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Overall description of the Doctoral Thesis

Relevance of the topic

Since the very beginnings of Alternating CurrenCjAsystems in late 1880s
[1] it was apparent that the system must be innealdoetween generation and load,
otherwise the voltage and frequency will swing Wydé¢hat can damage devices and
make the entire system unstable. Some would atgatesince then the current day
power grid is the largest man-made machine [2], i®ever its complexity cannot
be overlooked. Modern power grid consists of milioof moving and stationary
parts, variety of signals (including control sigg)adnd, of course, electric power, that
is the cornerstone of any modern society. Overmthahd for power is ever increasing
and large scale outages and blackouts are condidataclysmic events.

In order to keep system running and lights on, gsh&tem must be kept at
balance, but it is an increasingly difficult tagsk accomplish. Distributed renewable
energy generation, uneven load patterp®wer line load congestions and overloaded
transformers, are common these days. In order &p ke with increasing power
demand, generation/load uncertainties and the mrament for continuous supply, a
new breed of measurement device was designed id-1@9phasor measurement unit
(PMU). Based on 1983 idea proposed by A. Phadkehdrp and M. Adamiak [4] of
phasor measurements the device was capable td repbtime system frequency 30
times per second (for 60Hz system). Compared to[HCAverage 4 second latency,
this is almost real time and allows for real-tinei@ns to be carried out to ensure
system integrity. All major power system operatoase been deploying PMUs since
then [5], including Latvia where JSC “Augstsprieguikls”, have been investing in
PMUs since 2009. Possibilities with PMUs do nopgtrere, and enormous effort has
been put for introduction of PMUs for distributiametwork [6] (where usually
distributed small-scale generation is located afahding modes are more relevant).

Capabilities offered by PMU are very valued anduneml during outage
investigations, outage prevention and system woddeanmanagement. Yet, under
IEEE standard [7] PMUs are struggling with the noeament that had implications of
being one of most useful — rate of change of fragug ROCOF). Issues were so
severe that the standard got amended [8] and dewider test is allowed to skip
reporting ROCOF during ROCOF change.

This work is dedicated to provide a proof of coriciep a new approach of
making improved phasor (and phasor-like) measuré&r®sed on hypothesis that the
act of measurement is actually the same as soktngquation. This is an idea of
Dr. Harold Kirkham. During research the SEMPR (Sigastimation by Minimizing
Parameter Residuals) is developed and real-waogithis as well as synthetic data is
analyzed for research in ROCOF measurement satysiliihe present Thesis touches
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also philosophical questions of real world and emtgal models and basis of
metrology.

As part of research a new metric, called Goodné&#,as defined in order to
improve PMU reports and our understanding of rgabason in the network. Also,
first experimental results for sampling variance provided, showing an optimum for
sampling rates for different noise affected signals

Practical implications of the work presented cdeafdigital measurements
from digital multi-meters to PMUs and calibratioqugoment in laboratories.

Based on results provided the idea can be apphed majority of digital
measurement field and a concept for double-exponemtel is provided as an
example for future research.

Goals of the work and main tasks

The goal of the Doctoral Thesis is to prove a negasurement hypothesis
(the act of measurement is equivalent of solvingegnation) and make a working
concept model for phasor measurement units.

Main tasks:

- to develop a mathematical model for electric sigramhmeter estimation;

- to develop a solver for estimation-based measurtesnen

- to analyze noise stability of the model;

- to analyze the obtained real-world signals;

- to make statistical analysis of obtained resultsorder to determine
stability of the model;

- to propose full or partial implementation of the thoe in real PMU
devices.

Scope and object of the research

The scope of the work is the power grid and itsmmaeasurements in a form
of a phasor (input for phasor measurement unitsg Main research object is a new
proposed method for performing phasor-like measargsfaster and with higher
confidence.



Scientific novelty of the work

- Dr. Kirkham's idea of “intelligent measurements’traduced a significant
discovery. In this work the idea is applied to mhraseasurements.

-  SEMPR method has been developed for easy and dieesignal parameter
estimation.

- Goodness of Fit (GoF) metric is introduced to gweasurements a degree of
credibility.

- An experimental statistical analysis, called samgpirariance, is introduced and
analyzed with SEMPR.

Practical significance of the work

- This work and intelligent measurements have prakctimplications in all
applications where digital sampling and signal pssing is performed.

- The introduced metric GoF in dB is implementableamy signal processing
measurement device to indicate a level of trustaameput in a measurement to
explain observed physical phenomenon. It has ajréaén implemented in a
real PMU device for testing [9].

- Statistical analysis performed in the work can Hadfter understand the noise
contents in the power grid and analyze their impagt measurements to
improve them. Statistical analysis, just like Gah e performed in the same
device.

- SEMPR can be easily implemented with any measurenderice with
sufficient processing power to measure wide rarigbfi@erent signals, since the
measurement models are easily changed and adjUsigdther with GoF it is
possible to fine-tune the model to get the bestnases for signal parameters,
e.g. adding harmonics and DC offset for phasor4tileasurements in real PMU
devices.

- Practical implications of the thesis are extremeigle, starting with electronic
multi-meter to a PMU, testing equipment in labori&®, calibration equipment
and finally in academic education — the way welteaaodern metrology.

Methods and tools used

- Curve fitting method with bisquare weighted residomanimization was used
for developing the concept of SEMPR.



- Additive sample and individual parameter noise dtim methods were used
for white Gaussian, Brownian motion, harmonics ab@€ offset noise
implementation.

- Allan variance and introduced sampling variancéistsieal methods were used
to describe estimator stability and noise effects.

- The code for SEMPR and parts of signal generationgss were developed in
MathWorks MATLAB software.

Thesis for defense

- An act of measurement is equivalent to solving @magon in a mathematical
model set by physics.

- SEMPR can be practically implemented and is coniparéo a real PMU
capability.

- GoF is useful metric for stating a confidence lefeglany given measurement
made by any PMU device.
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Scope and structure of the work

The work is dedicated to science of metrology andre specifically, digitally
sampled electrical measurements. Main emphasistisrpphasor measurement units
and measurements of power system signal paranatdnsossible improvements.

The first chapter deals with philosophical questi@and basis for the non-
stationary power system waveform measurements.rélatust be separated from the
conceptual models in one's mind, while keeping rtiaglel tractable and related to
nature. Models can be re-adjusted, but natuwrannot.

The second chapter focuses on phasor measurenmtntoathematical model
underneath, and their use in power system syncednmeasurements. Model
limitations have been indicated and possible sohstioffered.

The third chapter shows the mathematical and dpeélgractical proof-of-
concept for Kirkham equation-based model for phdiker measurements in power
system (Signal Estimation by Minimizing Parametesiduals).

In the fourth chapter the limitations for SEMPR a&eplored with various
synthetic signals, containing variations of noiaesl harmonics. Statistical analysis
methods are implemented, and sampling varianagrnsduced. The chapter provides
first experimental results on sampling variance pmssible uses in real-world
applications.

