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Abstract – Due to an increase in computing power and 
innovative approaches of an end-to-end reinforcement learning 
(RL) that feed data from high-dimensional sensory inputs, it is now 
plausible to combine RL and deep learning to perform smart 
building energy control (SBEC) systems. Deep reinforcement 
learning (DRL) revolutionizes the existing Q-learning algorithm to 
deep Q-learning (DQL) profited by artificial neural networks. 
Deep neural network (DNN) is well trained to calculate the Q-
function. To create a comprehensive SBEC system, it is crucial to 
choose an appropriate mathematical background and benchmark 
the best framework of a model-based predictive control to manage 
the building heating, ventilation, and air conditioning (HVAC) 
system. The main contribution of this paper is to explore a state-
of-the-art DRL methodology to smart building control. 

 
Keywords – Deep reinforcement learning, deep Q-learning, deep 

neural network, energy management system. 

I. INTRODUCTION 
Deep reinforcement learning (DRL) is power driven by 

developments in machine learning and refers to the nonlinear 
methods, including artificial neural networks trained by 
stochastic gradient descend (SGD) and backpropagation. In 
recent years, many configurations of DRL have been designed 
and implemented, which can understand surrounding 
environment and intelligently control agents through gathering 
and examining a wide variety of data produced in and around 
the functional environment. 

One such ambient intelligence technology application is the 
energy efficiency enhancement of apartment and office 
buildings. There are studies that show that in Europe within 
buildings the primary energy usage accounts for 41 %, which is 
further divided into energy consumption by commercial 
buildings (14 %) and residential buildings (27 %) [1]. However, 
around 30 % of the energy used in building is consumed by 
heating, ventilation and air conditioning (HVAC) system. It 
means that HVAC is the main energy consumer in a building 
[2]. According to the analysis by Coherent Market Insights, the 
smart building market is expected to increase at a compound 
annual growth rate (CAGR) of about 18 % by 2025 [3]. Raising 
focus on safety and security coupled with increasing efficiency 
and emission reduction is expected to drive the growth of the 
smart building market [4]. The efficient process of HVAC 
systems largely depends on their control system and 
optimization parameters [5]. Therefore, the energy demand and 
consumption are directly related to building indoor 
environment, i.e., temperature setpoints, airflow, humidity 
level, window and door type, occupancy, etc., as well as the 
outdoor environment, mainly, by weather conditions [2]. 
Considering all above-mentioned characteristics of HVAC 
systems, a challenging task is to develop an accurate and 
effective control model of an energy management system 

(EMS) for buildings. Energy management in buildings is the 
minimisation of the energy required to maintain a desired 
minimum comfort level for the occupants [6]. Most of the 
EMSs of buildings are complex nonlinear systems, which are 
strongly influenced by climate conditions, building operating 
modes, and occupant time schedules, and should be controlled 
in a smart way [7]. 

The eco-efficiency control task of the EMS model is to keep 
the room temperature, illuminance level as well as CO2 within 
a predefined comfort range, which can be satisfied with a set of 
different actuators. The goal of the EMS is to choose the 
actuator settings depending on building indoor comfort 
setpoints, numerical climate forecasting and control 
engineering to achieve necessary comfort requirements and 
minimise the energy costs [8], [9]. 

Perception of indoor comfort is related to several 
environmental factors such as lighting, appropriate 
temperature, and air quality [6]. To evaluate well-being, there 
are several comfort measures such as PMV index and adaptive 
comfort standard [8], [9]. For instance, the PMV index that is 
used most often is a coded numerical integer [-3,3], which 
evaluates qualitative thermal sensation for the occupants in such 
a sequence: cold, cool, slight cool, neutral, slight warm, warm, 
and hot. To control the comfort level of smart HVAC building 
systems, it is necessary to know the existing environment, 
factors that influence it and setpoints that determine a model, 
which has to be carried out in an intelligible manner.  

The author advocates the use of the model-based predictive 
control (MBPC) approach to smart building energy control 
(SBEC) with the purpose of efficiently controlling the existing 
HVAC in commercial buildings [6]. In literature, there are 
physical and data-driven models for controlling HVAC systems 
[5]. Physical models are based on mass and energy balance 
integral-differential equations, but data-driven models should 
be used for on-line control of HVAC system. For instance, 
branch-and-bound algorithm [10] is used to find the value x that 
maximises or minimises the real value function 𝑉𝑉(𝑥𝑥), where 
f(x) is an objective function that is employed in the 
implementation of HVAC. In the past decades, the application 
of SBECs has profited by machine learning, especially by 
artificial neuron networks (ANN), fuzzy logic and more 
recently by reinforcement learning (RL) [11].  Another study 
[12] opens a wide range of methods that have been proposed to 
solve the building control problems, including linear and 
dynamic programming, game theory, fuzzy methods, particle 
swarm optimization (PSW). 

Several articles have been published so far on optimization 
methods [13], control strategies [14] and modelling techniques 
[15] for building HVAC systems. K. Dalamgkidis et al. [8] have 
developed an adaptive RL controller based on RL technique 
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that considers thermal comfort of the occupants of the building, 
the indoor air quality, and energy consumption.  

Autoregressive exogenous (ARX) models are used where 
their inputs are zone temperatures setpoints of the heating 
system and cooling system, and outputs are actual zone comfort 
temperature and energy power measurement or energy 
performance indicators [16].  

