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Abstract – The topical question studied in this paper is how 

many receptive fields (filters) a convolutional layer of a 

convolutional neural network should have. The goal is to find a 

rule for choosing the most appropriate numbers of filters. The 

benchmark datasets are principally diverse CIFAR-10 and 

EEACL26 to use a common network architecture with three 

convolutional layers whose numbers of filters are changeable. 

Heterogeneity and sensitiveness of CIFAR-10 with infiniteness and 

scalability of EEACL26 are believed to be relevant enough for 

generalization and spreading of the appropriateness of filter 

numbers. The appropriateness rule is drawn from top accuracies 

obtained on 10 × 20 × 21 parallelepipeds for three image sizes. 

They show, knowing that the number of filters of the first 

convolutional layer should be set greater for the more complex 

dataset, the rest of appropriate numbers of filters are set at 

integers, which are multiples of that number. The multipliers 

make a sequence similar to a progression, e.g., it may be 1, 3,  

9, 15 or 1, 2, 8, 16, etc. With only those multipliers, such a  

rule-of-progression does not give the number of filters for the first 

convolutional layer. 

 

Keywords – Convolutional neural networks, Convolutional 
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I. INTRODUCTION TO CHOOSING THE NUMBER OF FILTERS 

The convolutional layer (ConvL) of a convolutional neural 

network (CNN) is a set of learnable filters, which is assigned to 

a stride and a zero-padding [1]. A column or row of biases is 

appended to the set. The first two dimensions of the filter define 

the size of the receptive field. Generally accepted receptive 

fields refer to the image classification problem (ICP) 

considering mainly the image size and the number of image 

categories [2]. The number of ConvLs is determined in the 

similar manner. An open question is how many filters a ConvL 

should have, if parameters of the corresponding ICP are given. 

II. BACKGROUND AND MOTIVATION 

Unlike the filter size, the number of filters is not restricted. 

Selection of the number of filters is a very specific task. It 

requires much experience. Until recently, it relied on setting 

these numbers at 2nh   by h , n  [1], [3], [4]. This can 

be called a power-of-2 rule (P2R). Although a CNN for a large 

ICP is trained slowly, the training process can be sped up when 

the numbers of filters are chosen appropriately. Moreover, 

performance is expected to be significantly improved [5], [6]. 
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If a formula (rule) for the most appropriate filter numbers is 

known, we can optimize more complex objects, e.g. 

architecture of CNN. Such a rule may be an aggregate of simple 

conditions under which the numbers of filters are chosen. 

Nevertheless, filter numbers are adjusted in a few steps for 

definite ICPs [2], [3], [7], [8]. Each step ends with a separate 

trained CNN, whose performance is gradually improved. It 

takes years and numerous scientific suggestions before 

performance in a definite ICP achieves its limit. A prominent 

example is the MNIST dataset, whose best error rate 0.21 % 

was achieved over a decade from 0.39 % [9], [10]. 

III. GOAL AND TASKS 

Finding a formalized rule for choosing the most appropriate 

numbers of filters is an objective point. This is not a trivial goal, 

because it requires statistical performance data covering various 

versions of those numbers. To shorten the time for gathering 

statistics, a common CNN architecture will be selected, which 

is supposed to be nearly the best for a series of benchmark ICPs. 

This is the first task providing a constant number of ConvLs. 

The second task is to define filter sizes. It is believed that the 

best performance is ensured when the first ConvL’s filters are 

of size 3 3 , 5 5 , or 7 7  at most. Then, thirdly, the 

benchmark ICP is to be justified. Finally, the fourth task is to 

statistically determine the performance as a function of the 

number of filters. The function is a finite approximation of a 

mesh defined on an integer hyperparallelepiped (IHP). The 

combinations of those numbers maximizing performance are 

going to be extracted from this function. 

IV. CNN ARCHITECTURE 

In machine learning and image recognition, the known 

datasets MNIST [10], [11], CIFAR-10 [8], [12], NORB [8], 

[13], and EEACL26 [8], [14], [15] are simultaneously simple 

and content-rich. The common CNN architecture for them has 

four ConvLs [8], [13], [16], [17]. To prevent overfitting and 

improve performance, three rectified linear units (ReLUs) and 

a dropout layer (DOL) are inserted: 

1 1 1 1 2 2 2C D R P C R P→ → → → → → →  

 3 3 4C R C S→ → → → , (1) 

where  
4

1i i
C

=
 are four ConvLs, 1D  is the DOL,  

3

1j j
R

=
 are 

three ReLUs, 1P  and 2P  are two maximum pooling layers 
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(MPLs), and S  is a softmax layer. Architecture (1) is supposed 

to be nearly the best for those datasets [8], [16], and for other 

related benchmark ICPs as well [18]. CNNs (1) are trained fast 

enough owing to MPLs. Performance accuracy may be not so 

high, but the purpose is to identify the tendency at varying 

numbers of filters [7]. 

