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Abstract – Cyber-Physical Systems (CPSs) are systems that 

connect the physical world with the virtual world of information 

processing. They consist of various components that work together 

to create some global behaviour. These components include 

software systems, communication technologies and sensors, 

executive mechanisms that interact with the real world, often 

including embedded technologies. One CPS may include a variety 

of components from different manufacturers or service providers, 

often without even knowing that their products and services are 

integrated with others as a result of CPS. This paper systematises 

information about CPS modelling methods and domains and 

presents the CPS modelling cycle – from abstraction to 

architecture and from concept to realisation.  

 

Keywords – Cyber-physical systems, modelling methods.  

I. INTRODUCTION 

Cyber-Physical System (CPS) is a new software-controlled 

distributed system class with complex interactions with the 

physical world. CPS is becoming more important as it offers 

socio-economic benefits that go beyond the contribution of 

classic embedded systems. For example, fully automated cars 

run by a computer, not driven by a man, promise to increase the 

efficiency of traffic, which outperforms the efficiency of a man-

driven car [1]. 

As a discipline, CPS is a technology discipline focused on 

engineering with a strong mathematical abstraction. The main 

technical task is to combine abstractions that have evolved over 

the centuries by modelling physical processes (differential 

equations, stochastic processes, etc.) with abstractions that have 

developed over the years in computer science (algorithms and 

programs that provide “procedural epistemology”). 

Quality design CPSs are relatively complicated because 

engineers need to find a balance between continuous and 

discrete structures using sophisticated system representations, 

interacting with physical and digital processes [2]. These 

representations should include a wide range of behaviours such 

as software execution, hardware operations, and mechanical 

dynamics. An additional factor that makes CPS system design 

complicated is timing setup – calculations, networking, and 

physical changes must be properly synchronised to enable CPS 

to work as intended [3].  

CPS modelling techniques and their origins can be found in 

a variety of disciplines, such as engineering, software 

engineering, and control theory. Unfortunately, in practice, this 

diversity leads to heterogeneous engineering processes, which 
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are often difficult to combine and customise when planning a 

system. The reason can be the fact that different parts of the 

system may depend on each other and their execution must take 

place in a certain sequence and under certain circumstances.  

Despite the fact that CPS systems are a relatively new 

phenomenon, there are already different studies in this field – 

both in terms of CPS definitions, their analysis in modelling and 

others. For example, a source of information that includes an 

overview of concepts, applications, and challenges in the CPS 

area [4]. This source examines the origin, terminology, 

relatively similar concepts and current challenges in the CPS 

field; the authors present an overview of related literature 

discussing practical CPS applications and key research areas. 

As CPS is a very broad field of research, CPS covers a wide 

range of applications on different scales. The authors conclude 

that the existing systems have limited attention to the 

requirements of the CPS systems and that revolutionary 

planning and modelling approaches are required to achieve the 

CPS companion goals [5]. 

Another source associated with CPS security [5] aims to 

identify, classify and analyse existing research on CPS security 

to better understand how security is managed by CPS [6]. The 

authors empirically define a comparison framework for CPS 

security techniques and classification techniques. From the data 

collected, the authors conclude that despite the recent 

emergence of CPS security solutions, scientific interest in this 

topic has been growing rapidly in recent years in various 

publications [6]. 

In article [7], from a computer science point of view it is 

claimed that today’s computing and networking methods are 

not suitable for CPS modelling, as they do not take due account 

of the time and concurrency of the physical system and have set 

promising research directions to better use computing and 

networking systems in the CPS codec. Recently, researchers 

have introduced a programming model that reflects the physical 

concept of time to simulate a distributed real-time embedded 

system called Programming Temporally Integrated Distributed 

Embedded Systems (PTIDES). Giotto – programming language 

for real time CPS, and Ptolemay 2 – the modelling and 

simulation environment for heterogeneous systems are also a 

significant work in this research direction. Other model-based 

design and development approaches are Model-driven 

Architecture (MDA) and Model-Integration Computing (MIC). 
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The goal of the paper is to summarise wide information about 

modelling methods used for CPS, to describe the approach used 

for CPS modelling and to overview application domains. 

The paper is structured as follows. The first section contains 

short introduction of the paper. The second section introduces 

modelling methods of CPS. The next section is about model-

based development lifecycle. The fourth section contains CPS 

application domain information and paper is finished with the 

fifth section of conclusions and future work.  