Therefore, the formal problem of RL is facing a learning 
agent interacting with its environment over time to achieve the 
goal, maximise the value or at least optimise it. An agent must 
learn its behaviour through trial-and-error exploration and 
delayed rewarding within a dynamic environment. The problem 
can be solved by using dynamic programming methods and 
statistical techniques or by using space of behaviours to find the 
best performance in the environment [11]. DRL has evolved 
through intersection of RL and ANN.  

To solve the RL problem, it is necessary to find the optimal 
sequence of actions over the prediction horizon [17]. On the 
other hand, this relates to RL problem that it is necessary to 
determine the optimal policy, which will collect maximum 
reward in the long run [10]. 

One study pointed out that faults or non-optimal control 
schemes could cause the malfunction of equipment or 
performance degradation from 15 % to 30 % in commercial 
buildings [12]. 

The literature on building energy modelling and forecasting 
focuses on three categories: long-term load forecasts for system 
planning, medium-term forecasts for system maintenance, and 
short-term modelling for daily operation and scheduling [7]. In 
conclusion, RL techniques are most suitable for the cost 
minimisation problems, as they are capable of learning optimal 
behaviour, while the global optimum is not known [16]. At 
present, there are many studies focusing on improving the 
accuracy as well as simplifying the building energy control 
models to make them suitable for on-line control and 
optimization.  

 
Nomenclature Q-learning 

𝑎𝑎   an action 

𝑠𝑠   a state 

𝑟𝑟   a reward 

𝑡𝑡   a discrete time step 

𝑎𝑎𝑡𝑡   an action at time 𝑡𝑡 

𝑠𝑠𝑡𝑡   state at time 𝑡𝑡  

𝑟𝑟𝑡𝑡   reward at time 𝑡𝑡  

𝜋𝜋   a policy (decision making 
rule) 

𝑤𝑤   a weight factor 

𝑣𝑣∗(𝑠𝑠)   value of state s under 
the optimal policy  

𝐺𝐺𝑡𝑡   return at time t 

𝛾𝛾   a discount parameter 

𝑣𝑣𝜋𝜋   an evaluation function 
for policy 𝜋𝜋 

𝑣𝑣𝜋𝜋(𝑠𝑠)   expected return in 
the state s (value of state s 
under policy 𝜋𝜋)  

𝑞𝑞∗   an action value function 

𝒮𝒮   a state space (set of all 
nonterminal states)  

𝒜𝒜   an action space (set of 
actions) 

𝒯𝒯   a transition function 

ℛ   a reward function (set of 
all possible rewards)  

𝑃𝑃   probability 

E     expectation 

 

𝑤𝑤     weight 

ℒ(𝑤𝑤)   a  mean square error 
in   Q-values 

𝑉𝑉   a state value 

𝑉𝑉𝜋𝜋   an evaluation function 

 𝑆𝑆(𝑡𝑡)   a  random variable of 
the state 

 R(𝑡𝑡)   a random variable of 
the reward 

 A(𝑡𝑡)   a random variable of 
the action 

 
The rest of the paper is organised as follows. In Section II, 

the RL framework with emphasis on Markov decision process 
is given as well as the mathematical ground of Q-learning and 
deep Q-learning principles has been described. In Section III, 
the main principles of deep reinforcement learning for HVAC 
are given. In Section IV, the proposed deep neural network 
architecture is shaped in the context of deep reinforcement 
learning. Conclusions and proposals for future research are 
formulated in Section V. 

II. THE REINFORCEMENT LEARNING FRAMEWORK 
There are two main elements of RL, agent and environment. 

Agent is the learner and decision maker, but environment – the 
thing it interacts with. The agent acts in an environment. Each 
time step the agent receives as the input current state st takes 
action at and receives reward rt. After that, the agent receives 
the next input state st+1 and the next loop starts [17]. The agent 
chooses the action based on some policy 𝜋𝜋:𝑎𝑎𝑡𝑡 =  𝜋𝜋(𝑠𝑠𝑡𝑡) .  
Figure 1 displays the basic RL scenario. 

 

 
 
 

Fig. 1. The basic reinforcement learning scenario. 

In HVAC problem, the environment (controlled system) is 
all those indoor and outdoor factors that influence a room or 
zone of the building. The agent manages a room or zone 
actuators of the building, accordingly, to specified setpoints.  

Action, 𝒂𝒂𝒕𝒕 (control signal) 

AGENT ENVIRONMENT 
Reward, 𝒓𝒓𝒕𝒕 

State, 𝒔𝒔𝒕𝒕 

Controlled  
system, HVAC 

The learner and 
decision maker, or  
the agent as a controller 

 𝒔𝒔𝒕𝒕+𝟏𝟏 

𝒓𝒓𝒕𝒕+𝟏𝟏 

Receives rt 
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In RL, the agent can be a passive learner or an active learner. 
A passive learner simply watches the world going by and tries 
to learn the utility of being in a various state. An active learner 
must also act using the learned information and can use its 
problem generator to suggest explorations of unknown portions 
of the environment [18].  Once the RL components are in place, 
it is possible to define the learning environment through the 
observations, actions and a reward function by means of 
Markov decision process (MDP) [19]. Traditional RL problem 
can be formulated as MDP.  

A. Markov Decision Process 
MDP or controlled Markov chain consists of four parts:  
• a state space 𝒮𝒮, ∀𝑠𝑠 ∈  𝒮𝒮; 
• an action space 𝒜𝒜, ∀𝑎𝑎 ∈  𝒜𝒜, where actions is 𝒜𝒜(𝑠𝑠); 
• the transition function 𝒯𝒯;  
• the reward function ℛ.  