V. SIZES OF FILTERS 

Under a fixed CNN architecture, the size of a filter (receptive 

field) depends also on the input volume, stride, zero-padding. 

The ultimate simplicity is preferable, so let the stride be 1 and 

the zero-padding be 0. Experience demonstrates that the size of 

receptive fields, when moving through the CNN’s layers, 

should not be changed much. Besides, no unit filter’s size will 

be taken. That is the main strategy in defining the filter sizes. 

An example is filter sizes 

 5 5, 5 5, 3 3, 3 3     

or just 

  5, 5, 3, 3  (2) 

for 32 32  images under the CNN architecture (1). Another set 

 5, 3, 3, 4  

is suitable here, but the receptive field size should not increase 

due to the general CNN conception of volume reduction (e.g., 

pooling) [1], [3], [16], [19], [20]. 

VI. THE BENCHMARK ICP 

There are three important requirements to benchmark ICPs, 

which are represented with their datasets divided into training, 

validation, and testing subsets: 

1) sensitiveness; 

2) diversity of entries; 

3) medium size of images. 

Sensitiveness of an ICP is understood as noticeable 

differentiation of performance while CNN hyperparameters 

vary. It is considered to see consistency and performance 

trends. That is why datasets like the MNIST dataset cannot be 

exploited – CNNs recognize the MNIST dataset handwritten 

digits at 99.73 % accuracy [10], so any changes of performance 

for MNIST are hardly noticeable. 

Diversity of entries will ensure good generalization of the 

rule for the most appropriate numbers of filters. For this 

purpose, the CIFAR-10 dataset will be used, whose images  

are heterogeneous and miscellaneous (Fig. 1). The original  

CIFAR-10 dataset consists of 60 000 colour images of size 

32 32 3   (the third dimension appears regarding three colour 

channels). This dataset has 10 image categories (labelled as 

“airplane”, “automobile”, “bird”, “cat”, “deer”, “dog”, “frog”, 

“horse”, “ship”, “truck”), with 6 000 images per category. 

There are 50 000 images intended for training and 10 000 

images intended for testing (validating). 

However, the ICP of 10 classes may be insufficient for 

satisfactory generalization and spreading of the appropriateness 

to other ICPs, image sizes, and the number of image categories. 

In addition to CIFAR-10, a dataset of enlarged English alphabet 

capital letters (EEACL26), making up 26 classes, will be used. 

EEACL26 is an infinite dataset of artificial monochrome 

images, and it is fully scalable — as many EEACL26 images 

can be generated as needed (Fig. 2). Sensitiveness of EEACL26 

differs from that of CIFAR-10: CNNs are trained on EEACL26 

faster and easier requiring fewer training samples. Therefore, 

CIFAR-10 and EEACL26 are principally different ICPs that are 

relevant for generalization and spreading of the appropriateness 

of filter numbers (Fig. 3). 

 

Fig. 1. Heterogeneity of colour images in a subset of the CIFAR-10 dataset [8]. 

 

Fig. 2. A finite subset of monochrome images from the EEACL26 dataset [8]. 
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Fig. 3. Generalization and spreading of the appropriateness of a property by an 
example of CIFAR-10 and EEACL26 datasets. Images of the datasets and their 

unlike properties are progressively intertwined, appearing more “noisy” 

(descending from above). This can be thought of as a more complex dataset. 