The fifth chapter contains results from real-workignals and PMU
measurements, including a fault in extra-high \g#tanetwork. It is shown that
SEMPR in general performs better with measuremewts the fault sampled data
than PMU. Results of statistical analysis are ptedifor real-world medium voltage
distribution network signal.

The Doctoral Thesis has been written in Englisleotisists of Introduction; 5
chapters; Conclusion; 58 figures; 2 tables; 3 aaggthe total number of pages is 91.
The Bibliography contains 60 titles

Outline of the work contents

Chapter 1. Analysis of Different Mathematical Mozl&dr Real-
world Representation

11



1.1 Carnap equation and model

The most relevant notion to begin with is the Cargaantitative language of
a measurement, or in other wordkabeling for different models. Consider two bodies
with length, for example pieces of woa@ndb. If they are combined so that they are
end to end lying in a straight line, the new phagkantity is now a combination of two
objects and have length that is the sum of thetlengf a and b. This sounds like
additive rule for length. Unfortunately, quite aftthis rule is not satisfactory.

Carnap really stresses out the difference betwkervto worlds — physical
and mathematical. The symbol for physical joinime@ation %” is then introduced.
Correct way of expressing the joining of two lirieen is

L(a°b) = L(a) + L(b). 1)

The “=" is the bridge between the real, physicalldi@nd the conceptual or
mathematical one.

Every periodic function has a frequency parametari frequency by
definition “number of occurrences per unit of timis’ something existing in real
world as swinging pendulum or celestial cycles. ©me cross the “=" in Carnap
equation (1) it becomes a variable in an equatfoa wave function. There is a large
difference and we should avoid confusing them ktirales. For the purpose of this
work the term “frequency” denotes second variablevave function (symbab) and
the physical property of this number should be gmitle, since there are questions
like:

e What is the frequency when frequency is changing?
e What is the frequency for a quarter of a cycle aign

In this sense in this work “frequency” (if not saitherwise) is only true for
the measurement window and is a parameter in aatiegufor a mathematical model.

1.2 Rutman models

Keeping in mind the distinction between the nat@me our conceptual world
J. Rutman put it this way:

“... models are used to represent the physical warthich
is so complex that many details are ignored in thedel:
otherwise, the latter would become intractable. e other
hand, properties that have no direct meaningfulrterparts in
the real world have to be included in the modelntake it
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tractable (stationarity of random processes is alldkeown
example).”[10]

So, we can add or remove parameters and assumgtoasr conceptual
models of reality, but have to always keep in ntimat it does not change the reality
itself, just our understanding. If something change nature, we have to
accommodate in our models, otherwise our knowledigéhe phenomenon being
observed will be completely wrong, yet measurencantstill be very accurate.

The mathematical model of an oscillator is givethwi
V(t) = [Vo + §(O)] sin[2mugt + @(D)], 2)

where Vo is nominal amplitudeyo is nominal frequencyg(t) is random amplitude
noise andp(t) is random phase noise.

What is the frequency when the frequency is chag®jiBGan it be answered
with instantaneous frequency?

Instantaneous angular frequency for (2) is

do(t) (€))
de ’

d
w(t) = &(wot + cp(t)) = wy +

wherep(t) = d‘z—it) is a random frequency fluctuation around the ideflewo [11].
There is stationarity problem fgi(t) where theoretically the existenceqft)

is at question. As Rutman concludes, one must g careful when dealing with

phase and frequency noises, since it may leaduseaof non-existent quantities. In

this work SEMPR is made to operate with frequeptyse, and amplitude noises, but

it is done controllably, keeping in mind the phydimnplications.

Instantaneous frequency can never be instantarsdoces it always involves a
finite averaging intervat. The notion of frequency for a dot on a wave fiorcts
simply not possible and the same distinction mesditawn between mathematical
frequency and physical frequency of a periodicaleva

1.3 Kirkham model

It is Dr. Kirkham's idea to show that the “messagefhing from a measuring
device has “meaning” and it must not be ignoredkenin Claude Shannon's [12].
The equal sign in Equation (1) is the link betweenceptual and real worlds, but it
does not mean “is the same as”, instead it shoallthterpreted as “is the same value
as'. Therefore, the physical frequency of repeatsgllations is not the same as the
value for the frequency in a mathematical modes jtist a representation.
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The same stands true not only for measuremenglbaitfor signal generation.
Dr. Kirkham shows that those are practically thmegust in different directions in
Carnap equation,

siggal generation 4)

X(a o b)=X(a) + X(b)

_—
measurement

where measurement is an act of solving an equédiomathematical model values,
but the process of signal generation moves infaondtom the mathematical model
into physical world. As Kirkham indicates, caliboat, of course, involves both. The
calibration block diagram is given in Figure 1.104h3].

instantiation | .te-.. measurand :

la Ise‘ of P perdan equation)
value i :

DIA
converter

—
| voltage
i reference

¥ S

generation
algorithm

signal
generator

sample values

measurement declared " model
algorithm value  }--i(an equation)i

voltage measuring
reference instrument

Fig. 1.1. Calibration block diagram.

On the left side there are real-world non-perfext aoisy signals, and on the
right side is the conceptual mathematical worldf ith both cases (measurement and
generation) contains some mathematical models, nigd®ur understanding of
physics and mathematics.

Chapter 2. Synchronized Phasor Measurements irsiimaaion
Network

Synchronized phasor measurements are becoming brikeomost vital
measurements of a modern power system.

With SCADA the measurements are captured everydnsks or so and from
different areas they are not captured at the esacte time. System monitoring is
essential during large disturbances and transiemegses. In order to capture system
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dynamics and for fast real-time control/supervisitaster capture periods and
synchronized data is essential.

Synchronized phasor measurements mean that allunegasnts are using the
same time reference and are synchronized with Ud@idinated Universal Time)
using GPS (Global Positioning System) clocks [M/th fast measuring rate (25
measurements per second in 50 Hz system) it islpeds monitor system transient
processes. It is possible to discover blackouts, fripping, generation unit dropping
from network, FIDVR (Fault Induced Delayed Voltagecovery) and other transient
processes in real time as well as control the paystem elements in real time to
keep the system in balance.

Sine-wave between two adjacent buses will chang@tfase angle depending
on the load, so by measuring synchronized phasdrsth instances the P flow can be
then computed (Fig. 2.1).

pvul
- pwg] L=

[PMU] | >

L e

Fig. 2.1. Phasor angle measurements across posternsy

Phasors are used for much more than just line leatimation. One
implementation lies in control and protection domaivhere phasors can be very
useful [15], [16]. Stability depends on three fastaotor-angle stability, frequency
stability and voltage stability. Increasing compigxand interconnectivity of a
modern power system [17] as well as larger penetrabf distributed renewable
energy sources [18] can create instability of tlosvgr system frequency. System
oscillations at some circumstances can cause ssystem instability, falling out of
synchronism and blackouts [19].