The state space is the set of all possible states of the system 
to be controlled. In the case of HVAC system, the state space is 
the set of n-vectors of values of the position of the heating and 
the cooling actuators, environment disturbances as well as the 
energy cost minimisation value. In each state, the controller of 
the system may perform any of a set of possible actions, e.g., 
heating high, heating low, airflow off, etc. States refer to the 
available information that is pertinent to the agent’s decision 
making [20]. 

The actions are dependent on the given state s and denoted 
by 𝒜𝒜(𝑠𝑠). Actions refer to the decisions [7]. 

The random variable denoting the state at time t is S(𝑡𝑡), and 
the actual state at time t is 𝑠𝑠𝑡𝑡, whereas the following actual action 
is denoted  as 𝑎𝑎𝑡𝑡 . The state at time t+1, 𝑠𝑠′ depends upon the state 
at time t, s𝑡𝑡,  and upon the action a𝑡𝑡 performed at time t.  

This dependence is described by the transition function 𝒯𝒯, so 
that 𝒯𝒯(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡) =  𝑠𝑠′ , which is the new state at time t+1. 
Transition might be probabilistic, so that 𝒯𝒯(𝑠𝑠, 𝑎𝑎) may return to 
a state sampled from a probability distribution over 𝒮𝒮 [21], i.e., 
𝒯𝒯 ∶  𝒮𝒮 x 𝒜𝒜 x 𝒮𝒮 → [0,1]. Since there is only a restricted number 
of states, we may define the probability from one state, let us 
say initial state s to next state 𝑠𝑠′ , where 𝑃𝑃𝑠𝑠,𝑠𝑠′(𝑎𝑎)  is the 
probability that performing action a in state s will transform s 
into new state 𝑠𝑠′. This is: 

P𝑠𝑠,𝑠𝑠′(𝑎𝑎) = 𝑃𝑃�𝒯𝒯(𝑠𝑠, 𝑎𝑎)�.                                      (1) 

Accordingly, the transition function can characterise the 
model of the agent-environment system, which is the following: 

𝒯𝒯(𝑠𝑠, 𝑎𝑎, 𝑠𝑠′)~𝑃𝑃𝑟𝑟 (𝑠𝑠′|𝑠𝑠, 𝑎𝑎) .                                       (2) 

To start with HVAC system modelling, the agent needs to 
use some parametric model of the controlled system 
(environment). At each time step, the agent receives the 
representation of the controlled system state 𝑆𝑆𝑡𝑡 ∈  𝒮𝒮 and on that 
basis selects action 𝐴𝐴𝑡𝑡 ∈  𝐴𝐴(𝑡𝑡). 

Finally, at each episode an agent (controller) receives a 
reward that depends upon the state s and the action a performed. 
The random variable denoting the reward at time t is 𝑅𝑅(𝑡𝑡), and 
the actual reward at time t is 𝑟𝑟𝑡𝑡 , i.e., reward received is a 

function of state at time t and action at time t. 𝑅𝑅(𝑡𝑡) =  𝑅𝑅(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡) 
or ℛ(𝑠𝑠)  →  ℛ(𝑠𝑠, 𝑎𝑎) →  ℛ(𝑠𝑠, 𝑎𝑎, 𝑠𝑠′ ). Consequently, the reward 
function describes the expected reward being in a certain state 
or choosing a certain action while being in a specific state. The 
reward function looks only one step ahead [7]. It means that the 
reward is instant. Typically, instead of considering the reward 
function itself, the expectations are to be considered, which are 
written for fixed s and a: 

𝑅𝑅(𝑠𝑠, 𝑎𝑎) = E[𝑅𝑅(𝑠𝑠, 𝑎𝑎)].  (3) 

In other words, ℛ ∶  𝒮𝒮 x 𝒜𝒜 x 𝒮𝒮 →  ℝ, where ℛ𝑎𝑎(𝑠𝑠, 𝑠𝑠′) is the 
immediate reward received by the agent after it performs the 
transition to s' from state s. 

As both transitions and rewards may be probabilistic, they 
depend upon the current state and the current actions, and there 
is no further dependence on previous state, actions, or rewards. 
Markov property is important for RL; it states that the 
environment dynamics must depend only on the current state 
and choose actions, thus enabling one to predict the next state 
and its expected reward only using currently available 
information and not entire history up to the current situation. 
This settles the definition of MDP. 

In the case of HVAC problem, it is to minimise the total 
energy cost while maintaining the temperature, air conditions 
of each zone within the desired range and without fluctuation 
[22]. 

Referring to RL problem, the last important component is the 
policy, which is denoted as 𝜋𝜋(𝑠𝑠)  → 𝑎𝑎. Policy defines the way 
RL agent behaves [7]. Policies can be: 

• Deterministic, specifying which action should be taken 
under each state; 

• Stochastic, i.e., probabilities of several actions are 
given. 

In HVAC case, the agent aims at optimising a stochastic 
policy [25], i.e., 𝜋𝜋 ∶  𝒮𝒮 x 𝒜𝒜 x ℛ →  ℝ+ 

In general, there are three methods of policy assessment, i.e., 
value iteration, policy iteration, and policy search. Value 
iteration starts with a random value function and updates to an 
improved value function in an iterative process until reaching 
an optimal value function [17]. Among them Q-iteration 
(model-based), Q-learning (model free) are most widely used. 
Dynamic programming and temporal difference methods rely 
heavily on the notion of the value functions for solving RL 
problems [18].  