 

The medium size of images ensures faster training owing to 

faster operations of convolution. This is why much bigger 

datasets like the ImageNet dataset cannot be effectively used 

[4]. The original 32 32 3   images of CIFAR-10 correspond 

exactly to medium-sized entries. Let the size be denoted by just

32N = . For ascertaining a relation between the number of 

filters and image size, another two sizes will be exploited: 

28N =  (usual for the MNIST dataset) with filter sizes 

  5, 3, 3, 3  (3) 

and 36N =  with filter sizes 

  5, 5, 4, 3 . (4) 

Eventually, statistical data will be gathered by 

 28, 32, 36N  for both CIFAR-10 and EEACL26. The ratio 

of the training sample to the testing and validation sample for 

EEACL26 is 7:3 at 36 400 images on average intended for 

training. There are 7 800 images intended for validation, and 

7 800 images intended for testing. Thus, the whole EEACL26 

sub-dataset contains 52 000 images, with 2 000 images per 

category. Along with sensitiveness and diversity, these 

parameters and factors are believed to prevent meta-overfitting 

of the rule for appropriateness of filter numbers. Here, the  

meta-overfitting is understood as adaptation of the rule to an 

ICP, whereas the rule loses its appropriateness for other ICPs. 

VII. PERFORMANCE AS A FUNCTION  

OF THE NUMBERS OF FILTERS 

The number of filters in the last ConvL of CNN (1) is equal 

to the number of image categories. Therefore, the IHP is  

three-dimensional. Denoting the number of filters in the i -th 

ConvL by im , the performance function Nc  can be stated as a 

function of three variables: 

 ( )1 2 3, ,N Nc c m m m= . (5) 

Values of function (5) are accuracies for the respective dataset. 
Ranges of variables in (5) shall enclose any admissible values 

of triple  
3

1i i
m

=
. It is experienced that values 

1 20m = ,  2 30m = ,  3 100m =  

suit well for 28 28  images from MNIST and EEACL26. 

Besides, the number of filters should not decrease [1], [3], [4], 

[13], [20]. Hence, the ranges 

 1 10, 100m = ,  2 10, 200m = ,  3 10, 1000m =  (6) 

are valid with a good reserve. Of course, statistical 

determination of function (5) on IHP whose dimensions are 

derived straightforwardly from (6) is unreasonable. Function 

(5) can be evaluated on a subset of those 

( ) ( ) ( )100 10 1 200 10 1 1000 10 1 17224571− +  − +  − + =  

points, using sampling through ranges (6). Let a step for 1m  and 

2m  be 10. A step for 3m  may be broader. Let it be 50 starting 

off the point 3 50m =  up to the point 3 1000m = . Then, function 

(5) is to be evaluated on IHP 

         10 20 20

1 1 1
10 10 10, 50

k j l
k j l

= = =
   (7) 

which is now of 4200 points (more than 4100 times reduced). 

Function (5) on IHP (7) is actually 10 20 21   matrix, 

whose entries are determined by training and testing 4200 

CNNs. The training runs through 8 epochs, which are sufficient 

for obtaining consistent performance and its trend (rather than 

perfect accuracy) [8], [18]. Visualizations of six such matrices 

are shown in Figs 4–9, where darker and thicker dots 

correspond to the higher accuracy of the CNN performance. 
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Fig. 4. Performance 28c  on CIFAR-10 images. The circled dots stand for the (unacceptable) accuracies less than 60 %. Overall accuracy is poorer by 1 60m  . 

 

Fig. 5. Performance 32c  on CIFAR-10 images. This is the best one. Overall accuracy is acceptable, although a few unacceptable (circled) points exist by
3 10m = . 

 

Fig. 6. Performance 36c  on CIFAR-10 images. It is slightly better than 28c  (CIFAR-10). Locations of the top accuracies do not seem regular but similitude exists. 
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Fig. 7. Performance 28c  on EEACL26 images. Along with the bottom points, irregular poor accuracies unexpectedly exist at the middle and upper points as well. 

 

Fig. 8. Performance 32c  on EEACL26 images roughly similar to 28c  (EEACL26). The face at 1 60m =  has the same “corners” as the respective face in Fig. 7. 

 

Fig. 9. Performance 36c  on EEACL26 images, which is roughly “darker” than 28c  and 32c . The quite unacceptable accuracies less than 50 % are circled dots. 
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Visualizations of those six three-dimensional matrices in 

Figs 4–9 would have been far denser if smaller steps for 

sampling through ranges (6) had been chosen (or just equal 

to 1). On the other hand, performance function (6) could have 

been linearly interpolated by the data in Figs 4–9. Nonetheless, 

this does not make sense for two main reasons. Firstly, it takes 

almost intractably much time and computational resources for 

evaluating function (5) on (the whole) IHP 

        100 200 1000

10 10 10k j l
k j l

= = =
   

or on IHPs “denser” than IHP (7). Otherwise, interpolating 

function (5) from sparse IHP (7) is truly possible but not 

effective because of bad stochastic nature of the CNN 

performance, for both CIFAR-10 and EEACL26 datasets. 