2.1 Model of a phasor
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A. Phadke, J. Thorp, and M. Adamiak proposed aidea in their 1983 paper
on how to measure frequency really fast and witlomuinting signal zero-crossings

[4].
Consider the exponential notation representingsiiesoid:
XmRe[e/WEH®)| = X Re[X,e/WD + /(@] (4)

where Xm is amplitude,o is frequency, an@ is phase. In power applications, it is
customary to omit the Re notation and to omit tiegudiency term, so that a sinusoidal
input signal is written

x(t) = X,,e’®. (5)

Note that the simplified equation of the sinusoidesl not include the
frequency. It includes only the stationary phasor.

Measuring phase angle and frequency is a hard ttlando (for real time
applications). As shown by A. Phadke al. in [4], it is possible to measure the
difference in the phase angles between the reaupginase measurements and, by
doing that, find the change in the frequency:

d_LlI _ lpr B L|Jr—1 (6)
dt ~ (1/50N)

wherey is derived from a “phase factoe’V¥r, the differentiated phase anglejs
recursive measurement, aNds sampling rate in samples per cycle.

A value called “rate of change of frequency” (ROQ@Fs expected to be a
very useful tool to indicate changes in the powestesm. In case of generation unit
loss or line tripping, the frequency would be aféetand ROCOF would indicate how
fast the changes are. From change in the frequéretyween two recursive
measurements ROCOF can be derived,

df 1 d%y (7)
dt  2mde?’

wheref is the frequency.

Note that the model of a phasor describes a sinewath static frequency
and amplitude that is true from reference time nénity of time. This is the
mathematical model used in phasor measurement(kls).

16



2.2 Synchro-phasor measurement units

PMU is a time synchronized measuring device repgréstimates of positive
sequence voltage amplitude and phase angle, leeg@hdncy, and rate of change of
frequency. A PMU prototype was developed in 1988iadinia Tech, USA, [20] and
in 1992, first commercial PMU was produced at Mdgre Inc., USA, (Model
1690). In 1995, the first standard was developed,raost recent update was released
in 2014 [8].

The input for any PMU is a filtered sine wave sigrthat gets sampled and
processed for synchronized measurements (Fig. 2.2).

GPS
receiver
—p
) A/D
= converter Processor
—> L

Fig 2.2. Main functional blocks of a PMU.

Actual measurement unit algorithms are commeraakets for each PMU
manufacturer, but in general at least some partbgital signal processing are taking
place in each and every one of them and are assl

input signal is filtered;

sampling rates can vary greatly (from 24 sample$18 samples per
cycle [21]);

DFT is calculated,;

sampling may be synchronized with the UTC clockhersignal itself;
phase angle differentiation is performed to caleutystem parameters;
parameters are time-stamped and forwarded to acdataentrator.

Discrete Furrier Transform (DFT) is calculated ra§li4]:

VI —jokn (8)
= — N
Oty

k=1

whereN is total number of samples in one period of tlyaal, x is the phasor, arnk
is the point-on-wave sample. Frequency-domain bassdulations produce the
positive sequence phasor

17



x; = |xq]€7, %)

with an angular velocity exactly corresponding ke tdifference between system
reference frequency and observed frequency. Themysequency is then
dep, (10)

(D:w0+w.

While details of the phasor calculation technigire®MUs are unknown to
the public, for sure they include common key poitit® output is 3 phase positive
sequence voltage magnitude and angle, three phasiive sequence current
magnitude and angle, local frequency (as devidtiom nominal), rate of change of
frequency, additional defined analog or digitalnsilg (like transducer values, relay
statuses or other flags). The accuracy of a PMUsoreament is expressed in parts per
unit as TVE (Total Vector Error) of a “perfect thetical phasor” [22]. TVE is
described in the standard [7]:

2 2 (12)
(£ -x%m) + (20 -xm)

TVE =
™ (X)) + (X;,(m)

whereX, (n) andX;(n) are the sequences given by phasor estim&tés) andX;(n)
are theoretical values of the input signal at gitnere ().

According to [8], the allowed TVE for a steady stédst is 1 %, which means
that there can be 1% difference between the obdgaivasor and theoretical phasor.

2.3 PMU limitations

Timing is very important in synchronized measuretseAllowed 1 % TVE
error corresponds to £31 ps time error in 50Hzesysk8], therefore GPS clocks (or
equivalent) are essential. PMU has to account é@mection latency and delay of
UTC signal to make synchronized A/D conversion.sThecomes very important
when comparing two different vendor PMUs becauselsgonization processes can
be implemented differently (some A/D converters phase locked to the system
frequency).

Signal filtering is necessary in order to solveasiing problems and also to
remove any harmonic disturbances with any out efdbsignals. Filtering brings a
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delay that has to be taken into account. Usingriily across many windows the
reported value is not entirely independent of presj so there is a delay for reporting
times because of the signal filtering [23], [24].

Interesting PMU performance indication can be foimd. Stenbakken and
M. Zhou's paper (of 2007) and also in PMU staddanendment [8], [25]. The

standard under dynamic compliance (performancenguamp of system frequency)
states:

“Measurements made during an exclusion intervalllshat
be used when determining measurement complianee eX¢lusion
interval is the time interval after the ramp leawsbefore the ramp
reaches the frequency range limit or a point whé&®COF
changes.”

It is well known that the system frequency (therefROCOF) is changing all
the time and at no point, it is static. Neverthg|ekiring testing the PMU can ignore
windows when ROCOF is changing. In [25] (Fig. 2i8}s experimentally showed

how it looks in practice.
1 '\' _.\\ /_\\ /J_\
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Fig. 2.3. Linear frequency ramp test sigfzd] .

Transitions are closer investigated in [26]. Itsisown that with Kirkham
equation the transition process can be monitored.

In further research it was found that a curiousngingenon exist when input
signal for such test is generated mathematically, asing spreadsheet. Let us
consider creating ramping frequency signal begigmiith stationary signal (rate of
change of frequency is zero)tatand then at some given time pdinintroduce a rate
of change of frequency. Ak the rate of change of frequency starts to chahge t
phase. The rate at which the frequency is changisganging again (like in Fig. 2.3)
att = tm. The spreadsheet continues to produce cosineibi@gcsample numbers, but
attm the phase has changed fromto So an unintentional phase jump is created.

This problem was named “van der Pol problem” durihg research. The
solution is simple and for each sample calculatlos calculation must be done for
new frequency and phase values in each step angaalihe following equation:
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y(t) = Acos (J-twdt + (p), (13)

where A is amplitudee is angular frequency, angl is phase constant, but most
importantly the argument of cosine functi@nt + ¢) is the phase.

Chapter 3. Theoretical Background for Phasor-like
Measurements

The classical phasor equation (6) describes acssatusoidal signal that is
true from the beginning of time till infinity, buhis static situation is never true for
real world signals.

Instantaneous frequency by definition cannot beswea [27]. This means
we have to define a measurement window with moaa thne sample. This brings
back the question about changing frequency.

A more suitable mathematical model than classidaspr is needed for
representation of changing signals. B. Boashashri@®s that a new meaning for the
“frequency” parameter should be defined, becausednstationary signals there is
little sense talking about frequency.