Policy iteration evaluates policies by constructing their value 
functions and uses these value functions to find the improved 
policies [12]. Policy evaluation for Q-functions (model-based) 
and SARSA (model free) are mainly used. In the policy 
iteration-based scheme, an agent first computes the value 
function under the current policy (assuming a fixed or 
stationary policy). It means, first, to evaluate policy (a critic 
role); secondly, after policy evaluation the policy can be 
improved (an actor role). Methods for policy evaluation can be 
classified as follows: temporal difference methods, e.g., TD(𝜆𝜆), 
SARSA, etc., and Monte Carlo policy evaluation. 
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A policy that specifies the same action each time a state is 
visited is termed stationary policy [17]. A policy that specifies 
that an action be independently chosen from the same 
probability distribution over the possible actions each time a 
state is visited is termed a stochastic policy [18]. 

Finally, the policy search uses optimisation techniques to 
directly search for an optimal policy, where policy gradient 
(model-based) and greedy policy (model free) are mainly used. 
Policy search methods do not use value functions at all; instead, 
they use optimisation techniques [19], e.g., gradient methods or 
evolutionary methods [11]. Among the most successful 
methods to policy search is neuroevolution [23], which uses 
evolutionary computation to optimize a population of neural 
networks.   

B. Q-learning Algorithm 
There are two learning approaches with the solution of 

optimal control problems (using on-line measurements): 
indirect learning and direct learning. The latter includes such 
schemes as value-function based learning, e.g., Q-learning, 
policy space learning, e.g., genetic algorithms, policy gradient. 
With the class of value-function based schemes, two separate 
major classes are policy iteration or actor-critic learning, and 
value iteration [17]. 

Value iteration schemes are based on some on-line version of 
the value iteration recursion, e.g., Q-learning, deep Q-learning, 
deterministic Q-learning, double Q-learning, fitted Q-learning. 
To evaluate the appropriate Q-learning algorithm for HVAC 
problem, it is necessary to formulate the key concepts. These 
are values and value functions, actions, states, rewards and 
reward functions, policy, return, and discounting [17], [18]. 

Value functions determine the optimal policy of the system. 
Specifically, when an exact model of the environment is 
determined and available, the agent can control which action 
will result in the best successor state. The best successor state 
is defined as the one with the largest value.  

Alternatively, in problems where a precise model of the 
environment is not available, the state-action value is used 
instead since it provides the means to selecting the actions, as it 
is in the case of HVAC problem. If the process is in state s and 
the policy 𝜋𝜋 is followed, the expected action will be a with the 
largest value reward. 

A return is an actual reward received by an agent while 
following a certain policy 𝜋𝜋. A return is a random variable and 
is the discounted sum of rewards or cumulative reward in one 
whole episode:  

𝐺𝐺𝑡𝑡 =  ∑ 𝛾𝛾𝑡𝑡𝑟𝑟𝑡𝑡∞
𝑡𝑡=0  , 

(4) 

where 𝐺𝐺𝑡𝑡 is a return following time t; 𝛾𝛾𝑡𝑡  is a discount parameter 
at time t. 

The aim of the agent is to maximise the rewards it receives 
[20] and finally come over to the highest reward score. The 
return refers to the total reward received or to the reward 
received after a small amount of time. The return can be used to 
update the value function. In order to overcome the problem 
when the return may reach infinity discounting is used [17]. 

There are three main methods of assessing future rewards 
that have been studied, i.e., total reward, average reward, and 
total discounted reward [18]. Total discounted reward is the 
simplest case, which will be used in HVAC problem [21]. The 
total discounted reward from time t is defined to be: 

𝑟𝑟𝑡𝑡 + 𝛾𝛾𝑟𝑟𝑡𝑡+1 +  𝛾𝛾2𝑟𝑟𝑡𝑡+2, … , 𝛾𝛾𝑛𝑛𝑟𝑟𝑡𝑡+𝑛𝑛 , 
 

   (5) 

where 𝑟𝑟𝑡𝑡  is the reward received at time t; 𝛾𝛾 is a discount 
parameter, a number between 0 and 1.  

Discounting assigns greater weights to the immediate 
rewards and less to very distant ones [10]. The smaller the 
discount factor, the less we take care about long-term rewards. 

If the process is in state s and the policy 𝜋𝜋 is followed, the 
expected return will be written 𝑣𝑣𝜋𝜋(𝑠𝑠), i.e.: 

𝑣𝑣𝜋𝜋(𝑠𝑠) = E[𝑅𝑅(𝑠𝑠,𝜋𝜋, 𝑡𝑡) + 𝛾𝛾𝑅𝑅(𝑠𝑠,𝜋𝜋, 𝑡𝑡 +
1)+ , … , 𝛾𝛾𝑛𝑛𝑅𝑅(𝑠𝑠,𝜋𝜋, 𝑡𝑡 + 𝑛𝑛)+ , … ], 

 
(6) 

where 𝑣𝑣𝜋𝜋 is the evaluation function for a policy 𝜋𝜋. 
As the value discounting is exponential, 𝑣𝑣𝜋𝜋 also satisfies the 

following equations (7) and (8) [21] for all s: 

𝑣𝑣𝜋𝜋(𝑠𝑠) =  𝑅𝑅(𝑠𝑠,𝜋𝜋) + γ E�𝑣𝑣𝜋𝜋�S(𝑠𝑠,𝜋𝜋, 𝑡𝑡 + 1)��. 
 

