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Abstract—In this paper, a tool for the economic assessment of 

a potential demand response asset used for power system 

balancing is presented. The model tackles uncertainties in 

electricity market prices and system imbalance by employing 

Monte Carlo simulations. While the model provides vast 

customizability options, the potential demand response benefits 

for a particular type of consumer, smart electric thermal storage, 

are the focus of the case study. It is found that such type of 

operations can be economically feasible for the asset owner, but on 

the condition that sufficient proportion of the balancing 

renumeration is shared with the owner by the aggregator. 

Keywords—aggregation; balancing; demand response; Monte 

Carlo. 

I.  INTRODUCTION 

Demand response (DR) is an increasingly enticing means the 
power system operators can employ in system control and 
management. There are several benefits DR can bring to the 
system, e.g., provision of ancillary services, contingency 
management, price volatility reduction, investment cost deferral 
etc. [1]. In principle, two main types of DR programs can be 
distinguished – price based (implicit), where the load follows 
some external price signal, and incentive based (explicit), where 
the DR asset owner is remunerated in either a classic direct 
control/interruptible load program or from an ancillary service/ 
capacity market [1]. 

To improve the energy independence and diversify the 
flexibility resources offered on the Baltic balancing market, the 
transmission system operators (TSOs) of the three Baltic states 
are planning to commence employment of DR assets for system 
balancing in the near future [2]. However, small loads do not 
have much influence on the overall system frequency, hence 
their control has to be aggregated to reach the required minimum 
balancing power bid size. This is usually done by an aggregator 
which is an entity that pools together the flexibility resources of 
several consumers and offers them to a marketplace or an 
operator directly [3]. 

On the one hand, for electricity end-users to become 
interested in DR provision, they need to be aware of the potential 
benefit they can gain. On the other hand, proper incentives need 
to be introduced for customers to participate in DR programs. 
However, the modeling of DR operation required for economic 
feasibility evaluation is quite complicated. An important issue 

which should not be neglected is load recovery when consumers 
change their consumption patterns in the hours following a DR 
event [4]. Another peculiarity arises when modeling the 
flexibility potential of a consumer and uncertainties related to it 
[5]. Uncertainty is also a factor concerning the stochastic 
behavior of prices in electricity markets and system imbalances. 
To that end, Monte Carlo based simulations have proven to be 
an effective approach to handle modeling uncertainties [6]. 

In this study, Monte Carlo simulations are utilized in 
developing a software tool for DR economic potential that has 
been created in close collaboration with the national TSO. In 
essence, the tool establishes the potential economic benefit the 
owners of controllable load assets might achieve should they 
agree to participate in an explicit DR program, particularly, by 
having their load remotely reduced or increased to meet system 
balancing needs. The software has been developed using the 
MATLAB scripting environment [7]. 

This paper also provides a case study to evaluate the DR 
potential of a consumer who uses smart electric thermal storage 
devices for heating their dwelling [8]. 

II. METHODOLOGY 

As stated previously, the main computational principle of 
this software lies in a Monte Carlo simulation-based approach 
for modeling the activations of DR and the related cash flows 
within a full year of the asset’s operation. Consequently, the 
output of the model is in the form of probability distributions 
instead of one deterministic result as implying absolute certainty 
would be unreasonable when considering future processes. The 
tool is implemented via a number of software modules which are 
described in more detail in the following subsections.  

A. Input Module 

The overall setup of the model is based on the expected 
market conditions for DR operation in the Baltic states, since as 
of mid-2018 it is still under development. The input settings 
necessary to run the developed assessment model are primarily 
divided in four categories. 

Firstly, the parameters which provide economic description 
of the DR asset and contractual conditions of its owner:  

 asset service life (years); 
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 capital expenditure (CAPEX) to enable participation in system 
balancing (€), e.g., remote control hardware or software; 

 annual fixed operating expenditure (F-OPEX) to maintain the 
DR provision ability (€), e.g., additional bandwidth 
maintenance, related service fees etc.; 

 variable operating expenditure (V-OPEX) arising from DR 
operations. This parameter can be modeled in three distinct 
ways – €/DR activation, €/DR affected load or €/unrecovered 
load; 

 minimum balancing price for consumption reduction and 
maximum balancing price for consumption increase (either 
fixed €/MWh or % from hourly day-ahead price) – parameters 
to establish the bid price limits of the DR asset’s participation 
in the balancing market; 

 a binary variable to establish if the owner of the DR asset itself 
is a balance responsible party (BRP) or not, which 
significantly changes how the cash flows are modeled; 

 an option to select how the energy purchase price is modeled 

(only day-ahead 
daΠ t , day–ahead with markup in the form 

1 da 2Πtk k  , fixed price derived from the simulated day-ahead 

price or scenario-independent general fixed price) (€/MWh); 

 share of the TSO payment for load reduction which is passed 
on to the DR asset owner (%); implying that the rest of the 
renumeration is received by the aggregator, BRP or other 
unspecified party. 