3.1 Kirkham equation

In 2014, Harold Kirkham in his report at Pacific fdowest National
Laboratory suggests to modify the equation of asphavith additional parameters
that would allow the signal to change:

C’ C’ CI 12
x(t)=<X'+7Xt>cos{<w’+7‘p+7‘”t>t+(pr}, (12)

where each of phasor's parameters is modified ead#ificientsC. The linear change
and the parameters of Kirkham equation apply oalyatduration of measurement
window (in contrast to phasor that holds truetferO to infinity).
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3.2 Principles of a digital measurement

Digital measurement system is shown and describ¢di3]. In Fig. 3.1 basic
structure of a digital measurement system is shé@walog signal is sampled in A/D
converter according to time reference and voltagerence. Point-on-wave data is
processed by measurement algorithm, and declated ispresented. Note that, e.g.
“apparent frequency” is true only for the measunetmeindow and represents only
the second parameter in the equation (model).

Noise Time Sample values
reference (digital signal)

- \|Measurement —\| Declared lr Model :
/| algorithm |—/| value /I (equation)

|
—————— 4
Voltage
reference Measurement

device

Realized quantity | Sampler
(analog signal) and A/D

Fig. 3.1. Measurement system for digital measurémen

The “front end” (grey part in Fig. 3.1) is suscépdito noise, the “back-end”
of the measurement system is more affected by “sgmaoloration” [29] of an
incomplete mathematical model for the measurenretitd following cases.

- If the mathematical model for the measurementnsnerous and declared
values do not represent the process observed.

- If the signal is affected by constantly present, unforeseen disturbance.
In this case there will be no representation foinitthe model and
measurement algorithms, therefore this value is oy ignored by
measurement, but other declared values get affégtéd

This coloration could be a DC component of the Aghal measured in
accordance to (14) in which case probably the dedlaalue for amplitude would be
altered slightly. Semantics is meaning, and sematwioration is ameaningful
mismatch between the observed reality and the model

Using this notion, it would be possible and benafido implement an
automatic self-calibration, e.g., after transdud®nge [30]. This would also improve
measurement accuracy and device user experience.

3.3 Proof of concept
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After the thought that the act of measurementéssime as equation solving
the question becomes clear: what are the valueésptbduce the real-world signal?
Obvious method is curve fitting. By fitting the exdion to the real observed signal the
values are chosen that in the mathematical equat®nhe best fit and therefore can
account for the signal observed. Software MATLAB Mathworks Inc. was used to
develop the fitting method for the proof of beliBl@ameasurement concept.

Input data

The test signal is synthetically generated by usiMgcrosoft Excel
spreadsheet. For 50 Hz system, 30 samples per abayele were used.

The mathematical model for the measurement is kmqudi4) with added
degrees of freedom for amplitude, frequency, andsphto change. The selected
measurement window was 2 cycles.

To prove the model and measurement method, a sigttahon-zero ROCOA
(rate of change of amplitude) and ROCOF is usedC&® value is set to 0.1 pu/s
and ROCOF is set to 3 Hz/s)

Variables for the signal generating Equation (22)selected as follows:

- amplitude X= 1 pu;
- rate of change of amplitude C'x= 0.1 pu/s;
- frequency o= 50 Hz;
- rate of change of frequency C'y, = 3 Hz/s;
- phase o= 0 rad.
15
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Sample No.

Fig. 3.2. Generated point-on-wave synthetic in@iador the model with non-zero ROCOF
and ROCOA.

Even though the changes are large (10 % changapfitade and increase by
3 Hz of nominal frequency within a second), theg aot noticeable with naked eye
within one measurement window.
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Measurement method

A nonlinear robust least squares fitting algoritterselected, and MATLAB
software is used to implement the measurementifgphconcept. It minimizes the
summed square residuals that are the differenceeketthe estimated data polit
and the observed signal valye Based on the fact that the input signal is na&aim
the method must approach the solution iterativeliptver the residual values.

The algorithm follows this procedure:

1. Start with a set of reasonable starting valuesndmmal operation, the

values are the values at the end of a previousunaagnt window.

Calculate the; values for the current set of input values.

Calculate a matrix of partial derivatives with respto the values.

Weigh the residuals with the weighting algorithm.

Compute the weighted residuals.

Standardize the residuals

Calculate the weights. The final weight is the prctdof the two numbers

produced by MATLAB, one called the *“robust” weigtdnd the

“regression” weight.

Adjust the coefficients and determine whether therproves.

9. Iterate the process by returning to 2nd step uhi fit reaches the
specified convergence criteria [31].

No ok~ wDd

o

Output

The result of the algorithm is a set of all valueshe defined mathematical
model. MATLAB also offers additional metrics foretkalgorithm, like iteration count,
that can be used for evaluation of the performafidke particular algorithm.

The output for the input signal generated in Exspgbadsheet is spot-on. It is
clear that the estimation with clean signals workgh the precision of computer.
Declared values for the input signal (Equation \4¢ as follows:

- amplitude X= 1 pu;

- rate of change of amplitude C'x= 0.1 pu/s;
- frequency o= 50 Hz;

- rate of change of frequency C', = 3 Hz/s;
- phase o= 0 rad.

Of particular interest is the parameter called Gasd of Fit (GoF), which is a
number based on the residuals of the result ohteasurement. Note that the use of
GoF does not depend on the choice of measuremehbdhelhe number can be used
as a metric and calculated by any PMU. In fact, application does not stop there
and GoF can be used in vast majority of other nreasents with different
measurement methods (as long as the observed tyusntvailable to compare to
reconstructed mathematical model).
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The residuals between the reconstructed (from wbtavalues) and generated
waves show clearly (Fig 3.3) that the model andiirgignal are perfect match.

10718
T T T T

Amglitde, [pu]
5 b b o N & 0 ®

0 0.005 0.01 0015 0.02 0.025 0.03 0.035 0.04
Time, [s]

Fig. 3.3. Residuals from reconstructed point-on-evdata subtraction from the input data.

Residuals for the same input data but estimateld phiasor model are at least
10" times larger.

Goodness of Fit

The Goodness of Fit (GoF) proves to be a very ligeti coming out of the
notion that the act of measurement is in fact sgithe equation.

For ideal synthetically generated perfect signgdd (on-stationary) it is clear
that perfect match can be achieved and residug@ioagh zero. The obvious answer
for putting the method to the test is to try taraste a signal that cannot be expressed
in a single model (equation) for a whole measurémandow, like a step-change in
phase of a sinusoidal signal (Fig. 3.4).
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Fig. 3.4. Input signal with step change in phaskiemnestimated signal.

The method reports the values for the reconstrusigdal. But is this
something that anybody wants to know? If the adtyalt signal is given next to the
measurement values, it is arguably useless — tihehnsaclearly not good.