II. MODELLING METHODS 

When designing a CPS, it is important to develop a formal 

description [8]. Structural modelling approaches that are based 

on the representation of complex system model graphs are quite 

widely used. This section uses results from several authors [9]. 

CPS modelling techniques vary depending on the scientific 

field from which they are derived. As CPS engineering is 

located around the boundaries between discrete digital and 

continuous physical worlds, one of the most important features 

of modelling techniques is the processing of their possible 

continuous phenomena such as time and space. At one end of 

this spectrum, there are classic software engineering models, 

such as Statecharts and process algebra [10]. They support 

connectivity and automated verification. However, managing 

their continuous phenomena is often too limited for the CPS. 

At the end of the second spectrum, there are models that 

include continuity, such as differential equations and difference 

equations [11], [12] and engineering tools such as Simulink 

[13]. Although these models are well suited to traditional 

control settings, it is increasingly difficult to apply such models 

to complex autonomous systems. For example, it is difficult to 

analyse behavioural planning in signal flow control models. 

The purpose of hybrid systems is to harmonise discrete and 

continuous system dynamics. A common model is a hybrid 

model. A common model is a hybrid authomata [14], which 

combines continuous evolution through differential equations 

with discrete state jumps. Although this area has been 

successful in symbolic and numerical calculations to analyse 

hybrid models, these models are very complex, have limited 

scalability and lack typical modularity mechanisms [15], which 

make them complex with common software and system 

engineering techniques. 

A. Discrete Modelling Methods 

There are several categories of discrete modelling methods. 

One category of discrete models focuses on describing complex 

states and their relationships, often represented as data schemas 

and object models. Popular formalisms of this category include 

[9]: 

1) Alloy [16]; 

2) TLA+ [17]; 

3) Object-Z [18]; 

4) VDM-SL [19]; 

5) B [20]. 

In these models, formalism can be seen as a set of declarative 

constraints applied to an abstract structure or position. Such 

modelling techniques usually support expansion through 

refinement and composition, thus allowing for a logical  

analysis – contradictory testing or the possibility of reverse 

model generation [9].  

Other discrete modelling methods focus on describing 

processes, where the primary focus is placed on the system state 

transitions and changes [9]. These modelling methods are based 

on algorithmic notations and different state machine forms, 

such as: 

1) Process algebra, such as CSP and FSP [9], [10];  

2) Transitions systems – statecharts and Promela/Spin  

[9], [10]; 

3) PlusCal [9];  

4) Petri networks [9]; 

5) Dynamic logic (based on JML specification) [9], [12]; 

6) Reactive models [9], [21]. 

B. Continuous Modelling Methods 

In addition to discrete modelling techniques, continuous and 

hybrid modelling techniques based on, for example, differential 

equations can be used. These equations are traditionally used to 

describe various physical processes, such as mechanics, 

thermodynamics, and electromagnetism [22]. 

Differential equations describe the system using state 

variables such as location or temperature, triggering conditions, 

and their development rules that can judge the states in which 

systems may be located. Differential equations of partial 

derivatives can be simplified by lump element models mapped 

into simple differential equations – a combination of discrete 

units with shared variables – such an approach is used, for 

example, in Modelica language [23]. These models allow 

simulating, performing a theoretical analysis, such as stability 

and security, and in some cases predicting the future state of the 

system. 

Continuous modelling techniques are often used in control. 

For example, formalism of signal flows is used to design control 

and environmental models, allowing for the analysis of 

simulation of values, such as rise time, overshoot time, setup 

time etc. Simulink (Matlab) and SCADE can be used to create 

such models [13], [24]. Signal flow models are expanded with 

these discrete state descriptions to form prototypes for 

algorithmic decision-making (for example, by creating modes 

or reactions). For example, the StateFlow included in Matlab 

allows combining graphical and table images, including state 

transition diagrams, flow diagrams, state transition tables, and 

truth tables to simulate how the system responds to events, 

time-dependent conditions, and external input signals [25]. 

C. Hybrid Modelling Methods 

Discrete and uninterrupted modelling approaches provide an 

opportunity to model individual elements, but in complex 

systems such as CPS, it is necessary to combine both of the 

above approaches to create one holistic model. Thus, hybrid 

modelling approaches allow filling the void between discrete 

jumps (state changes) and discrete evolution (continuous 

trajectories based on differential equations). These hybrid 

models are the hybrid automaton [14] and the hybrid program 

[26]. Typically, the analysis of hybrid systems is based on direct 
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reach (taking into account the initial set of states, looks at 

whether the system achieves a safe or unsafe set of states) and 

reversibility (for which initial states to give preference, avoid or 

not at all). To calculate the flowpipe, automated tools use 

different geometric approximations of states, such as 

rectangular bodies, polygons, and ellipsoids. Another way to 

analyse hybrid systems is to identify their invariant and to 

demonstrate how it is done in differential dynamic logic and 

hybrid programs [11]. 

