
Applied Computer Systems

1

©2019 Kristaps Babris, Oksana Nikiforova, Uldis Sukovskis.

This is an open access article licensed under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0), in the manner agreed with Sciendo.

ISSN 2255-8691 (online)

ISSN 2255-8683 (print)
May 2019, vol. 24, no. 1, pp. 1–8

https://doi.org/10.2478/acss-2019-0001

https://content.sciendo.com

Brief Overview of Modelling Methods, Life-Cycle

and Application Domains of Cyber-Physical Systems

Kristaps Babris1*, Oksana Nikiforova2, Uldis Sukovskis3

1–3Riga Technical University, Riga, Latvia

Abstract – Cyber-Physical Systems (CPSs) are systems that

connect the physical world with the virtual world of information

processing. They consist of various components that work together

to create some global behaviour. These components include

software systems, communication technologies and sensors,

executive mechanisms that interact with the real world, often

including embedded technologies. One CPS may include a variety

of components from different manufacturers or service providers,

often without even knowing that their products and services are

integrated with others as a result of CPS. This paper systematises

information about CPS modelling methods and domains and

presents the CPS modelling cycle – from abstraction to

architecture and from concept to realisation.

Keywords – Cyber-physical systems, modelling methods.

I. INTRODUCTION

Cyber-Physical System (CPS) is a new software-controlled

distributed system class with complex interactions with the

physical world. CPS is becoming more important as it offers

socio-economic benefits that go beyond the contribution of

classic embedded systems. For example, fully automated cars

run by a computer, not driven by a man, promise to increase the

efficiency of traffic, which outperforms the efficiency of a man-

driven car [1].

As a discipline, CPS is a technology discipline focused on

engineering with a strong mathematical abstraction. The main

technical task is to combine abstractions that have evolved over

the centuries by modelling physical processes (differential

equations, stochastic processes, etc.) with abstractions that have

developed over the years in computer science (algorithms and

programs that provide “procedural epistemology”).

Quality design CPSs are relatively complicated because

engineers need to find a balance between continuous and

discrete structures using sophisticated system representations,

interacting with physical and digital processes [2]. These

representations should include a wide range of behaviours such

as software execution, hardware operations, and mechanical

dynamics. An additional factor that makes CPS system design

complicated is timing setup – calculations, networking, and

physical changes must be properly synchronised to enable CPS

to work as intended [3].

CPS modelling techniques and their origins can be found in

a variety of disciplines, such as engineering, software

engineering, and control theory. Unfortunately, in practice, this

diversity leads to heterogeneous engineering processes, which

* Corresponding author’s e-mail: kristaps.babris@edu.rtu.lv

are often difficult to combine and customise when planning a

system. The reason can be the fact that different parts of the

system may depend on each other and their execution must take

place in a certain sequence and under certain circumstances.

Despite the fact that CPS systems are a relatively new

phenomenon, there are already different studies in this field –

both in terms of CPS definitions, their analysis in modelling and

others. For example, a source of information that includes an

overview of concepts, applications, and challenges in the CPS

area [4]. This source examines the origin, terminology,

relatively similar concepts and current challenges in the CPS

field; the authors present an overview of related literature

discussing practical CPS applications and key research areas.

As CPS is a very broad field of research, CPS covers a wide

range of applications on different scales. The authors conclude

that the existing systems have limited attention to the

requirements of the CPS systems and that revolutionary

planning and modelling approaches are required to achieve the

CPS companion goals [5].

Another source associated with CPS security [5] aims to

identify, classify and analyse existing research on CPS security

to better understand how security is managed by CPS [6]. The

authors empirically define a comparison framework for CPS

security techniques and classification techniques. From the data

collected, the authors conclude that despite the recent

emergence of CPS security solutions, scientific interest in this

topic has been growing rapidly in recent years in various

publications [6].

In article [7], from a computer science point of view it is

claimed that today’s computing and networking methods are

not suitable for CPS modelling, as they do not take due account

of the time and concurrency of the physical system and have set

promising research directions to better use computing and

networking systems in the CPS codec. Recently, researchers

have introduced a programming model that reflects the physical

concept of time to simulate a distributed real-time embedded

system called Programming Temporally Integrated Distributed

Embedded Systems (PTIDES). Giotto – programming language

for real time CPS, and Ptolemay 2 – the modelling and

simulation environment for heterogeneous systems are also a

significant work in this research direction. Other model-based

design and development approaches are Model-driven

Architecture (MDA) and Model-Integration Computing (MIC).

Applied Computer Systems

__ 2019/24

2

The goal of the paper is to summarise wide information about

modelling methods used for CPS, to describe the approach used

for CPS modelling and to overview application domains.

The paper is structured as follows. The first section contains

short introduction of the paper. The second section introduces

modelling methods of CPS. The next section is about model-

based development lifecycle. The fourth section contains CPS

application domain information and paper is finished with the

fifth section of conclusions and future work.

II. MODELLING METHODS

When designing a CPS, it is important to develop a formal

description [8]. Structural modelling approaches that are based

on the representation of complex system model graphs are quite

widely used. This section uses results from several authors [9].