With GoF it would be possible to declare the coarfice level for the
measurement. In [32] GoF is introduced as recigreale of the fit standard error
normalized and expressed in decibels:
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X’ (13)

GoF = 20log T
\/WZ’Ll(uk — vg)?

whereN is the number of samples, m is the number of patars being estimated in
the equationX' is the signal amplitudeus the signal sample value amdis the
estimated sample value. The parametér—m) is called the residual degrees of
freedom [33].

GoF calculated for the perfect signal in Fig. 3304 dB, but in Fig. 3.4 it is
7 dB. The big difference is the reason for usingalthmic scale of decibels. This
means that user confidence that the declared vadadly represent the reality should
diminish. Further questions should be asked, hkeat is going on in this particular
measurement window? One information source is uesd
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Fig. 3.5. Residuals from estimated signal and ispgrial with 180 degree phase jump.

The algorithm must make a choice, to align to irst part of sinusoid or the
second part. In both occasions the declared vauesot the ones for first half of
signal or the second half, but the algorithm (PM&bphas to somehow find a reason
for such signal behavior using the information theér has given to it (equation). In
this case the best fit is if the signal is decmgsfrequency very rapidly, to
compensate for the jump in phase.

Estimation algorithm is called SEMPR or “Signal iEsttion by Minimizing
Parameter Residuals” (hame given by Dr. Harold Iark).

Chapter 4. Analysis of the Phasor-like Model Lirmmdas

In order to understand the limitations of the eatwn algorithm, it would be
beneficial to use no filtering at all. In theoryis® influence should be less than
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classical PMU because phase differentiation ismptemented, which is a very noise
sensitive operation. The major benefit in this cadso would be completely
independent measurements (no overlapping measurevireiows with no filtering).

Noise in the power grid is very well known as at figet very little understood
process. There are many kinds of “noises”, likentarics, random noise, large
disturbances, etc., and some of them contributet wiothe time. This process is in
addition to semantic coloration discussed earbet, both of them contribute to the
error.

4.1 Noise types and their effects

For signal generation purposes there are diffekemis of noise models
available (usually they are given the names orrspldout for PMU model it only
makes sense to use the ones actually found in peygéem. Those are:

- harmonics;

- Gaussian white noise;

- Brownian noise (also known asd noiseor random wally;
- DC offset.

Harmonics are defined as a sum of infinite numbbersaillating functions:

[oe)

d 14
f(x) = la0 + Z a,cos(nwt) + Z b,sin(nwt), 4

2

n=1

Where%a0 is the average amplitude valum, and b, are amplitudes, and is the

integer multiplier of the fundamental frequency.ridanics occur as an effect from
non-linear loads. Based on signal dispersion inrieogeries (16) and notion that the
most expressed harmonics on the power grid areddenumber harmonics — the 3rd,
5th and 7th harmonic [34] the signal distorted by harmonics can be easitgined.
Harmonics should not exceed 5 % of fundamental corapt amplitude.

The other noise type present in power grids is Ganswhite noise or normal
distribution noise. White Gaussian noise is useditoulate all kinds of random
processes going on in the system and all systeardyeanging from radio to cosmic
background radiation. The signature feature of sigmal is its random nature and
standard deviation. The noise signal was chosen staéndard deviation of 0.5 and
3 % pu and mean value of 0.

Brownian noise or Brownian motion (also known rasl noiseor random
walk) is a special kind of noise that is mostly asgedawith thermal and other
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stability issues of devices and measurement systd&nswnian noise can be
expressed mathematically as an integral of whiisendGiven thak; is a Gaussian
random sample value with expected value p X0+ &, the Brownian motion is
given by:

(tdED) (15)
X —jo it dt.

Direct Current (DC) is also a very undesirable comgnt of a modern AC
distribution system. DC can be induced in AC netwlay failure of rectifiers and this
adds unwanted current to other devices. DC cunamtoverheat devices and saturate
transformers. The final signal is given in Fig. %ith 10 % pu of DC offset.
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Fig. 4.1. Distorted input signal.
The final generated input signal consists of thiewang:

- fundamental frequency of 50Hz and amplitude 1 pu;

- harmonics: 3rd, 5th and 7th with amplitude 0.20(@d2 pu and 0.08 pu,
respectively;

- white Gaussian noise with 0.03 pu amplitude andmvedue O;

- DC offset with amplitude 0.1 pu.

4.2 Noise effect on the model

By doing research on noise in distribution system®re realistic values
would be:

! Experimentally examined in authors MSc. Thesisdifaibas traugjumu noteikSana un izpe
zemsprieguma elektrida viedagm meériSanas sistmam”.
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- 0-3 % harmonics;
- 0-1 % noise;
- 0-1 % DC offset.

SEMPR implements no filtering so all the disturbembave effect on the final
declared value and estimation process itself. Adita@ disturbance is implemented.
The true nature and mathematical models of theenpi®cesses are still quite
unknown. ‘Additive noisé for this model is a property we use to make thedel
tractable.

At first, a small Gaussian white noise (0.1 %)dsled to the 50 Hz signal with
an amplitude of 1 pu and ROCOF of 0.3 Hz/s. The sfithe signal and the noise is
then fed into SEMPR estimation algorithm. The rissate given in Table 1.

Table 1

Estimated values of theinput signal with 0.1 % noise

Measurand nput Output
Amplitude, pu 1 1.00
Frequency, Hz 50 49.99
ROCOF, Hz/s 0.3 0.33
Phase offset, rad 0 5.00 --10

Noticeable error for this measurement is 1 mHzeéqgd@iency and 30 mHz/s for
ROCOF estimation. This gives GoF value of 69.63 dB.

GoF is a good indication of the quality of the meament, e.g. 70 dB would
indicate that the model used can account at leas9%9.999 % of the real world
observed. The GoF value decreases once the mad®btcaccount for larger parts of
the observed signal, like when phase jumps by 180targe part of the signal is
noise/other disturbances. With GoF it is possiblevaluate each disturbance effect
on SEMPR and on the chosen modeaii(e 2.

Table 2

Estimated values of theinput signal with different noises

Measuran GoF, dB GoF, dB GoF, dB

model (Harmonics) (Gaussian) (Brownian) GoF, dB (DC offset)

01| 10| 125/ 304 01 20 15 310 Qg1 10 15 BO 01O| 15| 3.0
% pu

28



Phasor 61 | 41| 37| 31| 68 49 46 4p 3¢ 17 14 8 b9 40 |36 |30

Kirkham

. 61 | 41| 37| 31| 69 49 46 49 3¢ 18 14 B b9 B9 |36 |30
equation

Kirkham
equation
with 304 | 318 310, 307 69 49 4 3P
harmonics,
DC
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[

’9 PO |8 264 P33 |2346

- The Brownian noise impacts the measurement the .mtistis
understandable, as random walk increases with time;

- With lesser disturbance to a measurement is thesskau noise (the
average value should be approaching zero), butesihere is no
mathematical model to predict noise values (ranglataes), it affects all
measurements equally.

- With small ROCOF (comparable to noise signal [26Blues the
measurement quality is comparable with phasor modgisurements, but
one must keep in mind that the small ROCOF valueswhat we are
really after.

