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Abstract—To incentivize residential-scale customer participation
in explicit demand response (DR), it has to be possible to provide
them with a sufficiently accurate assessment of the potential
economic benefits they might gain from it. However, such an
assessment necessarily requires good knowledge of the technical
flexibility of the consumption and parameters characterizing it.
In this study, a probabilistic DR assessment model is used to
analyze the impact of various flexibility characteristics and
constraints. It is found that some of them significantly affect the
results, whereas others have miniscule influence. Furthermore, a
case study based on a typical consumption profile allows to
conclude that a householder without significant thermostatic
loads has relatively small economic benefit from participation in
explicit DR.

Index Terms—demand response; residential;
sensitivity analysis; simulation

flexibility;

L INTRODUCTION

The European Union (EU) had already set itself ambitious
targets for decarbonization and climate change mitigation, but
on June 2018 a move was made to raise the aspirations even
higher by envisioning a 32% share of renewable energy in the
total consumption within the EU by 2030 [1]. However, the
increasing adoption of renewable energy resources poses new
challenges to successful and reliable operation of electric
power systems. Some of the issues created by increased
penetration of distributed and renewable energy sources
(especially solar and wind) within power systems are caused
by the stochastic nature of their energy production, i.e.,
frequency control and balancing issues, also power quality
problems, which affect both power system real-time operation
and the planning of future developments on the distribution
grid as well as the transmission network level [2], [3].

While solutions to the emerging issues can be sought on
the power generation, transmission or distribution side, the
demand side also offers promising measures for mitigating the
increasing stochasticity of power system operation [4].
Demand response (DR) has been identified as a particularly
attractive tool power system operators could use for system
services by offering incentives to consumers (so called explicit
DR) [5], [6]. Furthermore, indirect encouragement of
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consumers to adapt their behavior for overall power system
benefit by their voluntary exposure to electricity real-time
prices or some other price-based programs (implicit DR) can
bring some effect in coupling consumption patterns to
generation availability [7], [8].

How widespread DR implementation can influence the
operation of electric power systems is a subject already
extensively studied in literature. While there are some
associated risks identified (e.g., pronounced rebound effects
with time-varying electricity prices [9]), most sources come to
the conclusion that DR programs have the capability to reduce
the overall power supply costs [10]-[13]. However, the
economic effect of DR on the DR asset owners (i.e.,
householders or businesses with flexible load) is paid
somewhat less attention to, some notable work being
presented in [13]-[17]. Furthermore, in some cases, current
market structures and incentives seemingly either fail to
provide meaningful economic benefit to DR asset owners or
only result in miniscule profitability [8], [18]-[20].

For sufficiently accurate assessment of the potential
benefits a DR asset owner might gain by participating in either
explicit or implicit DR programs, a detailed knowledge of
their consumption flexibility and its characteristics is required.
To that end, the authors of [21] offer an empirical
methodology to obtain a full probabilistic characterization of
residential consumers’ flexibility. Their approach is based on
quantile regression, but the findings suggest that there is
potentially very high variability between different individual
flexibility profiles. Furthermore, it is strongly dependent on
factors like the number of occupants, baseline consumption
and even the education level of consumers.

A flexibility indicator to be extracted from aggregate
residential customer load patterns is proposed in [22]. It is
found there that the flexibility levels become more prominent
with decrease in customer aggregation. The authors of [17]
also propose a specific parameter — flexibility ratio, which
represents the average degree of flexibility in shifting an
appliance within its operating time window. These studies, as
well as [15], [16], [19] strive in favor of stochastic approach to
demand flexibility assessment and DR modeling.
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Evidently, flexibility characteristics can be affected not
only by technical, but also behavioral or even somewhat
arbitrary factors. In this paper, we assess the effect certain
flexibility metrics can have on the performance of a DR-
enabled consumer participating in system balancing via
explicit DR. This adds to the state-of-the-art by presenting a
novel outlook to flexibility modeling specifically when the
modeling purpose is the assessment of DR economic benefit
from a householder’s point of view.

II. METHODOLOGY

A. Model

The analysis in this paper utilizes an economic assessment
model for DR presented in [23]. It is based on Monte Carlo
simulations and involves generation of a large number of day-
ahead price, balancing price, and balancing market liquidity
scenarios and subsequent sequential simulation of DR
activations for a whole year within each scenario ran in hourly
resolution. The activations of DR depend on the demand for
balancing (i.e., balancing market liquidity) as well as the
hourly consumption and flexibility profile of the particular
consumer or asset modeled.

