ ] ( , , , )

( , , ( ) ( ) , ( ) ( ) )

x y u zy v x y z u
u

x v x y z u y v x y z u
z u

v x y z h x h z u g y g u d

   (3.4) 

        

where { }: { / (0) , (0) , (0) , (0) }zu

xy x x y y z z u uE E  and ( , , , )v x y z u sufficiently 

smooth bounded function.  To apply stochastic approximation procedure [12] we have to  

calculate the limit in the formula (3.4) as 0 . Under assumption that ( , , , )v x y z u is 

sufficiently smooth bounded function  we can pass to a limit as 0 : 

  

1

1 1 1 1
0

2
1 2

2 2 2 2 12

2
1 2 2

1 1 1 2

ˆ( )( , , , ) : lim( ( ) )( , , , ) [ ( ) ( ) ] ( , , , )

[( ) ( ) ] ( , , , ) ( , , , )

1
{ [(2 ) ]} ( , , , ) (

2

v x y z u v x y z u y x K x y x z v x y z u
x

y K x y y u v x y z u xy v x y z u
y z u

u z K x y z ux v x y z u x v
z z

L L

2
1 2 2

2 2 2 2

, , , )

1
{( ) [( 2 ) ]} ( , , , ) ( , , , )

2

x y z u

u K x y u zy v x y z u y v x y z u
u u

 (3.5) 

 

The operator L̂  may be interpret [13] as the weak infinitesimal operator of  the diffusion 

Markov process { ( ), ( ), 0}z t u t t given by the linear nonhomogeneous Ito stochastic differential 

equations: 

 

183



1 1

1 1

1 1 12 2

1 1

2 2

2 1 12 2

( ) [ (2 ( ) ( )) ] ( ) [ ( )] ( )

( ) ( ) ( ) ( ),

( ) ( ) ( ) [( ) ( ( ) 2 ( ))] ( )

( ) ( ) ( ) ( )

dz t K x t y t z t dt K x t u t dt

t dw t t dw t

du t K y t z t dt K x t y t u t dt

t dw t t dw t

 (3.6) 

with initial condition (0) 0, (0) 0z u , where { ( ), ( ), 0}x t y t t  are solution of the equation (2.2) 

with initial conditions (0) (0), (0) (0)x x y y , 
1 2( ), ( )w t w t are the standard independent 

Wiener processes, and  coefficients 
1 2 12( ), ( ), ( )t t t are the nonnegative solutions of the 

matrix equations     

2 2 2 2
1 12 1 12

2 2 2
12 2 12 2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

t t x t x t y t

t t x t y t y t
. 

The  covariance matrix 
11 12

12 22

( ) ( )
( )

( ) ( )

q t q t
Q t

q t q t
 for the solution of equation (3.6) with zero 

initial condition satisfies the  differential equation 

2( ) ( ) ( ) Td
Q t AQ t Q t A

dt
     (3.7) 

with initial condition (0) 0Q .  Not so difficult to ensure that under assumption 
2 2 2

there exists ˆlim ( )
t

Q t Q , where matrix 
11 12

12 22

ˆ ˆ
ˆ

ˆ ˆ

q q
Q

q q
 satisfies an algebraic equation 

2ˆ ˆ TAQ QA . 

As it has been proved in [14,15] on any finite dimensional interval [0,T] the finite dimensional 

distributions of the processes { ( ), ( ),0 }x t y t t T  may be approximated by the Gaussian 

distributions of the processes { ( ) ( ) , ( ) ( ) ,0 }x t z t y t u t t T . As it has been mentioned 

the solution { ( ), ( )}x t y t of the average equation   converges to the equilibrium point { , }x y  given 

by equation (2.3). Therefore, with the course of time the population concentrates in a 

neighborhood of equilibrium in the mean (2.3)  and the equations (3.6) have more simple form:  

( ) ( ) ( )dz t Az t dt dw t ,          (3.8) 
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where 

1

2

( )( )
( ) , ( )

( )( )

w tz t
z t w t

w tu t
,

1 12

12 2

, 

1 1

1 1

1 1

2 2

(2 )

( 2 )

K x y K x
A

K y K x y

and coefficients 
1 2 12, ,  are defined as the positive solution of  the algebraic equation: 

2 2 2 2 2 2 2 2 2

1 12 1 1 2 12 12 2 12 2, ,x xy y .     

The solution of the equation (3.8) with initial condition
0 0( )z t z is the two dimensional 

Gaussian vector process   given by formula: 

0

0 0 0 0( , , ) exp ( ) exp ( ) ( )

t

t

z t t z t t A z t s A dw s .          (3.9) 

Using the solutions (3.9) with initial values 
0 0

0
0,

0
t z we can approximate the solution 

( )
( )

( )

x t
X t

y t
 of the impulsive differential equation (1.1) - (1.2) as follows: 

0

( ) ( ) exp ( ) ( )

t

X t X t t s A dw s ,      (3.10) 

where ( )X t  is the vector-solution of the equation (2.2) with initial condition (0) (0)X X . 
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Fig. 2. The solution of equation (2.2) with initial condition (2.3) 

and the sample trajectories for the Gaussian approximation. 

As has been mentioned in the second section, if 
2 2 2

 then the eigenvalues of  the matrix 

A are negative. Therefore the stochastic integral in (3.9) converges as 
0t  with probability 

one and [14]  there exists satisfying to (3.8) stationary stochastic process 

0
0 0 0

ˆ( )
lim ( , , ) ( ) exp ( ) ( )

ˆ( )

t

t

z t
z t t z Z t t s A dw s

u t
 (3.11) 

with zero mean and the symmetric constant covariance matrix Q̂ . 

4 Conclusions 

Remember that by definition the process 
0( )Z t  is the solution of the stochastic differential 

equation (3.8) with initial conditions 

0

0 (0) exp ( ).z sA dw s Therefore 

0 0 0( ) ( ) ( , , )V t Z t z t t z is deterministic vector-function that satisfies a homogeneous ordinary 

differential equation  in 2
R and may be given as the matrix exponent ˆ( ) (0)exp{ },V t Z At

where A is a matrix with negative eigenvalues.  This means that under assumption
2 2 2

the population size stabilizes at the neighbourhood of the defined by formula (2.3) 

equilibrium point 
x

x
y

 and for sufficiently large 0t  the random variable { ( ), ( )}x t y t  may 
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be analyzed as two dimensional normal distributed random variable with mean x


 and covariance 

matrix Q̂ . 
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