(7) 

𝑣𝑣𝜋𝜋(𝑠𝑠) =  𝑅𝑅(𝑠𝑠,𝜋𝜋) + ∑ 𝑃𝑃𝑟𝑟𝑠𝑠,𝑠𝑠′(𝜋𝜋) 𝑣𝑣𝜋𝜋 (𝑠𝑠′𝑠𝑠′ ). 
 

 (8) 

Thus, in a finite-state problem, if R and P are known, the 
evaluation function 𝑣𝑣𝜋𝜋  can be calculated by solving a set of 
linear equations, one for each state. However, as the set is large, 
this is a time and resource consuming task, as it constitutes for 
high computational power. This problem can be declined to 
make the calculations more convenient for usage in the 
following means. 

Having into account that the value function for actual state at 
time t is expected to be a discounted sum of rewards from a 
certain or any state over all possible episodes (iterations) it can 
be written as follows: 

𝑣𝑣(𝑠𝑠𝑡𝑡) =  𝔼𝔼𝑎𝑎𝑡𝑡+1~𝜋𝜋𝑠𝑠𝑡𝑡+1~𝑃𝑃�𝛾𝛾𝑙𝑙
∞

𝑙𝑙=0

𝑟𝑟𝑡𝑡+𝑙𝑙 . 

 
(9) 

Thus, the value function is an indicator of immediate as well 
as future rewards. The expected return or the value function 
under policy 𝑣𝑣𝜋𝜋(𝑠𝑠) can be rewritten and is the prediction of the 
return value for any state: 

𝑣𝑣𝜋𝜋(𝑠𝑠) = �𝛾𝛾𝑡𝑡
∞

𝑡𝑡=0

𝑟𝑟(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡)||𝑠𝑠0 = 𝑠𝑠, 𝑎𝑎0 = 𝑎𝑎, 𝑎𝑎𝑡𝑡 

=  𝜋𝜋(𝑠𝑠𝑡𝑡). 

 
   (10) 

Therefore, the value of state s under the optimal policy is the 
following: 

𝑣𝑣∗(𝑠𝑠) = 𝑚𝑚𝑎𝑎𝑥𝑥𝜋𝜋𝑣𝑣𝜋𝜋(𝑠𝑠). 
 
(11) 
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The Q-learning algorithm instead of the value function for 
optimal policy employs the Q-function or state-action function, 
whose argument is not only a state, as can be found so far, but 
also an action. This allows optimising not only the policy, but 
also the control policy. The expression for the Q-learning 
function looks like this: 

𝑣𝑣(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡) ← 𝑟𝑟𝑡𝑡 + 𝛾𝛾 ∙ 𝑣𝑣(𝑠𝑠𝑡𝑡+1),   
 

(12) 

where 𝑎𝑎𝑡𝑡 is an action chosen at time t out of the set of all 
possible actions 𝒜𝒜.  

 
Since the purpose of the system is to maximise the total sum 

of the reward, 𝑣𝑣(𝑠𝑠𝑡𝑡+1) is replaced by 𝑚𝑚𝑎𝑎𝑥𝑥𝑎𝑎∈𝐴𝐴𝑄𝑄(𝑠𝑠𝑡𝑡 , 𝑎𝑎) and as a 
result, the following expression is obtained: 

 

𝑄𝑄(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡) = 𝑟𝑟𝑡𝑡 + 𝛾𝛾 ∙ 𝑚𝑚𝑎𝑎𝑥𝑥𝑎𝑎∈𝒜𝒜 𝑄𝑄(𝑠𝑠𝑡𝑡+1, 𝑎𝑎).  

 

 (13) 

The expected return from starting at 𝑠𝑠𝑡𝑡 the following policy 
𝜋𝜋 for one step, i.e. taking action 𝑎𝑎𝑡𝑡 and then following policy 𝜋𝜋 
is: 

𝑄𝑄𝜋𝜋 (𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡) = 𝑅𝑅(𝑠𝑠, 𝑎𝑎) + ∑ 𝑃𝑃𝑠𝑠,𝑠𝑠′(𝑎𝑎)𝑣𝑣𝜋𝜋𝑠𝑠 (𝑠𝑠′). 
 

 (14) 

This is much simpler to calculate than 𝑣𝑣𝜋𝜋∗, for 𝑄𝑄𝜋𝜋(𝑠𝑠,𝜋𝜋(𝑠𝑠)) it 
is only necessary to look one step ahead from state 𝑠𝑠𝑡𝑡, rather to 
calculating the whole evaluation function of 𝜋𝜋∗. For model-free 
algorithms, the explicit model, e.g.,   𝑝𝑝(𝑠𝑠′, 𝑟𝑟|𝑠𝑠, 𝑎𝑎)  is required, 
whereas this is not needed for model-based algorithms 

𝑄𝑄𝜋𝜋(𝑠𝑠, 𝑎𝑎) = 𝑟𝑟 (𝑠𝑠, 𝑎𝑎) + 𝛾𝛾 𝑚𝑚𝑎𝑎𝑥𝑥𝑎𝑎∈𝒜𝒜𝑄𝑄(𝑓𝑓(𝑠𝑠, 𝑎𝑎), 𝑎𝑎′). 
 
 (15) 

The target Q-value: 

𝑄𝑄∗(𝑠𝑠, 𝑎𝑎) = 𝑚𝑚𝑎𝑎𝑥𝑥𝜋𝜋 (𝑠𝑠, 𝑎𝑎). 
 