Overall, the model structure can be summarized in four
main blocks:

1. Electricity day-ahead price scenario generation;

2. Balancing market liquidity and price scenario
generation;

3. Balancing activation simulations;

4. Annual economic assessment of DR profitability for
the DR asset owner.

The day-ahead price scenarios are created for a whole year
in hourly resolution. The random draw process is carried out
on two levels. Firstly, the overall parameters for each scenario
are selected from a normal distribution. These are: the mean
price, the minimum and ‘normal’ maximum price, the
maximum ‘extraordinary’ price peak, the expected ratios of
weekend/weekday and daytime/nighttime prices, and the
standard deviations of all these parameters. Secondly, the
parameters drawn for each scenario are used to generate the
hourly prices within it. The day-ahead prices are then used to
construct time-varying retail prices by adding several other
components to them: renewable levies, grid tariffs, trade
commission and the value added tax.

The term “balancing market liquidity” here refers to the
expected percentage of hours within a year when the power
system operator seeks to activate the manual frequency
restoration reserves (mFRR). Thus, the balancing market can
have demand for either upward or downward balancing, or no
demand for balancing within an hour. For those hours when
balancing is required, the balancing price scenarios, are based
on the expected ratio of upward or downward balancing price
and the day-ahead price.

All the generated Monte Carlo scenarios are assigned
equal realization probabilities. Once all the scenarios have
been created, they are iterated through to simulate the DR
activations subject to a number of conditions. The conditions
that have to be met are as follows:

e the minimum time distance since the previous DR
activation is respected;

e the number of DR activations in the current week does not
exceed the limit;

o there is demand for upward balancing in the system;
the DR asset has flexibility for load reduction during the
particular hour;
the balancing price falls within the DR asset’s bid limits;
there is enough flexibility in the next hours for DR energy
recovery respecting the constraint for max duration before
load recovery (relevant if the load recovery factor is
nonzero).

The characterization of DR asset flexibility partially
utilizes the terms illustrated in Fig. 1. Green color there
denotes DR events, but red — the recovery effect in the
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Figure 1. Explanation of some of the DR modeling terms used [23]

In this study, it is assumed that the load recovery does not
necessarily need to have the same duration as the preceding
DR activation. Instead, it is characterized by three different
parameters: recovery energy (the DR energy multiplied by a
set recovery factor), maximum duration before load recovery,
which is the maximum time after the DR event that the
beginning of the recovery can be postponed for, and the
availability of flexibility in the necessary direction of load
change. In essence, this models the phenomenon of load
shifting, but in a somewhat unconventional way.

It should be taken into account that this study deals with an
energy-based DR akin to the mFRR product used in the
recently established Common Baltic balancing market [24].
Granted, the current regulatory framework is not favorable to
DR participation in power system balancing in the Baltics, but
for the purposes of this study, we assume it is legally and
technically feasible, provided that the flexible assets are
offered to the market in an aggregated manner. Additionally,
we only consider upward balancing (i.e., load reduction) here.

The annual assessment of DR profitability is produced by
calculating the cash flows associated with each simulated DR
activation event. The sum benefit from a single event is
calculated as in (1):

B = Ep x(TI + TI0" ) — B < IT (1)

al ret ret 2

where E[ is the reduced energy consumption due to a DR
activation, which brings two positive cash flows — payment for
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balancing energy at balancing price I1jx and reduced
H{DR ),

ret

metered consumption during the event (at retail price
however, the subsequent consumption increase (recovery
effect, £/« ) provides a negative component, as this energy has

1"« . The indices tDR

ret
and trec denote the set of hours when the DR and load
recovery events, respectively, take place.

to be purchased at retail price

B.  Sensitivity Analysis

The recovery factor in this study is defined as the ratio
between the recovered energy and the DR energy. Essentially,
this expresses energy savings (or conversely, efficiency
losses) the customer achieves as a result of providing DR.
Thus, the impact this setting has on the simulations is evident
and it is not warranted to perform sensitivity analysis on it.
The impact of several other flexibility modeling settings is,
however, worth assessing. In this study, sensitivity analysis is
performed for the following settings:

minimum time distance between DR events;

maximum time before load recovery;

maximum number of DR events in a week;

minimum duration of a DR event;

maximum duration of a DR event;

consumption flexibility (the percentage change of the
hourly consumption which can be incurred due to DR
activation or post-DR recovery).

The sensitivity analysis is carried out by repeated model
runs wherein all the case study input data and model settings
remain unchanged, except for the parameter to be analyzed,
which is, instead, varied in a certain range. The impact of each
parameter is thus assessed by comparing the simulation
results, both the total economic benefit from DR and the
specific benefit per unit of energy served in DR.

C. Case Study Data

Statistical parameters for day-ahead price scenario
generation are derived from the historical prices in the Latvian
bidding area of Nord Pool during the last 12 months at the
time of performing these calculations — 01.11.2017-
31.10.2018. Price scenarios are generated based on the
following indicators: minimum price 1.59 € MWh, the 99.5®
percentile 100.06 €MWh, maximum price 255.03 € MWh,
mean of the values up to the 99.5" percentile 45.81 €/MWh,
mean ratio of weekday and weekend prices 1.21, mean ratio of
daytime and nighttime prices 1.39. Subsequently, these are set
as the scenario expected values with a 10% standard deviation
for all of them.