- Harmonics and DC offset can be described in theeinadd therefore
improves the measurement for those types of diahads. For Brownian
noise the model assigns at least some of the ramdiknamplitude to DC
offset, so fit for “Kirkham equation with harmonjcOC” slightly
improves.

4.3 Allan variance

Allan variance otwo sample variancé an appropriate way to measure the
stability of the estimator in time domain. Allanrigace is widely used in precision
clock and oscillator industry to measure clock #itghbdue to noise, so the same
principles can be applied to SEMPR stability wiigndling noisy signals.

The Allan variancec; , as defined by David Allan and expressed
mathematically in [35] and later in [36] as:

1 1
03 (1) = o5 ((0%)%) = —((4y)?), (18)

where thert is the measurement interval, and brackets < >tde@osemble average
for infinite time. Allan variance is then computeder large strings of measurements
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and the more measurements the better is the cociden the estimate. Usually the
calculated Allan variance is plotted as a functidmeasurement window length and
looks as inError! Reference source not found. 4.2 [37]. Increasing of measurement
window gives smaller variances but given long emmowugndow lengths a minimum
can be achieved after which the variance starisd@ase. This is usually caused by
drifting parameters or low frequency noise (like®nian noise).
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Fig. 4.2. Deviation as a function of measurememgtie[37].

The notion of constant parameters over the measmemindowt gives
opportunity to use Allan variance for SEMPR freqeyeestimates (constant through
whole measurement window). Constant parametersvemg doable with synthetic
generated signals. This also allows to preciselytrob the noise parameters and
estimate the limitations of the estimator in a seoresilience to noise and different
measurement window lengtins

1 % white Gaussian additive amplitude noise on itiput signal (22) is
considered with different measurement windows.

- Single cycle (0.02 s)
- Double cycle (0.04 s)

- 4cycle (0.08 s)
- 10 cycles (0.20 s)
- 50 cycles (1.00 s)

The Allan variance can be calculated for all measient windows. The
results for frequency variance are given in Fi@ where each dot represerid0
measurement variance at 1 % additive white Gausgiee.
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Fig. 4.3. Allan variance for frequency variableaafsinction of measurement window length.

It can be observed that given larger the measuremardow the less the
variance and more confidence in the measuremens ddmes clearly from the
definition of white Gaussian noise characteristieat over larger observation period
the mean value approaches 0 and does not affecatlace so much.

By adding larger amplitude noise, the variance Walko change. Different
white Gaussian noise amplitudes are considered:

- 0.5%;
- 1.5 %;
- 59%;

- 15%;

and added to the input signal. The results fordeagy are given ifElRON
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Fig. 4.4. The Allan variance of the frequency valas a function of measurement window
length for different noise amplitudes.
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Interestingly, independently from noise amplitudegfiency estimate keeps
the trend and confirms that the frequency estimatiould greatly benefit from
longer measurement windows.

In power system case a parameter of particularestes ROCOF. In the
generated synthetic data, the ROCOF is set 0 Hatsf the estimator is allowed to
search for it, it is possible that there is a vahdssigned to ROCOF to better fit the
model (this should be more pronounced in short-aimdcases). ROCOF value
usually is very small and it gets drowned by naisey fast, so with assigned noise
values for Gaussian white noise the estimates liortsmeasurements should be
unstable. ROCOF variance as function of measurememiow length and with

multiple level of noises is given [ ONNRGIISICSSOUICENONIOUNC
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Fig. 4.5. The Allan variance of the rate of chanf&equency values as a function of
measurement window length for different noise atages.

It is clear that ROCOF benefits from longer obsBormawindows even more
than frequency measurement (no surprise here, &ORAs frequency derivative).
Short measurement windows produce widely variab@CRF values, even if the
ROCOF is constant. This poses the challenge to unedseequency and ROCOF at
ever higher speeds and shorter windows. It is ptessihat ROCOF (about 5
magnitudes smaller than frequency variable [32]viry short observation windows
is not possible to measure in presence of evenl smaale (comparable to ROCOF
itself). The problem is that PMUs are asked to refh@ values within very short time
(couple of cycles).

Just to indicate how the values are varying in Bi§, frequency values are
given for each measurement window length.
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Fig. 4.6. Estimated frequency with 5 % added wi@iteissian noise.

Single cycle measurement variance is very largam(fd9.2 Hz to 50.2 Hz)
and larger measurement windows converge more ta 50H

The variance of ROCOF in Fig. 4.7 is given for §08le measurements.
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Fig. 4.7. Estimated ROCOF with 5 % added white Giumsnoise and measurement window
of 50 cycles.

Considering the difficulty of distinguishing ROCOFom noise, it is very
clear, that larger measurement windows reduce vhisance and for 50 cycle
measurement windows the effect of white noise éticed and the error is down to
15 mHz/s.

The other type of noise is low frequency Browniaation or red noise. For
Brownian noise, the amplitude levels are selected a
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- 0.009 %;
- 0.03 %;
- 0.5 %;

- 1%.

For combined additive sample values with Gaussiatewnoise the results of
phase estimation are givenknror! Reference source not found. 4.8.
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Fig. 4.8. Allan variance of phase measurement tgteby different levels of white Gaussian
and Brownian noises as a function of window length.

It is evident that a minimum can be observed. Witken resolution it appears
that the optimum measurement window length for%.%vhite Gaussian and very
small 0.009 % Brownian motion is 10 cycles. Forgé&amoise value minimum
variance is for 2 cycle-windows. This is mathemnadticalculation that could be
performed in any PMU device as after measuremealysis.

In the next case it was assumed that all noises@déive noise values that
were added to signal samples. This gives a lotapftion for signal generation and
estimation. By adding different kind of noise ta@lkegarameter in Kirkham Equation
(22), it can be observed that the effects are mdiffe With separately added 5 % of
white Gaussian noise to amplitude, frequency, RO@@dFphase it can be seen that it
affects the Allan variance of each parameter ciffdy.
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Fig. 4.9. The change of frequency estimation vaedny different types of noises for
differently sized measurement windows.

- The ROCOF noise results in the smallest varianbes i due to the tiny
ROCOF role in the model [26]. However, estimatidrR&OCOF is very
similar to estimation of noise signal, and actuallyvariances of ROCOF
are large.

- The most influential noises are the amplitude naisé phase noise. This
is also the reason why they are usually separatetl examined as
different functions.

- Frequency noise theoretically cannot be distingedsfrom phase noise,
but since it is a derivation of phase noise it$ugriice is reduced below
amplitude and phase noises.

- Interestingly, some noises cause an increase imnay in larger
observation windows. This is evident with frequemoyse for amplitude
and phase estimations.

- Even though ROCOF noise influence on the variasceery small, it
increases with observation time and by 1s it hesched the same
influence on the estimated parameter varianceles obises. This makes
1 second observation as a boundary where ROCOFreaqulency noises
could overwhelm amplitude and phase noises. Folothest variance 1 s
could become optimal because, while with increasmgasurement
windows amplitude and phase noise influence woelttrehse, frequency
and ROCOF would increase, causing the same esbimadiriance.