  An important subset of hybrid machines is Timed 

Automatic, where constant development is limited to real-time 

variables. Timed Automat’s accessibility problem is crucial, 

and computational tracking can be performed without any 

approximate values. These characteristics check the logical 

security and the ability of the machine to operate using tools 

such as UPPAAL [27]. Timed automata are also used as a 

semantic basis for component-based models such as BIP [28] 

and EAST-ADL [21], which enable design and synchronization 

analysis at higher abstraction levels.  

The advantage of hybrid models is that an engineer can 

choose which dynamics to display on a continuous basis and 

which are discreet. Continuous dynamics do not depend on the 

fixed sampling scheme (for example, in some models). 

However, the price of this flexibility is the complexity of syntax 

and semantics, as well as the difficulty of analysing and linking 

hybrid models with other models. 

D. Component Modelling Methods 

CPSs are distributed interactive systems that combine 

computing and physical processes. CPS software development 

is a complex job that causes many problems. Systems are 

logical and physically divided; they need to run on different 

platforms, meet specific execution times and address 

communication issues. 

In order to address these complexity issues, component-

based software engineering is deployed by platform-dependent 

systems, and therefore domain experts are also software 

developers. Random complexity created by this gap between 

the problem domain and the deployment domain can be reduced 

by modelling techniques. 

For example, the CPS in the automotive or robotics industry 

includes many different features, such as trajectory planning, 

lane correction, battery management, or engine management 

that require smooth interaction with the environment for sensors 

and actuators. Compiling all these distinctive features is one of 

the key challenges in developing such complex systems. 

Component and Connector (C&C) models are widely used to 

design and develop CPS to display features and their logical 

interactions. The advantage of C&C models is that complex 

functions can be subdivided hierarchically into sub-functions 

developed and managed by different domain experts [29]. 

The C&C modelling force in the logical layer includes the 

ability to describe architectures with components that perform 

calculations and information flows modelled using connections 

between their interfaces. The paradigm focuses on software 

functions and their logical communication. Due to the 

hierarchical division of components, different stakeholders can 

build extensive and complex systems by dividing them. 

Simulink and LabView are excellent examples of C&C 

languages used both in the academic world and in the industry 

[29]. 

Table I presents a comparison of C&C tools and standards in 

CPS modelling languages [29]. 

III. MODEL-BASED DEVELOPMENT LIFE CYCLE 

Model-based development is a powerful CPS development 

technique that is often used, mainly focusing on individual steps 

such as simulation, software synthesis, or verification. There is 

often a lack of reference to a clear methodology for using this 

method, so this section describes the known CPS development 

steps based on [30]. 

The authors of this article propose combining the existing 

knowledge and dividing ten steps to create an open and holistic 

methodology for model-based CPS development – from 

abstraction to architecture and from concept to implementation. 

A. Problem Statement  

To describe the problem simply, intuitively and generally, it 

is possible to use a simple language to describe the situation to 

be solved without mathematics or technical terminology. 

Developers of large and dangerous critical systems will also 

need to develop a project plan consisting of requirements 

management, metrics, formal test process descriptions, and 

other professional review processes. Given the dependence of 

cyber-physical systems on different industries, this step is 

necessary to effectively communicate the design requirements 

at all levels.  

B. Physical Process Modelling 

At the first iteration phase of physical processes, it is 

necessary to create an insight into the observations and 

environment, in which CPS or physically controlled processes 

will be located. Physical process models are simplified 

representations of real systems and are usually in the form of 

differential equations or Laplace transformations. Simple 

mathematical models in the next steps can be redefined as the 

development of control algorithm, hardware specifications, 

components and sub-systems testing. 