Secondly, a technical description of the DR asset’s hourly 
load and its flexibility has to be provided. This can be done either 
for a typical day or a typical week if applicable and with up to 
four distinct profiles to capture seasonality (i.e., the modeled 
year can be divided in four three-month periods). 

As the DR activations are modeled with an hourly resolution, 
the most important parameters here are the maximum permitted 
number of DR events in a day or week, minimum time distance 
between any two DR events (hours), load flexibility direction for 
balancing (reduce, increase, both), minimum and maximum 
duration of a DR event (hours), maximum duration before load 
recovery (hours), load recovery factor (coefficient, where 1 
implies that all the load reduced/increased during a DR event has 
to be recouped (increased/reduced) in the following hours. The 
meaning of these settings is better explained in Fig. 1, where 
green colors denote a DR event and red – the recovery.  

 

Fig. 1. Explanation of some of the DR modeling terms used 

Note that the distance between two events is the time 
between the end of last recovery and beginning of the next DR 
activation. The area ratio between the green and red figures 
depends on the recovery factor, which can be selected different 
for the load increase and load reduction DR events. The hourly 
load profile with hourly upwards and downwards flexibility 
concludes the full technical description of the DR asset. 

Thirdly, there are settings concerning the generation of day-
ahead price scenarios – expected mean price (€/MWh) for the 
normally distributed hours, expected maximum price (€/MWh) 
for the normally distributed hours, expected ratio between the 
mean weekday and holiday price, expected ratio between the 
mean day and night price (night defined as 22:00–6:00), 
expected minimum price (€/MWh). For each scenario these 
parameters are drawn from a normal distribution. Two more 
parameters ensure that the resulting price distributions more 
closely follow the skewness with right tail traditionally observed 
in electricity wholesale spot prices – percentage of hours where 
peaks outside the normal distribution occur and the expected 
maximum (€/MWh) of such peaks. All the parameters described 
in this paragraph additionally have individually selectable 
standard deviations to ensure better controllability of the price 
scenario generation mechanism. 

Finally, certain input parameters are needed to model the 
balancing market scenarios – expected balancing market 
liquidity (% of hours when the TSO has imbalance it could cover 
with DR), upper and lower bounds of this parameter to ensure 
that in none of the scenarios the liquidity is drawn from outside 
this range, ratio of negative imbalance hours from all the hours 
with system balancing. The balancing price is drawn from the 
previously generated day-ahead price scenarios. The settings 
controlling this are – the expected ratio of hourly balancing price 
vs day-ahead price separately for negative and positive system 
imbalance, probability of extraordinarily high balancing price 
peaks and the maximum ceiling for the extraordinary balancing 
price (€/MWh). 

B. Day-Ahead Price Scenario Generation 

The input parameters described in the previous subsection 
are used to generate a pre-selected number of day-ahead price 
scenarios for a whole year with hourly resolution. The day-ahead 
price generation algorithm proceeds as follows. 

1. From a normal distribution, draw price generation settings 
for each particular scenario (mean, min, max, ratios etc) 
using the expected values and standard deviations read from 
the input parameters. 

2. For each scenario s , ensure that the drawn mean, min and 

max settings are not contradictory. 