4.4 Sampling variance

There are many similar theorems, like Fractionahgang theorem [38],
Walsh sampling theorem [39], Zhu sampling theoréfj fnd others, just to mention
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few. The fact that there are so many related teeoand topics points out the
significance of signal processing to the moderrhrtetogy for communication,
control, and processing applications. However, th#ories trace back to Harry
Nyquist [41] and Claude Shannon [12].

If the signalf(t) is band limited, then it can be fully describgddenumerably
infinite set of values equally spaced by\W/2econds (if a functiof(t) contains no
frequencies higher thaw cps)

2y n L sin2nW [t — (L)] (19)
0= 2 @ =G

where n is the sample value obtained by sampling. Spectafinsuch signalf(t)
outside bandV is zero.

The main problem with real-world applications isatthno real signal is
perfectly band limited nor filtered to be perfectignd limited. In fact, in order for a
signal not to have any energy outside finite freapyeband, it must be infinite in time.

This is something that designers of PMU systemsehkept in mind
knowingly or unknowingly, because each and everyufecturer chooses his own
approach. In real devices the sampling rate cafidme 24 samples to 512 samples
per cycle. This begs the question — are we doirggsampling in PMUs? Sampling
rate nowadays is something that can be changedbitaare (firmware) change so it
is very doable, so what would be the optimum samgptate? In theory it can be
deducible with measurements and their variance.

In 1968, Karl Johan Astrém in [42] discussed défersampling rates or time
analysis ofN samples at equal spaciig By considering a stochastic differential
equation

dx = —axdt + dw, (20)

wherea is a parameter to be estimated(t)} is random walk (Wiener process), and
values x are observed at sampling intervals with equal isgab. The smallest
variance is then mathematically calculated and shiovFig. 4.10.
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Fig. 4.10. Graph of the functid(x) = (¢ - 1)x2. The variance of the estimataisingN
values with the spaciryis a’f(ah)/N. [42].

The optimum sampling choice i% — 0.7974, which gives the smallest
variance ofa. The variance oft increases significantly for sampling rates loweart
ho (larger sampling intervals).

Considering the practical implementation of SEMHAR,should be also
possible to determine the optimum sampling frequelpased on the components
(harmonics and noise, not only Wiener process)hm signal. In such case the
optimum for the sampling rate would also be veryl described by a variance value,
but instead of changing observation time, one watlldnge the sampling rate. It
should be possible to determine the optimum expartaily by implementing
SEMPR. Sampling variance then can be expressediadiynio Allan variance, but
instead averaging the measurements over incredsirg period, we can average
measurement over the increasing sample numbekeat measurement window the
same.
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Fig. 4.11. Sampling rate variance for Amplitudereation.

Simulation results show an interesting trend thatludes a minimum
condition for variance. The following observatiares be made.

- The optimal sampling frequency decreases with targese influence.
This can be partially explained by the effect o thoise over fewer or
larger sets of sampling values. Fewer samples gaaré more noise,
therefore improve the fit numbers and decreasedhance.

- With fairly plausible noise levels {3 %) the optimum sampling
frequency is in fact somewhere between 192 andsah2ples per cycle
(in this simulation closest point is 384 samples @gle). This is in the
same category as for micro-PMU, therefore their @arg frequency
could be around optimum.

This also shows that under-sampling and over-saigsihould be avoided and
by purely mathematic calculations it is possible fied an optimum sampling
frequency based on the typical signal that theadeshould be observing.

Chapter 5. Experimental Data Analysis

During the research in the United States of Ameti@real-world point on
wave data was shared by AEP (American Electric Ppwmmwer network.
Unfortunately, all attempts to get similar datanfrd_atvian transmission system
operator AST (JSC “Augstspriegun#ls”) were unsuccessful as they were met by
silence. Therefore, with the permission from AlexBAchern from Power Standards
Laboratory, all anonymized real data analysis wagedvith available EHV (345 kV
60 Hz) system data.

Processes during fault are of a particular intemstl the reconstructed
waveform can be observed in Fig. 5.1. Notice thatamplitude for the second cycle
of measurement window in phase C is significandly,land SEMPR should be able
to accommodate for that with ROCOA (rate of chaofyamplitude). During the fault
in phase C the fault current exceeds 500 A.
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Fig. 5.1. Fault in 345kV EHV three phase system

Reported phasor values of the industrial PMUs algoprovided so GoF can
be calculated and PMU performance can be determip@dsteady state couple of
cycles before the fault the GoF level of the measient is 34.88 dB. Residual peak
values are around 0.03 pu or 3 % of the fundamental

Estimation, signal reconstruction and GoF calcatatis performed to 1
second worth of data and are depicted in Fig. Bl@ited along GoF values are the
current values to indicate fault duration.

45 600

® - 500
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- 300
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- 200

- 100
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Measurement number

Fig. 5.2. Goodness of Fit for 60 measurements edthesponding current measurements for
phase C.

During fault the GoF values decrease significafdlyproximately 20 dB) and
current increase corresponds well with obtained smesments. Note that the GoF
values during normal operation are more or lessistent and residual values are as
well. This indicates a constant slight mismatclpiase for which at this point the
source is unclear (presumably timing in the device)
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5.1 Real data estimation vs the models

The main advantage of SEMPR is that the model iscsble freely, so
different models can be applied (also with capaédito run them simultaneously as
parallel processes). At least 3 models are wodhkify at:

- phasor model (6);
- Kirkham model without ROCOA,
- Kirkham model with ROCOA (14).

All measurements are performed with the same 2eaydasurement windows
and the same 1 second real-world input data (pGas€&oF metric for measurements
is given in Fig. 5.3.
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25 —e— ROCOA and ROCOF
A Phasor
20 R
R o PMU data
15 1 1 1 1 1
0 5 10 15 20 25 30

Measurement number

Fig. 5.3. GoF calculation for SEMPR measurementspased to PMU declared value GoF
calculation.

In this example SEMPR can achieve better signalesgmtation, especially
during fault conditions. Over nominal operation SE produces results on average
8 dB better than PMU values, but over fault thexell dB difference. Close Gof
values over steady state indicates that over ndraoraitions a phasor is also a very
good representation of the real world.

Estimated values during fault (measurement Nos 3).072 pu for amplitude,
—28.848 pu/s for ROCOA, 60.639 Hz for frequene$3.727 Hz/s for ROCOF, and
46.072 for phase. This means that for amplitude SEMPRnesés that the voltage is
dropping by astonishing 28 pu per second, or 012pgr cycle. This means that in
one cycle voltage level is estimated to decreasat ligast 81 kV. ROCOF value also
indicates slowing down of the sine-wave by 33 Hzgezond.

When plotted together the signal is given in Fig. 5
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Fig. 5.4. SEMPR algorithm reconstruction along vitttiU reconstruction and real
oscillography data.

It is evident that SEMPR makes better estimatiothefsignal, and for large
parts of input data the estimation and oscillogyalies are indistinguishable while
PMU data reconstruction underestimates the pealiesain the first half of the
measurements and overshoots in the second.