C. Characterisation of the Problem 

At this stage, the separation of fixed parameters, variable 

parameters and controlled values takes place. Factors that 

identify physical processes, such as configuration space, 

security constraints, input and output sets, saturation points, and 

modal behaviour are identified. This stage defines how physical 

processes can interact with calculations, including end-to-end 

latency requirements, error cases and condition, and noise and 

quantization. Quantification is an operation that replaces the 

discrete signal (pulse sequence) with numbers – the results of 

the countdown. This sequence of numbers creates a digital 

signal. 
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TABLE I  

COMPARISON OF C&C TOOLS AND STANDARDS  

Criteria: 1. Unit Support; 2. Unit Conversion; 3. Component Arrays; 4. Domains; 5. Resolutions; 6. Static Analysis; 7. Configuration Parameters;  

8. Generics; 9. Matrix Support; 10. Differential Equation; 11. Atypical Modelling; 12. Operating Environment; + Yes, − No, P – Partly  
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Simulink − − − + − P + − + − − − 

Modelica + + P + + P + + + + + − 

SysML + + − P P − + + − − − − 

Marte + + − P P − + + + + − − 

AutoFocus3 − − − + − + + − − − − − 

xADL P − − P − P P − − − − − 

AutoSAR + + − + + P + − − − − − 

LabView + + − + + + + − + P − − 

MontiArc − − − + + P + + − − − − 

MontiCar + + + + + + + + + − − + 

Ptolemy − − + − − + + + − − − − 

Verilog + P + + + + + + − P + − 

VHDL + P + + + + + + − P − − 

Rapide − − − − − + + − − − − − 

SADL − − − − − + + − − − − − 

SCADE − − − − − + − − − − − − 

SystemC − − + − − + + + − − − − 

TECS − − − − − + + − − − − − 

UniCon + − + + + + + − − − − − 

WRIGHT − − + − − + + − − − − − 

D. Expression of Control Algorithm 

This step determines the conditions under which physical 

processes will be controlled and obtains an appropriate 

management algorithm that can be executed by the embedded 

computer. Based on the previous step, the requirements for 

latency and retention, sampling rate, jitter and quotation can be 

specified to such an extent that the physical dynamics of interest 

can be accurately measured and appropriately controlled. These 

attributes must meet the requirements of the computing 

platform used. In highly distributed applications or systems that 

are globally asynchronous but locally synchronous, it may be 

particularly important to choose calculation models before 

retrieving control algorithms. This step needs to be reviewed 

after the calculation models and hardware are selected, which 

determines the latency jitter or the variable sampling frequency, 

which is determined by the asinhronic calculation model, or 

saturation, or any other hardware-induced non-linear artifacts. 

E. Choice of Computing Models 

The calculation model is a set of permitted instructions in the 

calculations, as well as the rules governing the components of 

interaction, communication and computational control flows 

[31]. The formal calculation model defines semantics, which 

often leads to a higher level of analysis and gives the potential 

to simulate CPS using heterogeneous modelling tools. Models 

that are defined as formal calculation models can be used to 

simplify the analysis of execution time, state reach, memory 

usage and delay [32], [33]. The dynamics of this software 

changes the development of CPS and can be generalised and 

used in the MBD workflow. The complexity of many CPSs 

often requires the composition of multiple calculation models 

and their interaction. The advantages of using a particular 

computing model depend on its semantics, timing constructs, 

and whether it can be calculated as a Turing complete. 

F. Determination of the Hardware to be Used 

In this step, hardware that can withstand the environment 

interacts with the simulated physical systems, and the 

implemented control algorithm is selected. For each 

component, it is necessary to consider its input and output 

bandwidth, delays from input to output, power consumption, 

measurement resolution and frequency, as well as mechanical 

parameters such as form factor, rejection of electrical 

interference, durability and service life. Mechanical actuators 

must be able to create forces and torques that exceed the 

minimum values obtained from earlier problem characteristics. 

It can be emphasised that it is important to consider and model 

the effects of replacing the ideal parts with, for example, 

cheaper ones, given that the manufacturer’s specifications are 

not always accurate and that the hardware components should 

be independently tested. The choice of embedded computer 

may depend on a deeper understanding of the latency and 

execution time requirements of the control algorithms, the 

measurement of the worst run time of the synthesised software, 

and the rationale for the software to interact with a particular 

hardware architecture. This step may require several iterations 

with software development and simulation before the 

embedded computer can be chosen with confidence. 

G. Simulation 

In this step, the problem is solved using simulation software. 

If multiple computing models are used, then this simulation 

software should support composition and interaction between 

these multiple computing models. Depending on the robustness 
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of the development environment, models of sensors, actuators 

and physical processes can be included. Platform-based design 

to separate application logic and architecture-specific software 

modules or modular components can improve code portability, 

reduce hardware component change effects, and allow 

components to be reused in other contexts [34]. 