3. For each hour category within each scenario, calculate a 
coefficient necessary to enforce the weekday/holiday and 
day/night ratios as in (1) for weekday nights, (2) for weekday 
daytime, (3) for holiday nights and (4) for holiday daytime: 

     ,avg

w,n w/h da w/h d/nΠ / 2 7 5 7 / 1 3 2 3s s s s sk R R R      
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52 1 2Π / /

7 7 3 3
s s s s s sk R R R R       

     ,avg

h,n da w/h d/nΠ / 2 7 5 7 / 1 3 2 3s s s sk R R      

     ,avg

h,d d/n da w/h d/nΠ / 2 7 5 7 / 1 3 2 3s s s s sk R R R       

4. For each hour t  in each scenario s , generate day-ahead 
price as in (5) and (6), while ensuring they do not violate 
scenario minimum and maximum restrictions: 

   , ,avg ,min ,min

da da da daΠ max , Π Π 3 ,Πs t s s s s

tN k  
  

 

 , , ,norm max

da da daΠ min Π ,Πs t s t s     

5. Smoothen the generated time series with a moving average 
filter with a span of five elements. 

6. Enforce the expected mean on the smoothened price: 

  , , exp,avg ,

da da da da

1 1

Π Π Π Π
S T

s t s t s t

s t

S T
 


 

  
 

   

7. Finally, in each scenario, for 
extra peak

sk  % of hours add an 

increased price event: 

 , , s,extra max ,norm max

da da da daΠ Π Π Πs t s t s    

C. Balancing Liquidity and Price Scenario Generation 

The balancing liquidity and price scenarios are generated as 
follows. 

1. For each scenario, draw the balancing liquidity (% of hours 
where TSO might request DR) parameter from a normal 
distribution. 

2. Ensure that the drawn values respect the upper and lower 
bounds; if they do not, replace the value with the violated 
bound. 

3. Since the model runs with hourly resolution, each hour with 
balancing liquidity has to be assigned either direction – 
upwards or downwards balancing. 

4. Generate upwards and downwards balancing prices for each 
hour in each scenario: 

    , ,

bal, up da up/da up/allΠ  Π min 1, , 1 3s t s t N R R    

    , ,

bal, dwn da dwn/da dwn/allΠ  Π max 1, , 1 3s t s t N R R    

5. Combine the two timeseries for each scenario as per the 
hourly imbalance direction to obtain one balancing 
timeseries per scenario. 

D. Balancing Activation Simulation 

When all day-ahead electricity price and balancing scenarios 
have been generated, they can be paired, and the balancing 
activations can finally be estimated. 

The purpose of this module is identifying the hours when the 
modeled DR asset can participate in balancing and when the 
energy recovery post-DR takes place. The program goes through 
each scenario sequentially checking each hour to test if 
activation conditions are met. The overall DR activation 
simulation algorithm is summarized in Fig. 2. 

In the first conditional test block, all of these conditions have 
to be met: 

 the minimum time distance since the previous DR activation 
is respected; 

 the number of DR activations in the current day/week does not 
exceed the limit; 

 there is demand for balancing in the system coinciding with 
the direction the DR asset owner is willing to provide services 
in (load reduction/increase); 

 the DR asset has flexibility in the particular direction during 
the particular hour; 

 the balancing price falls within the DR asset’s bid limits; 

 there is enough flexibility in the next hours for DR energy 
recovery respecting the max duration before load recovery 
constraint (relevant if the load recovery factor is nonzero). 

 

Fig. 2. Simplified viusalization of the DR activation simulation algorithm 
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During the subloop with the second conditional block, it is 
tested if the duration of the DR event can be increased (the same 
conditions are checked with an additional test against the max 
duration of a DR event variable). Finally, it is checked whether 
the potential DR event duration meets the minimum limit.  

Afterwards, if a DR event has been identified, information 
about it is passed on to the economic assessment module. 

E. Short-Term Economic Assessment 

The formulae (11)–(14) are used to calculate the cash flows 
associated with a simulated DR event. They depend on the 
direction of the DR induced load change and the balance 
responsibility status of the DR asset owner. The benefit is 
derived by contrasting the cash flows with and without DR. 
Beforehand, however, the energy purchase price timeseries are 
produced as mentioned in section II.A. 

Variable tDR  denotes the set of hours when the DR event 

takes place and, consequently, trec  denotes the set of hours 
when the recovery takes place. Since, theoretically, the DR event 
and recovery can span multiple hours, the multiplications in the 
following equations are implied to be matrix operations.  