The balancing market liquidity and balancing price
generation settings are derived from the statistics of the
recently established Common Baltic balancing market from
01.01.2018 wuntil 31.10.2018. Expected balancing market
liquidity for mFRR is 63.08% (i.e., demand for mFRR is
expected in 63.08% of hours per year), ratio of hours with
negative vs positive system imbalance 0.49, expected ratio of
the day-ahead price vs balancing price at positive system
imbalance (surplus) is 0.64 and at negative system imbalance
(shortage) 1.87.

Furthermore, we assume that the DR asset owner is
exposed to a dynamic retail tariff equal to the day-ahead price
and affixed renewable support, trade commission and grid
tariff components amounting to a total of 62.91 €/MWh fixed
addition to the varying day-ahead price. Besides that, a value
added tax (21%) is applied to the total sum of tariff
components. Moreover, being a residential customer, the DR
asset owner itself is not a balance responsible party.

Since the subject of this study is not a particular DR-
enabled technology, we utilize an anonymized aggregated load
profile of residential end-users from smart meter data library
[25]. Since the model [23] allows for the representation of four
distinct weekly load profiles, we generate different load
profiles with the mean hourly consumption values (Fig. 2) and
scale them to a maximum hourly consumption of 2 kWh,
representative of an average-sized residential household in
Latvia.
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Figure 2. Weekly consumption profiles in different seasons

The flexibility at each hour is set in a simplistic manner by
selecting a percentage from the hourly consumption which can
be reduced for DR or increased for load recovery, the latter of
which is constrained by the maximum consumption. Thus,
instead of simulating specific home appliances (e.g., large
thermostatic loads) we assume some flexibility in the overall
consumption profile. Unlike [23], this study only considers
load reduction DR, as it is a more realistic scenario for
householder-scale DR. Thus, a portion of the total load is
considered delayable. Furthermore, 10% energy savings
during explicit DR activation are assumed, or, in other words,
the recovery factor is set to 0.9, implying that not all of the
consumption reduced during DR has to be recouped
afterwards. This way we can model an effect resembling both
load shifting and shedding, respecting the consumer flexibility
bounds.

III.  RESULTS

A. Base Case

For the base case, let us test how profitable such an
explicit DR program for power system balancing (mFRR)
would be to a consumer with the assumed load (Fig. 2) and
seemingly adequate flexibility modeling settings: minimum
time distance between DR events — O (unconstrained);
maximum time before load recovery — 12 hours; maximum
number of DR events in a week — 14; minimum duration of a
DR event — 1 hour; maximum duration of a DR event — 1
hour; consumption flexibility — 5%. The results of a model run
with 1000 Monte Carlo simulations are summarized by
probability distributions in Fig. 3 and Fig. 4.
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Figure 4. Probability distribution of the DR asset owner’s annual benefit

from DR (base case)

Evidently, in the base case, participation in explicit DR
program provides very small benefit to the DR-enabled asset’s
owner. Furthermore, this calculation does not account for any
variable or capital expenditure necessary to implement and
maintain the DR capability. However, this is in line with some
previous studies where the benefit from DR to residential load
was estimated in single digits (e.g., 1 €/a for 2% load shifting
or 6.5 €/a for 15% load shifting in [8]).

Furthermore, the energy provided to the TSO for balancing
purposes is fairly small with the mean being only about
50 kWh annually. However, while such an amount of energy,
of course, does not noticeably aid in power system balancing,
the prior assumption was that this is only a part of a larger
aggregated mFRR offer to the TSO. The scope of this paper
envisions to look at the flexibility modeling and DR economic
assessment issue strictly from the householder point of view,
i.e., in a disaggregated manner.

B.  Results of the Sensitivity Analysis

Results of the sensitivity analysis are summarized in
Fig. 5-10, wherein the points corresponding to the base case
are marked by a red cross. The average annual benefit in the
simulated scenarios is portrayed with a blue line, whereas the
average specific benefit per unit of energy served as DR for
power system balancing is illustrated with an orange line.

Evidently, increasing the required minimum time distance
between two explicit DR activations tends to decrease the
annual benefit obtainable (Fig. 5). However, this effect is not
so pronounced with the constraint values from 0 to 5 hours
(with corresponding resulting benefit from 4.97 € to 4.88 €),
beyond which the profitability starts to decrease more
obviously. This can seemingly be explained by two factors.
Firstly, the actual number of DR activations also decreases

rapidly if the constraint is above 5, thus resulting in less total
energy served in DR. Secondly, as the average specific benefit
line portrays, the DR energy becomes less valuable the higher
the constraint is. In fact, two distinct cases can be observed: if
the minimum time distance constraint is in the range of [0; 5],
the average specific benefit is roughly 106.00 €/ MWh, but, in
the range [9; 24], it is about 102.29 €/ MWh.