Models of individual components and subsystems are as 

important as the end-to-end model. Component models enable 

the creation of automated testing frameworks for the 

verification and testing of synthesised software. If no modelling 

tool can fully describe the system, a modelling tool that best 

reflects its dynamics can be used for each subsystem. Although 

unmatched simulations cannot represent the relationship 

between the signals crossing the boundaries of the subsystem or 

the behaviour of the composition of these subsystems, this step 

facilitates the harmonisation of physical modelling, simulation 

and testing. For example, the Ptolemy 2 modelling tool [31] 

developed at the University of California, Berkeley, is a 

versatile tool for studying heterogeneity. This allows 

developers to easily create new computing models and simulate 

their behaviour. 

H. Design 

In this step, the design of the device can be started according 

to the specifications, taking into account where exceptions are 

made, which may affect the earlier modelling (in this case, it is 

necessary to return to the previous steps). The design must be 

designed to allow for testing of individual components and sub-

systems against theoretical models, facilitating the 

harmonisation of simulation and testing. 

I. Software Synthesis 

This step uses code synthesizers that can work with software 

simulation environments, for example, LabVIEW and 

Ptolemay mentioned above 2. Software of this type can provide 

direct support to an embedded computer or a generic code that 

can be manually adapted to the architecture specific code. 

Assuming that the code synthesizer creates a code that truly 

executes the semantics of the calculation models, it can be 

assumed that the logic of the synthesized code is correct by 

structure. However, the timing should be checked because code 

generators and compilers can implement software timing 

artifacts, and hardware features such as pipelines and caches 

that can trigger trembling errors. Other restrictions, such as 

Memory Footprint or Processor Usage, may also require 

independent verification. Time and other constraints should be 

checked against existing models. 

J. Verification, Validation and Testing 

In this step, changeable parameters are configured to create 

as simple a testing environment as possible and to check each 

component and sub-system independently. Computing systems 

can be isolated from physical systems using hardware-in-the-

loop testing where programmable hardware, such as embedded 

computers or FPGA (Field-programmable Gate Array), 

simulates feedback from physical or other computing 

processes. Performance time and latency measurements can be 

used to improve previous models, and unexpected test results 

may indicate errors in modelling or deployment. Formal 

verification and validation provide insight into the behaviour of 

the algorithm for all or certain combinations of its inputs or 

throughout the cycle. Accurately set requirements transform 

them into a physical verification and validation specification. 

List Invariant – constant values to be tested during testing. 

Verification and validation are probably the most complex 

aspects of CPS development. 

IV. APPLICATION DOMAINS 

Examples of CPS include Smart Grid, Autonomous Car 

Systems, Medical Monitoring Equipment, Process Process 

Control Systems, Robotic Equipment, Autonomous Avionics 

Systems, and many other industries [35]. CPS uses 

transdisciplinary approaches combining cybernetics, 

mechatronics, design, and science. Process management is 

often referred to as embedded systems [36]. In these systems, 

the greatest emphasis is placed on computing elements and less 

on the intensive link between computing and physical elements. 

In this context, CPS is more like the Internet of Things (IoT) 

because it uses the same basic architecture. However, CPS 

provides a higher level of combination and coordination 

between computing and physical elements [37]. Thus, the 

distinctive features of CPS are: 

1) Digital integration;  

2) Digital communication sharing and distribution; 

3) Parallel processes; 

4) Upward, downward and regulatory process flows; 

5) Managing synchronous and asynchronous processes, etc. 

 

Typical CPSs are found in manufacturing, automotive, smart 

energy, avionics and distributed robots. Modern software 

systems are becoming more widespread, autonomous and 

incorporated into the physical world. Such systems are 

important in science and technology because they offer socio-

economic benefits in addition to classical embedded systems. 

For example, self-driving cars promise a dramatic reduction in 

the number of accidents. 

The most popular CPS application domains can be listed 

[38]: 

1) Healthcare (National Health Information Network, 

Electronic Patient Record Initiative, Remote Monitoring, 

Home Care, Operating Room, etc.); 

2) Aviation (Transportation Systems, Aircraft Systems); 

3) Smart Grid (Smart-Grid Metering and Control Systems); 

4) Emergency Management Systems (e.g., Resource 

Tracking, Personnel Management, Developing and 

Implementing Response Contingency Plans);   

5) Other Domains (e.g., Distributed Physical Games, Traffic 

Control and Safety, Financial Networks and Systems, 

Assisted Living, Advanced Automotive Systems, 

Environmental Control, Distributed Robotics, Military 

Systems, Smart Structures, etc.). 