 (16) 

Thus, the optimal control policy 𝜋𝜋 is to choose an action a 
by: 

𝑎𝑎 = 𝑎𝑎𝑟𝑟𝑎𝑎𝑚𝑚𝑎𝑎𝑥𝑥𝑎𝑎∈𝒜𝒜𝑄𝑄∗(𝑠𝑠, 𝑎𝑎).  (17) 

 Thus, the basic idea behind many RL algorithms is to 
estimate the Q-function or action-value function using the 
Bellman equation as an iterative update.  

𝑄𝑄(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡) → 𝑄𝑄∗ as 𝑖𝑖 →  ∞.  (18) 

Then, the policy can be updated by: 

𝑄𝑄∗′′(𝑠𝑠, 𝑎𝑎) =  𝑄𝑄∗′(𝑠𝑠, 𝑎𝑎) + 𝛼𝛼�𝑟𝑟𝑡𝑡+1 + 𝛾𝛾𝑚𝑚𝑎𝑎𝑥𝑥𝑎𝑎𝑄𝑄(𝑠𝑠′,𝑎𝑎) −
𝑄𝑄∗′(𝑠𝑠, 𝑎𝑎)�,  

 
(19) 

where 𝑄𝑄∗′(𝑠𝑠, 𝑎𝑎) – an old value; 
    𝛼𝛼 – a learning rate; 
    𝑟𝑟𝑡𝑡+1 – a reward; 
    𝛾𝛾 – a discount factor; 
    𝑚𝑚𝑎𝑎𝑥𝑥𝑎𝑎𝑄𝑄(𝑠𝑠′,𝑎𝑎) – an estimate of optimal future value. 

Q-value is usually stored in a 2D table whose inputs are a 
state and an action. Provided that the representation of  
Q-function is tabular and the environment is Markovian, there 
is proof that the Q-learning algorithm converges [24]. In 
practice, this approach is impractical because the action-value 
function is estimated separately for each action, without any 
generalization [17]. It is common to use a function 
approximators to estimate the action-value function as a linear 
or non-linear approximators, e.g., neural networks, especially, 
when the state and action spaces are large and continuous. 

A.  Deep Q-learning 
In the continuous or high-dimensional state space, the 

discretization matrix, which is used in Q-learning as the 
transporter of the action value function, 𝑞𝑞∗, will inevitably lead 
to long iteration time and difficult convergence [24]. To avoid 
this problem, the deep Q-learning (DQN) and a deep neural 
network (DNN) approach is used to approximate the state-
action value function Q with weights w: 

𝑄𝑄∗(𝑠𝑠, 𝑎𝑎) ≈ 𝑄𝑄(𝑠𝑠, 𝑎𝑎,𝑤𝑤). (20) 

This approximation is used to define the objective function 
by mean-square error in Q-values: 

ℒ(𝑤𝑤) = 𝔼𝔼[(𝑟𝑟 + 𝛾𝛾𝑚𝑚𝑎𝑎𝑥𝑥𝑎𝑎′𝑄𝑄(𝑠𝑠′, 𝑎𝑎′,𝑤𝑤) − 𝑄𝑄(𝑠𝑠, 𝑎𝑎,𝑤𝑤))2]. (21) 

The following Q-learning gradient is calculated as follows:  

𝜕𝜕ℒ(𝑤𝑤)
𝜕𝜕𝑤𝑤

= 𝔼𝔼[(𝑟𝑟 + 𝛾𝛾𝑚𝑚𝑎𝑎𝑥𝑥𝑎𝑎𝑡𝑡+1𝑄𝑄(𝑠𝑠𝑡𝑡+1,𝑎𝑎𝑡𝑡+1,𝑤𝑤) −

 −𝑄𝑄(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡,𝑤𝑤) 𝜕𝜕𝜕𝜕(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡,𝑤𝑤)
𝜕𝜕𝑤𝑤

]. 

(22) 

If the standard Q-learning algorithm is used in harmony with 
neural networks, it oscillates or diverges due to the fact that data 
are sequential [25]. 

III. THE DEEP REINFORCEMENT LEARNING FOR  
HVAC SYSTEM 

Three categories of HVAC or energy forecasting methods 
have been reported in the literature [5]. There are physics-based 
(white-box) models or mathematical ones. A lot of mature 
physic-based tools exist: EnergyPlus, ESP-r, and TRNSYS, 
Modelica.  

Data-driven (black-box models or empirical). These models 
are known as purely data-driven models. Ma et al. [25] 
combined multiple linear regression and self-regression 
methods to predict the building monthly energy consumption. 
ARX is implemented to predict 1 h ahead building load. ANN 
is another popular method in building energy prediction for 
building operation and control.  

Combination of physics-based and data-driven (gray-box or 
hybrid) modelling approaches. These models can be linear, non-
linear, static, dynamic, explicit or implicate, discrete or 
continuous, deterministic or probabilistic, deductive, inductive 
or floating [26].  

Real world control tasks like smart building automation are 
seldom deterministic due to the stochastic nature of the 
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environment, e.g., people, weather, and often involved 
continuous actions, such as temperature setpoints, supply air 
flow rate etc. 

A. Problem Formulation 
In the context of HVAC problem, the aim is to reduce the 

cost of energy as well as to optimise the energy performance 
indicators, e.g., heating, air flow, PMV index, performance 
efficiency factor [16]. 