Benefit from load reduction if DR asset owner is BRP is 
composed from the income from the sold balancing energy (at 
balancing prices) and expenditure for recovery energy (at 
balancing prices): 

 red. , , , ,

BRP DR bal rec balΠ Πs tDR s tDR s trec s trecB E E     

Benefit from load increase for a BRP depends on the expense 
for procured balancing energy during the DR event and income 
from sold balancing energy during the recovery: 

 incr. , , , ,

BRP DR bal rec balΠ Πs tDR s tDR s trec s trecB E E      

For a DR asset owner who is not balance responsible, the 
benefit from load reduction derives from the income from sold 
balancing energy, savings from load reduction during the DR 
event (at retail purchase price since, unlike BRP, the owner has 
no obligation to balance their portfolio) and expense for 
recovery energy (at purchase price): 

  red. , , , , ,

nonBRP DR bal pp rec ppΠ Π Πs tDR s tDR s tDR s trec s trecB E E      

Finally, for a non-BRP, the load increase cash flow 
components are the expense for procured balancing energy (at 
balancing price) and the savings from load reduction in the 
recovery phase (at purchase price): 


incr. , , , ,

nonBRP DR bal rec ppΠ Πs tDR s tDR s trec s trecB E E      

The benefit from load reduction and/or increase is contrasted 
to the fixed and variable OPEX to find the overall benefit from 
participation in DR in each scenario throughout the whole year. 

F. Long-Term Economic Assessment 

The modeling outcome from the one-year run is extrapolated 
to further years for the whole service life of the DR asset by 
applying the previously selected discount rate. Several widely 
used investment assessment metrics are now calculated, such as 
net present value (NPV), internal rate of return (IRR) and 
payback period (PP). Once the long-term assessment is 
finalized, the calculation results are summarized and output to 
figures and data tables. 

III. CASE STUDY 

A. Assumptions 

The case study aims to apply our developed software tool for 
economic assessment of smart electric thermal storage (SETS) 
participation in DR. The subject of the study is a hypothetical 
household having five SETS devices at their disposal with 
2.2 kW input power and 15.4 kWh storage capacity each. The 
owner is not balance responsible and is willing to participate in 
both upward and downward DR (which requires the SETS 
equipment to never be disconnected from the outlet and the 
gateway). We assume the asset service life to be 15 years, 
discount rate – 3%, CAPEX – 200 € (to cover gateway costs) 
and annual F-OPEX – 20 € (service and other related costs). For 
simplicity sake, it is implied for now the householder purchases 
electricity at wholesale price. It is also assumed that the 
aggregator passes on to the DR asset owner all of the TSO 
payments for load reduction (however, the effect of this 
assumption will be explicitly addressed). 

In regards to the load profile and flexibility, we set a 
maximum number of 14 DR activations per week, but do not 
restrict the time between them. In this study, we do not allow for 
multi-hour DR events. Maximum duration before load recovery 
is set to 12 hours and the recovery factor is set to 0.9 both for 
load reduction and increase (this implies some energy savings in 
case of load reduction and some wasted energy in case of 
increase). 

The seasonal heating demand data is derived from the model 
of [9], where it was seen that the overall heating demand in 
summer, spring and autumn is approximately 10%, 50% and 
20% of the winter demand respectively. Consequently, we 
assume that, in summer, there is one SETS unit that charges 2..5 
hours a day, can be disconnected anytime during the charging 
and another unit can be turned on whenever necessary.  

In autumn, one SETS unit charges for the full seven hours, 
but can be disconnected at request; the other remaining units can 
be switched to charging when necessary. In winter, four units 
are in full operation; in spring – two, in either case the 
operational units can be switched off and any idle units – set to 
charging. 

The day-ahead price scenario generation settings are derived 
from an analysis of the Nord Pool Latvian bidding area prices 
during the period of 01.06.2017–31.05.2018. Expected mean 
price for 99.5% of hours is 37.75 €/MWh, expected maximum 
price for 99.5% of hours – 119.5 €/MWh, expected ratio 
between mean weekday and holiday prices – 1.25, expected ratio 
between mean daytime and nighttime prices – 1.44, expected 



 

minimum price – 1.59 €/MWh, expected rare maximum – 
255 €/MWh. A total of 1000 price scenarios are generated. 

The balancing scenario settings are derived from the 
common Baltic balancing market launched on 01.01.2018. The 
expected balancing market liquidity is 64.97%, ratio of negative 
vs positive imbalance hours – 0.44, expected balancing price 
during positive system imbalance – 0.58 pu from the day-ahead 
price, expected balancing price during negative system 
imbalance – 1.49 pu from the day-ahead price. Zero 
extraordinary balancing price events are assumed. 

The generated hourly day-ahead market and balancing prices 
across the thousand scenarios are summarized in Fig. 3. 