As can be seen in Fig. 6, the constraint for maximum time
before load recovery does not have a noticeable effect on
either of the simulation result indicators. This is likely
explained by the fact that the modeled consumption mostly
always had sufficient flexibility in the direction opposite to
DR in the next few hours following the DR event. Thus, the
recovery effect could always start right after the DR event
itself. In fact, this suggests that this constraint should be
redefined to limit the time for completion of the recovery
effect as opposed to the beginning of it. This would likely be
far more useful in DR flexibility modeling, but a further study
is necessary to confirm this assertion.

On the other hand, the next parameter analyzed, maximum
number of DR events in a week, shows a lot clearer and
straightforward picture (Fig. 7). Indeed, the more DR
activations are allowed, the more remuneration is received
resulting in an almost linear curve for the annual benefit.
Evidently, this constraint is always active in the simulations,
effectively designating the number of activations to be
modeled. This arises from the fact that almost every modeled
activation provides net positive benefit even if it is miniscule.
If variable costs were taken into account and reflected in the
bid price, the activations would be performed less often.

The specific benefit per unit of DR energy served (Fig. 7)
also rises with higher maximum number of DR events in a
week. However, it seemingly saturates at about 4 events a
week. If relatively few activations are allowed, the likelihood
increases of them being carried out in suboptimal time.

The impact of the next two parameters, minimum and
maximum duration of a DR event, is summarized in the
surface charts, Fig. 8 and Fig. 9. It should be noted that values
of these constraints exceeding 1 are not realistic in the Baltic
balancing market mFRR framework, but instead can denote
hypothetical future purpose-specific flexibility markets for
long-duration DR. Evidently, the most profitable case is when
the minimum constraint is set to 2 hours and the maximum to
5 (Fig. 8). Conversely, the specific benefit is the highest when
the minimum constraint is set to 1 and the maximum to 5
(Fig. 9). On the one hand, the wide temporal range of the DR
event duration allows to increase the prospective profitability
of DR, however, the longer a DR event is, the longer also the
recovery period will be exposing the asset owner to more price
volatility risks. The minimum DR event duration of 2 hours
provides the best overall benefit likely because it balances the
aforementioned long duration price variability risks with the
overall higher DR energy that can be served compared to the
case where the minimum duration is 1 hour but the number of
activations per week limit remains the same. Thus, higher
amounts of balancing energy provided by DR result in
improved overall benefit despite lower specific benefit per
balancing energy provided.
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Finally, the last flexibility modeling parameter analyzed,
the percentage of total consumption offered to DR, shows a
nearly linear characteristic (Fig. 10). It follows that the more
flexibility a DR-ready consumer offers, the more overall
profitability they can expect. Of course, flexibility above the
5-15% mark is hardly realistic for a household, unless a
significant part of their consumption comes from large
thermostatic loads (e.g., electric heating) that have
controllability potential. Nevertheless, these results being as
expected aids in validating the overall performance of the
model.

IV. CONCLUSIONS

The flexibility modeling parameter sensitivity analysis
carried out in this study aids in validating the developed DR
economic assessment tool and its capability to inform
potential residential-scale DR participants on the potential
activity and profitability from taking part in an explicit DR
program. Moreover, this study confirms the importance of
accurate selection of the parameter values describing the
available flexibility of the consumption profile or particular
flexible assets.
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Figure 8. Annual benefit depending on DR event duration constraints
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Metrics like the available flexibility within an hour,
maximum number of DR events in a certain time horizon and
the minimum time distance between two subsequent DR
activations have to be selected particularly carefully as they
majorly affect the model results. On the other hand, the
maximum time before the beginning of recovery has proven to
be inconsequential to the simulations and should instead be
replaced by a constraint limiting the maximum time before the
recovery has to be completed.

When the flexibility parameters are set to reasonable
assumptions, it can be inferred that a residential-scale DR
participant with a typical load profile, subject to electricity
retail prices akin to the Latvian market and capable to
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participate in Baltic power system balancing (via an
aggregator), can receive some annual benefit from explicit
DR. However, with consumption flexibility of about 5%, the
economic benefit is barely noticeable (about 5 € annum) and
might not even offset the technical costs of DR readiness
implementation and maintenance. Indeed, a householder with
a typical standard consumption pattern without significant
thermostatic load is not well incentivized to participate in
explicit DR.

Further studies should aim to expand the DR assessment
model to consider other potential markets and forms of
explicit DR where residential-scale customers might
theoretically participate in an aggregated form, since currently
the model is focused solely on an mFRR product-based
balancing market.
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