Secondly, too dense face-to-face visualization of those six 

three-dimensional matrices would have interfered, and thus it 

would be impossible to discern important properties from 

insignificant deviations. This is why the way in which the 

performance results are visualized in Figs 4–9 are nearly the 

best to deal with and interpret. 

VIII. INTERPRETATION OF THE RESULTS 

It is visually quite comprehensible that performances on 

CIFAR-10 images differ badly from those on EEACL26 

images. Faces for the EEACL26 dataset are less intelligible. 

The most intelligible group of faces is seen in Fig. 5, where 

bunches of darker dots grow and spread from the left to right, 

like splinters after a shot at 1 10m = . However, the dark dots are 

not concentrated regularly. Except for 1 100m = , they are rather 

displaced to the side of greater values of 2m . The bunch of dark 

dots by 1 100m =  is rectangular-like and the biggest. Here the 

prime pretty rough inference is that the numbers of filters 

should be chosen appropriately as 

 1 2 320 m m m   . (8) 

Although faces in Fig. 4 bear much poorer accuracies than in 

Fig. 5, they give precious information. Because of downsizing 

to 28 28 3   and thus losing further the small resolution of 

CIFAR-10 images, CNNs perform on those downsized images 

with accuracies that are factually poor in a wider range. So, the 

first and second faces (by 1 10m =  and 1 20m = ) are much 

lighter than the following faces. Moreover, an “angle bar” of 

poor filter numbers can be clearly seen on all faces by 1 20m  

(Fig. 10). Similar “angle bars” but much fuzzier are seen in 

Fig. 6, wherein the slightly higher accuracies for 36 36 3   

CIFAR-10 images are explained with upscaling from the 

original images. The most prominent “angle bar” is seen on the 

face by 1 10m =  for 32 32 3   CIFAR-10 images in Fig. 5 (it 

is marked out in Fig. 11 with arrows). The form of this “angle 

bar” supports rough inference (8). This form is believed to be 

hidden on other faces in Figs 4–6. 

 

Fig. 10. “Angle bars” of poor filter numbers by performance 
28c  on CIFAR-10 images (Fig. 4) indicated with arrows. The “angle bars” by 1 90m  are fuzzy. 

 

Fig. 11. The almost key “angle bar” from Fig. 5, which supports inference (8). 
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 135 m ,  1 23m m ,  1 39m m  (9) 

and 

 175 m ,  1 22m m ,  1 38m m  (10) 

for EEACL26 and CIFAR-10, respectively. Hence, it turns out 

that the P2R harmonizes with inequalities (9) and (10). They are 

generally interpreted in a way that deeper ConvLs must be 

reinforced with greater numbers of filters. 

IX. CONCLUSION AND OUTLINE OF FURTHER RESEARCH 

An exact number of filters in the first ConvL is believed to 

correlate with parameters of the corresponding ICP, i.e. the 

image size and number of image categories must influence it. 

However, Figs 7–9 show that such correlation is too fuzzy 

eventually remaining unknown. It is only known that 1m  

should be set greater for the more complex dataset, like  

CIFAR-10 compared to EEACL26. The rest of the appropriate 

numbers of filters should be set based on 1m : they are set at 

integers which are multiples of 1m , where multipliers make a 

sequence similar to a progression. The progression is not 

necessarily geometric, e.g., it may be 1, 3, 9, 15 (12, 15, 18, 21, 

...) or 1, 2, 8, 16 (12, 16, 20, ...), continuing with (9) and (10). 

This property for filters (receptive fields) can be naively 

imagined as “splinters after a shot” (Fig. 5), where the reception 

of visual information should progress. 

Such a rule-of-progression (RoP) for the most appropriate 

number of filters includes the P2R. Obviously, the RoP can be 

regarded as general (acceptable for a wide range of ICPs) owing 

to heterogeneity and diversity of the CIFAR-10 and EEACL26 

datasets, although sizes (2), (3), (4) of receptive fields are close 

to each other. The research may be continued to ascertain the 

deepness of the progression. Besides, it must be considered 

whether a transition from the deepest ConvL to the final ConvL 

(which is a fully-connected layer) should be so abrupt.  

A question of inserting another fully-connected layer for 

smoothing this abruptness is open as well. 
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