5.2 Real data variance analysis

The same AEP data used were considered for faasmmement analysis. The
fault occurs at the beginning of almost one seasodh of sample set. A PMU looks
at the fault in two cycle measurement windows, $EMPR can look at it even at
half-cycle windows and 4 cycle windows (using mod#l a phasor). With
measurement window decreasing we seemingly get ohetial, but with half-cycle
reported values we also get very high variance tweidata where the fault occurred
and the frequency at first jumps to 68 Hz and thleimmets to 52 Hz giving 16 Hz
difference between two adjacent half-cycles, whjast not make sense (not
physically possible). The signal only vaguely rebis sine-wave, SO measurements
only vaguely resemble sensible information.

It is important at this stage to look at the SEM&M®RI the meaning of the
measurement. First, 52 Hz is what apparently gihesleast amount of residuals.
Second, we are looking for coefficient in a phasodel (6) and by the looks of it, the
signal is not a phasor. Our model for represerttiegnature makes no sense. We get
that indication also from GoF that for the measwetrproducing 52 Hz is 26 dB,
instead of steady 44 dB for the rest of data set.
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For further analysis, unfortunately, AEP data ig saitable to sensibly
represent Allan variance calculations, there simgplyot enough data. Larger data
chunks were made available by a uPMU device [2hjpliag at 512 samples per
cycle and providing 30 seconds worth of data iniomadvoltage distribution grid. By
the analysis of the data it is very noisy and aff@ectral analysis the signal contains
3rd, 5th and 11th harmonic as well as high frequemse. Since the data set is from
normal system operation period, the values shoeldqbite stationary and Allan
variance can be calculated (Fig. 5.5).
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Fig. 5.5. Allan variance for distribution netwonlefluency measurements.

Each dot represents an Allan variance calculateoh fdifferent number of
measurements since the data set is finite. Theaedistinctive minimum at 32 cycle
measurement window, which would give approximatedlf a second frequency
reporting time, well below what is expected from BM

Chapter 6. Conclusions

The notion that the process of measurement isantfee same as solving an
equation lends itself well for examination with @&rmaarying signals. The
“‘experiment” of making a measurement by curvergtiproves that the act of
measuring is one that can be done in various waysthe end result should not
depend on the method selected. Most importantigathes that measurement is the
act of using signals from the real world to findgraeters of a model. That model is
almost always a simplification.

The idea of measurement being the same as solvirggaation gives more
room for improving and adjusting our conceptual eledor reality observed. In this
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case a Kirkham equation is used instead of jushasqr to show its advantages in
real-world applications. This gives PMUs added degrof freedom for amplitude
and frequency to account for time-varying signak ik in power system.

PMUs now are one of the most influential modern soeament devices
especially for stability-challenged power systefsr the same system control and
supervision targets it could be possible to als® RK&IUs in distribution network. Of
course, strong communication backbone is essdatialynchronized measurements.

Research shows that PMUs struggle with signalsmnaesition process. This
caused the amending of the PMU standard at IEEE. Siould not be so, and PMUs
must report something. It is suggested to use Gaklidate the trust regions for such
reports.

SEMPR produces independent measurements utiliznfytaring. For proof
of concept synthetic data is analyzed and showddts results.

A metric called Goodness of Fit is introduced amggrated in SEMPR. The
Goodness of Fit parameter, developed from an id¢g]j has showed potential to be
very useful with real PMUs and real signals. Iticades in real time the degree of
match between the signal (changing with the powstesn), and the measurand
(fixed by the design of the PMU). GoF level candaéculated by any PMU and the
calculation is straightforward, it does not dep@mdthe measurement method. The
GoF indicates that near-ideal results can be obdainith an ideal signal. GoF is
proved to be a promising technique for a largesctdsligital measurements.

When tested with different noises, it shows thabvidrian noise has the
greatest impact on measurement. There is less tnipaavhite Gaussian, but for
harmonics we can adjust the model and the impantrignized.

From performed calculations it has been showedRREEOF is actually a tiny
variable in the mathematical model and its contrdsuto the final signal is down to
noise levels. More research in noise and its effeatthe model could be performed
to further improve the ROCOF measurement. It seguite meaningless before we
improve our understanding [43].

By implementing the Allan variance method the fremey and ROCOF
measurements show great benefit from longer memsuntewindows (significantly
more than amplitude or phase).

With introducing synthetic semantic coloration (Broan noise) and based on
Allan variance calculations, an optimum emergesofaiimum window lengths. The
optimum changes according to the contents of tlgnasi (noise content and
amplitude), e.g. for phase measurement with smaltkse amplitudes (up to 1.5 %
white Gaussian (WG) and 0.3 % Brownian (B)) thdroptn is around 10 cycles, but
for larger amplitudes (up to 15 % WG and 1 % B)uabh 2 cycles. For more typical
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1.5 % WG and 0.03 % B noise levels an optimum veasd for 512 samples per
cycle which is what pPMU uses in [21].

An additional statistical analysis tool has beenppsed, called “sampling
variance”. It is showed that an optimum also existssampling rate, depending on
the signal and noise content. For smaller noiseliardps (0.5 % WG and 0.09 % B)
the optimum sampling frequency is 384 samples petec but for large noises
(15 % WG and 1 % B) optimum is quite flaaround 100 samples per cycle.

Based on real-world data and SEMPR results, itdeen proven that PMU
devices are actually solving a phasor equatiorot/Adt time power system signals do
not resemble a phasor. GoF metric shows that Kirkleguation would be a better
option, since more degrees of freedom are providedsignal to change. Using
Kirkham model showed a 6 dB increase in GoF (1féfeiase since steady state GoF
is around 43 dB) over the fault data.

When variance techniques are applied to obtainebdwerld data, it shows
that shorter observation windows are not necegdagiter than sensible compromise.
Considering small impact of ROCOF signal on thalto¢sult and high disturbance
content on signal during fault, it is actually wess to use mathematical model of a
phasor in real-world measurements. As short asdyale measurement windows are
used with the largest variance.

Future Research on the Topic

Statistical analysis is something that PMU also an just like GoF
calculation. In this case it is possible to adjts# conceptual model (including
observer notification, of course), window lengthogpible multiple measurement
windows at the same time), sampling frequency tdieae best possible
representation of the real signal (maximum GoF erl@uch device would perform
informed and intelligent measurements providing enioformation about the nature
to the observer.

One of the findings is that the noise in the powgstem is not a very
researched topic and true nature of the disturlgaratill quite unknown. As the
matter of fact, also the power system signals uridelt conditions are yet to be
studied and not only curve fitting but pattern igation approach may be suggested.
This way it would be possible to get ever betterFGQa@lues and increase our
understanding about the true nature of the phypitahomena in real time.

Real PMU with GoF integration is under way [9], réfere more data and
possible findings are possible. With reported Gaiues along with declared
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parameter values will bring knowledge to the obsewhether to trust or discard the
measurement, and in power system operations thisge improvement.
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