HVAC problems should be considered as follows: 
• Thermal comfort control problem (TCCP). The 

structure for studying direct TCCP is set up by 
specifying the error between predictive heating 
amount mean setpoint and feedback heating amount, 
predictive airflow amount mean setpoint and feedback 
airflow amount. 

• Energy cost minimisation problem. 
Building consists of n zones. ℤ denotes the set of zones, such 

that 𝑍𝑍𝑖𝑖 ∈  ℤ , ∀𝑖𝑖=  𝔽𝔽  representing the zone performance 
efficiency factor of zones to be analysed.  

Let 𝐸𝐸𝑖𝑖 denote the total zone energy consumption, which can 
be calculated as follows: 

𝐸𝐸𝑖𝑖 =  𝑃𝑃+ − (𝑃𝑃𝑓𝑓− +  𝑃𝑃𝑎𝑎−), (20) 

where 𝑃𝑃+ is power generation; 
𝑃𝑃𝑓𝑓− is fixed power consumption; 
𝑃𝑃𝑎𝑎− is adjustable consumption. 

 
For modelling and control purposes, the data should be 

collected every 15 minutes. The thermal dynamics of the 
HVAC model of each zone is the following: 

𝑇𝑇𝑗𝑗〈𝑡𝑡 + 1〉 = 𝑓𝑓𝑗𝑗 � 𝑇𝑇𝑛𝑛1〈𝑡𝑡〉, … ,𝑇𝑇𝑛𝑛𝑞𝑞 ,𝐹𝐹𝑗𝑗〈𝑡𝑡〉,𝑅𝑅𝑗𝑗〈𝑡𝑡〉,𝑇𝑇𝑜𝑜〈𝑡𝑡〉,𝑇𝑇𝑠𝑠〈𝑡𝑡〉� + 𝑂𝑂 + 𝑋𝑋, (21) 

where 
 𝑓𝑓𝑗𝑗 is some unknown nonlinear function; 
𝑇𝑇𝑛𝑛1〈𝑡𝑡〉 is a temperature in the j-th zone of the building  
at time t; 
𝑇𝑇𝑜𝑜〈𝑡𝑡〉 is the outdoor temperature; 
𝑇𝑇𝑠𝑠〈𝑡𝑡〉 is the indoor temperature; 
O is the variable related to the occupancy; 
X is the variable related to other factors; 
�𝑛𝑛1, … ,𝑛𝑛𝑞𝑞� is the set of zones related adjacent to j. 

 
Each control module (CM) controls the heating amount 𝐻𝐻𝑗𝑗 

and air flow rate 𝐹𝐹𝑗𝑗 to modulate the thermal comfort of the j-th 
zone. Typically for HVAC systems the PID (a proportional-
integrated-derivative) controller is often used. The model of 
control of heating amount is: 

 

𝐻𝐻𝑗𝑗 〈𝑡𝑡〉 = �
𝑡𝑡𝑚𝑚𝑖𝑖𝑛𝑛,                            if 𝑒𝑒𝑗𝑗 〈𝑡𝑡〉 < 20˚𝐶𝐶
𝑡𝑡𝑚𝑚𝑎𝑎𝑚𝑚 −  𝑡𝑡𝑚𝑚𝑖𝑖𝑛𝑛, if 20˚C ≤ 𝑒𝑒𝑗𝑗

𝑡𝑡𝑚𝑚𝑎𝑎𝑚𝑚 ,                          if 𝑒𝑒𝑗𝑗 〈𝑡𝑡〉 > 24˚𝐶𝐶
〈𝑡𝑡〉 ≤ 24˚𝐶𝐶 

 
(22) 

 
 
 
 

The model of air flow amount is: 
 

𝐹𝐹𝑗𝑗 〈𝑡𝑡〉 = �
𝛼𝛼𝑗𝑗 ,                        if 𝑒𝑒𝑗𝑗 〈𝑡𝑡〉 < 20˚𝐶𝐶
(𝜛𝜛𝑗𝑗 −  𝛼𝛼𝑗𝑗),           if 20˚C ≤ 𝑒𝑒𝑗𝑗
𝜛𝜛𝑗𝑗 ,                    if 𝑒𝑒𝑗𝑗 〈𝑡𝑡〉 > 24˚𝐶𝐶

〈𝑡𝑡〉 ≤ 24˚C 

 

 
(23) 

To minimise the cost function subject to the thermal 
dynamics system requires optimisation over and only on the set 
of possible actions based on a given state where data are 
mapped by sensors. 

Regarding the multi-objective optimisation problems, i.e., 
where environment can be demanded by certain temperature 
setpoints and airflow rate setpoint as well as energy cost 
minimisation, the reward is derived as a simple multiple-task 
joint reward with three components. The joint reward 
components could easily generalize the necessary action. 

 
Component 1: Temperature reward and air flow amount. 

𝑟𝑟𝑎𝑎1 = �
−𝛿𝛿𝑎𝑎1− ,   if 𝛿𝛿𝑎𝑎1−  > 24˚C, and if 𝛿𝛿𝑎𝑎1− < 20˚C

𝛿𝛿𝑎𝑎1+ ,        if 𝛿𝛿𝑎𝑎1+ ∈ [20˚C, 24˚C].  
 (24) 

Component 2: Controlling the total energy consumption, 
defined in Equation 20, is done as follows: 
 
𝑟𝑟 =  � −3𝜁𝜁2 + 4[max�𝑃𝑃𝑓𝑓−� −max(𝑃𝑃�𝑓𝑓−)],   if max (𝑃𝑃�𝑓𝑓−) < max (𝑃𝑃𝑓𝑓−)

−3𝜁𝜁1 − 1,                                                                         otherwise,
 

 

(25) 

where 𝜁𝜁1  and 𝜁𝜁2 are coefficients based on trial and error 
procedure and according to [24] empirically are 𝜁𝜁1 = 40 and 
𝜁𝜁2 =  −50. 