 

Fig. 3. Day-ahead (blue) and balancing (red) price histograms 

B. Results 

Though the simulation results imply there have been much 
more DR activations for load increase than for load reduction 
(on average, 452 times for increase and 199 for reduction), Fig. 4 
suggests that the reduction operations have been overall more 
economically beneficial (scenario average of 46.50 € vs 
12.71 €). This is also reflected in the specific benefit per DR 
activation (mere 3.92 €/MWh average for increase, but 
49.80  €/MWh for reduction). This can primarily be explained 
by two factors, the additional positive cash flow component in 
case of load reduction (see Fig. 4) and the initially assumed load 
recovery factor 0.9 for both directions, which implied that load 
increase DR is slightly wasteful in terms of energy consumption. 

The average NPV is at 268.10 €, however, Fig. 5 and Fig. 6 
show that there are some scenarios (3.6%) where the NPV is still 
negative at the end of the selected service life. The average IRR 
is 17.56%. The average payback period is thus 7.23 years while 
the median is 6 years, which signals that the outlier scenarios are 
likely skewing the mean. Indeed, Fig. 5 shows that some of the 
outlier scenarios have not reached payback even by year 20. 

Nevertheless, while an expectable 268.10 € benefit 
accumulated during a 15-year period is not necessarily very 
enticing for a whole household to allow remote control of their 
heating equipment, this result does serve as valuable first 
insights in the assessment of the economical potential of 
participation in explicit DR on a dwelling level.

 
Fig. 4. Economic assessment for a single modeled year 

 
Fig. 5. Long-term economic assessment for the asset service life (15 years) 



Fig. 6. The cumulative cash flows in the simulated scenarios 

A note should be made, however, that the initial 
assumption of a household in Latvia exclusively heated by 
SETS devices is not strictly realistic since even conventional 
electric heating which could be replaced is not currently 
widespread in Latvia and SETS is on a significantly higher 
price range than conventional heaters. If the SETS device 
costs where also included in DR CAPEX calculations, 
payback would not be possible. 

C. Impact of the Payment Sharing on SETS DR Feasibility 

Additionally, the assumption that 100% of the TSO 
payment for load reduction is received by the DR asset owner 
is objectionable. To alleviate this limitation of the study, we 
completed several additional model runs with all the same 
input data only varying the share coefficient. The results from 
the repeated runs are summarized in the following table. 
Evidently, the share of TSO payment the DR asset owner 
receives has to be higher than 50% for the participation in an 
explicit DR program to be economically meaningful. 

TABLE I. EFFECT OF BENEFIT SHARING ON DR FEASIBILITY 

TSO payment 

share passed to 

the DR asset 

owner 

Long-term assessment parameter 

NPV, € IRR, % 
PP, years  

mean / med. 

% of 

scenarios 

where PP 

impossible 

100% 268.10 17.56 7.23 / 6 0.0 

90% 209.37 14.57 8.51 / 7 0.0 

80% 149.28 11.32 11.17 / 8 0.0 

70% 101.08 8.57 15.06 / 10 0.7 

60% 35.43 4.37 22.92 / 13 2.0 

50% -6.85 1.47 29.99 / 16 3.4 

IV. CONCLUSIONS

The developed Monte Carlo simulation-based DR 
economic assessment tool has proven to be useful in providing 
preliminary evaluation of the potential benefits controllable 
load asset owner might gain by participating in the power 
system balancing via an explicit DR program. However, the 
model employed requires quite detailed knowledge of the 
technical characteristics of the DR asset, especially in regard 
to its available flexibility with an hourly resolution. In general, 
the results are assumption-sensitive, thus any output should 
not be viewed independently of the input.  

The preliminary results signal that electric thermal storage 
devices can recoup the additional investments necessary to 
make them DR-ready, but only if more than 50% of the load 
reduction renumeration is passed on to the asset owner. In fact, 
the stochastic output of the model shows that even at 100% 
renumeration, there is a small probability that the payback 
period could exceed the asset service life. Realistically, 
however, such a full payment sharing is unlikely as the 
aggregation service provider also needs incentives for its 
operation. 

In conclusion, a more accurate DR economic feasibility 
assessment would require near perfect beforehand knowledge 
of the contractual setup between the DR asset owner, 
aggregator, BRP, TSO and other potentially linked parties. 
However, the current version of the tool already allows 
modeling a variety of different setups which enables studies 
on finding the most suitable business case for a particular 
application. Nevertheless, further improvements of the tool 
and subsequent more rigorous validation are in the plans.  
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