A. CPS and Embedded Systems  

An embedded system is an independent system that includes 

elements of control logic and real world interaction. Unlike 
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CPS, an embedded system is usually just one device, and CPS 

can include many systems and devices [39].  

Embedded systems typically have a limited number of tasks 

to complete with software and hardware components 

specifically designed to accomplish these tasks, usually with 

very limited resources [39]. 

In contrast, while embedded systems are very important 

elements for many CPS, CPS itself operates on a much larger 

scale, possibly including many embedded systems or other 

devices and systems, including human and social systems [39]. 

If an organisation works with embedded systems, especially 

connected or network-based systems, this project or product 

may be classified as CPS [39].  

B. CPS and Internet of Things 

The Internet of Things (IoT) overlapped significantly. The 

IoT’s vision for the future is millions of devices connected to 

the Internet, allowing them to remotely collect information 

about the real world and share it with other systems and devices. 

IoT and CPS have many common problems, but there are also 

some significant differences [39].  

IoT places great emphasis on uniquely identifiable and 

Internet-related devices and embedded systems, while CPS 

engineering science plays an important role in the relationship 

between computing and the physical world (for example, 

between complex software and hardware aspects of the system) 

[39].  

For example, if an organisation is working with IoT, 

especially if it involves interaction with the physical world 

using sensors and/or actuators, then this project or product can 

be classified as CPS [39]. 

C. CPS and Systems of Systems 

System of Systems (SoS) is a system consisting of 

components that are independent systems in themselves [40]. 

These systems are leading and functionally independent, 

physically divided, constantly evolving and collaborating to 

create new global behaviours that they cannot produce 

separately [39]. Or it is the integration of a limited number of 

independent and functioning systems, which are linked together 

for a fixed period of time to achieve a certain higher target [41]. 

SoS is a relatively new concept and defines the five key features 

[41], [42]: 

1) Independence of the components of the general system; 

2) Independence of control management of the component 

system;  

3) Geographical distribution; 

4) Emerging behaviour; 

5) Evolutionary development processes.  

CPS and SoS have a lot in common – many CPSs are made 

up of independent components and, like SoS, CPS also 

addresses the problems of addiction, development and 

distribution [39].  

Although CPS component systems are often independent, it 

is not the key to describing CPS. Similarly, with SoS, although 

SoS includes computing elements as a real world interaction, it 

is not the main characteristic of SoS [39].  

Conversely, if an organisation or project works with SoS, 

especially if it involves interaction with the real world, using 

sensors and/or actuators, we can talk about classification as CPS 

[39]. 

V. CONCLUSION AND FUTURE WORK 

Modelling and simulation are essential to improve CPS 

design, performance and continuous development. CPS design 

is increasingly based on models, but reliable and accurate 

system models often require a significant investment. 

Modelling challenges include high costs associated with model 

creation and maintenance, as well as difficulties associated with 

model reuse, modelling, simulation and stochastic behaviour 

analysis, towing tools of various strengths without the need for 

re-modelling, detailed and abstract models, and effort necessary 

to create models that include failure states and response to 

unusual situations for validation and verification purposes. 

Different stages and types of models need to be provided for the 

various stages of the design process as well as the support for 

defect detection and operation. Updating and consistency of 

these models (model management) is an important issue, as well 

as modelling effort and cost reduction by reusing the model 

(object or module modelling) and pre-defined and customisable 

standard models. Changes in suppliers’ technical or software 

elements as well as changes in the business model may lead to 

situations where simulation models for potential system 

components are delivered in such a way that the whole system 

can be designed for these models. 

One of the solution for such kind of composition of CPS is 

offered in [43], where a two-hemisphere model is used to 

integrate all components together. The system in that case has 

one conceptual model of general system structure and different 

scenarios for behaviour of different system components.  

The simulation challenges are large-scale heterogeneous 

system simulation, efficient hybrid (continuous discrete) 

simulation, system simulation with many different time scales, 

and system physical part and management strategy integrated 

modelling performance analysis, including emergency 

situations. Effective modelling of complex systems with 

reconfiguration and behaviour change requires dynamic 

modelling by modelling model, including transition between 

different levels of detail according to required precision and 

operating conditions, as well as high performance numerical 

algorithms. 

Model-based CPS modelling requires an elementary 

collaborative environment and integration of the legacy system 

simulation [44], as well as open and efficient integration and 

consolidation of data, models, engineering tools and other 

information across different platforms. An important topic for 

further research is the behavioural modelling of users or 

operators of CPS or CPS components and the formation of 

structures among users. 
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