The building HVAC system is operated to maintain a desired 
comfort temperature within each zone (room), based on current 
temperature and outside weather disturbances, i.e., temperature, 
solar radiation, relative humidity, and wind. The zone 
temperature at the next time step is only determined by the 
current system state and environment disturbances, and the 
conditioned air input from the HVAC system. It is independent 
of the previous state of the building. Therefore, the HVAC 
control operation can be treated as a Markovian decision 
process (MDP). 

B. Deep Q-Learning for HVAC 
To control HVAC system, a range of parameters can be 

tuned, e.g., hot water temperature in radiators, chilling, etc. The 
HVAC system consists of n zones. Each zone provides heating 
and air flow rate that can be chosen from multiple discrete 
levels.  

 
Control actions are as follows: 
• Heating power (radiator), positive values = heating 

[W/m2]. 
• Cooling power (chilling), positive values = cooling 

[W/m2]. 
Control variables or control signals referring to action: 
• Heating with 3 settings (off, low, medium, high). 
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• Air flow with 3 settings (off, low, medium, high). 
• Window control with 2 settings (open, close). 
• Door control with 2 settings (open, close). 

It means 36 possible actions. To simply HVAC system, the 
heating and air flow can be only used as actions. Thus, there are 
9 actions. 

System states (state space): The optimal control action is 
determined based on the observation of the current system state. 
State contains information to decide on control actions, e.g., 
environment disturbances (room temperature, PMV index, 
occupancy, time of the day, season, weather conditions, energy 
consumption, number of computers, etc.).  Control variables 
referring to the current system state have 7 states: 

 
• Heating off. 
• Heating low. 
• Heating medium. 
• Heating high. 
• Air flow (cool off). 
• Air flow (cool low). 
• Air flow (cool medium). 
• Air flow (cool high). 

 
Reward function: The control goals can be expressed by 

signing the reward of each state and action pairs. The values are 
estimated by deep Q-learning method.  

Building dynamics: The thermal environment evolution 
inside a building is a physical process and can be generally 
encoded in the form of transition probabilities, e.g., the 
probability that the room temperature increases 1 degree 
Celsius given a supply air flow rate. 

Value function: The combination of all possible values of 
each feature in the state vector forms a large state space. For 
approximation of the Q-value the DNN is used. Value matrix 
can be used to map all possible combinations of state and 
actions. 

The batch mode can be used. Batch mode means that the 
entire data set for learning is available from the start, as opposed 
to the on-line mode of the algorithms in which data are acquired 
sequentially while the learning algorithm executes [17]. 

IV. THE PROPOSED DEEP NEURAL NETWORK  FOR  
HVAC SYSTEM 

The topology of the DQN is based on the multilayer neural 
network with input layer, three hidden layers, and output layer. 
The proposed neural network is to approximate Q-values. 
Gradient descend is used as an optimizer to learn a policy for 
an agent. The architecture of DRL is shown in Fig. 2. 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Fig. 2. The architecture of the proposed DRL. 

The input state vector set layer consists of various types of 
features, i.e., indoor air temperature, outdoor air temperature, 
solar radiance, humidity, occupancy time schedule, etc. These 
features can characterise the influencers into and around the 
building and are given by a time-window of two following time 
steps. The state values are scaled to comparable range before 
feeding the input state to the neural network. For controlling 
energy consumption one extra neuron is added. Each hidden 
layer has 150 neurons with Rectified Linear Units (ReLUs) as 
activation functions. ReLUs apply the function y=max(x, 0) and 
increase the nonlinear properties of the decision function and 
speed up the training of neural network. Simultaneously, they 
keep the gradient more or less constant [24].  

The output layer represents the Q-value of the combined 
actions. Each combined action is possible combination of the 
actions, i.e., heating medium, air flow low, or heating off, air 
flow, cooling high etc. The hyper-parameters initially are time, 
t = 15 min, the learning rate, 𝛼𝛼 = 0,005, the discount factor, 𝛾𝛾, 
number of episodes = 5000, range of input state vectors [0,1]. 

Finally, DQN is adapted to approximate state-action 
function. The neural network is constructed such as that it takes 
as input the states. The output consists of number of all possible 
actions. Each output is going to train to return Q-value for exact 
action. The system chooses the action for which Q-value is 
maximal and after action is completed the new state is given. 
The agent can learn and update policies directly from sensory 
inputs. 
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V. CONCLUSION 
The theory of RL provides an insight into the way the agents 

may optimise their control of an environment. This paper 
describes how RL is applied in optimal control of building 
energy consumption through management of zone actuators. 
Deep reinforcement learning with optimization method deep Q-
learning has been proposed. Data-driven model based on neural 
network is proposed to be used for the on-line control of HVAC. 
Deep neural network is proposed to approximate the state-
action value function Q with weights w. The feasibility and 
robustness will be demonstrated experimentally on real data 
provided by a building management system of one of the 
leading companies in the field of microclimate of buildings in 
Latvia. Future work will focus on the improvement of the 
control system by making it aware of the room occupancy 
schedule, and on estimating more accurately the potential 
energy savings.  
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