CPS modelling techniques vary depending on the scientific

field from which they are derived. As CPS engineering is

located around the boundaries between discrete digital and

continuous physical worlds, one of the most important features

of modelling techniques is the processing of their possible

continuous phenomena such as time and space. At one end of

this spectrum, there are classic software engineering models,

such as Statecharts and process algebra [10]. They support

connectivity and automated verification. However, managing

their continuous phenomena is often too limited for the CPS.

At the end of the second spectrum, there are models that

include continuity, such as differential equations and difference

equations [11], [12] and engineering tools such as Simulink

[13]. Although these models are well suited to traditional

control settings, it is increasingly difficult to apply such models

to complex autonomous systems. For example, it is difficult to

analyse behavioural planning in signal flow control models.

The purpose of hybrid systems is to harmonise discrete and

continuous system dynamics. A common model is a hybrid

model. A common model is a hybrid authomata [14], which

combines continuous evolution through differential equations

with discrete state jumps. Although this area has been

successful in symbolic and numerical calculations to analyse

hybrid models, these models are very complex, have limited

scalability and lack typical modularity mechanisms [15], which

make them complex with common software and system

engineering techniques.

A. Discrete Modelling Methods

There are several categories of discrete modelling methods.

One category of discrete models focuses on describing complex

states and their relationships, often represented as data schemas

and object models. Popular formalisms of this category include

[9]:

1) Alloy [16];

2) TLA+ [17];

3) Object-Z [18];

4) VDM-SL [19];

5) B [20].

In these models, formalism can be seen as a set of declarative

constraints applied to an abstract structure or position. Such

modelling techniques usually support expansion through

refinement and composition, thus allowing for a logical

analysis – contradictory testing or the possibility of reverse

model generation [9].

Other discrete modelling methods focus on describing

processes, where the primary focus is placed on the system state

transitions and changes [9]. These modelling methods are based

on algorithmic notations and different state machine forms,

such as:

1) Process algebra, such as CSP and FSP [9], [10];

2) Transitions systems – statecharts and Promela/Spin

[9], [10];

3) PlusCal [9];

4) Petri networks [9];

5) Dynamic logic (based on JML specification) [9], [12];

6) Reactive models [9], [21].

B. Continuous Modelling Methods

In addition to discrete modelling techniques, continuous and

hybrid modelling techniques based on, for example, differential

equations can be used. These equations are traditionally used to

describe various physical processes, such as mechanics,

thermodynamics, and electromagnetism [22].

Differential equations describe the system using state

variables such as location or temperature, triggering conditions,

and their development rules that can judge the states in which

systems may be located. Differential equations of partial

derivatives can be simplified by lump element models mapped

into simple differential equations – a combination of discrete

units with shared variables – such an approach is used, for

example, in Modelica language [23]. These models allow

simulating, performing a theoretical analysis, such as stability

and security, and in some cases predicting the future state of the

system.

Continuous modelling techniques are often used in control.

For example, formalism of signal flows is used to design control

and environmental models, allowing for the analysis of

simulation of values, such as rise time, overshoot time, setup

time etc. Simulink (Matlab) and SCADE can be used to create

such models [13], [24]. Signal flow models are expanded with

these discrete state descriptions to form prototypes for

algorithmic decision-making (for example, by creating modes

or reactions). For example, the StateFlow included in Matlab

allows combining graphical and table images, including state

transition diagrams, flow diagrams, state transition tables, and

truth tables to simulate how the system responds to events,

time-dependent conditions, and external input signals [25].

C. Hybrid Modelling Methods

Discrete and uninterrupted modelling approaches provide an

opportunity to model individual elements, but in complex

systems such as CPS, it is necessary to combine both of the

above approaches to create one holistic model. Thus, hybrid

modelling approaches allow filling the void between discrete

jumps (state changes) and discrete evolution (continuous

trajectories based on differential equations). These hybrid

models are the hybrid automaton [14] and the hybrid program

[26]. Typically, the analysis of hybrid systems is based on direct

Applied Computer Systems

__ 2019/24

3

reach (taking into account the initial set of states, looks at

whether the system achieves a safe or unsafe set of states) and

reversibility (for which initial states to give preference, avoid or

not at all). To calculate the flowpipe, automated tools use

different geometric approximations of states, such as

rectangular bodies, polygons, and ellipsoids. Another way to

analyse hybrid systems is to identify their invariant and to

demonstrate how it is done in differential dynamic logic and

hybrid programs [11].

 An important subset of hybrid machines is Timed

Automatic, where constant development is limited to real-time

variables. Timed Automat’s accessibility problem is crucial,

and computational tracking can be performed without any

approximate values. These characteristics check the logical

security and the ability of the machine to operate using tools

such as UPPAAL [27]. Timed automata are also used as a

semantic basis for component-based models such as BIP [28]

and EAST-ADL [21], which enable design and synchronization

analysis at higher abstraction levels.

The advantage of hybrid models is that an engineer can

choose which dynamics to display on a continuous basis and

which are discreet. Continuous dynamics do not depend on the

fixed sampling scheme (for example, in some models).

However, the price of this flexibility is the complexity of syntax

and semantics, as well as the difficulty of analysing and linking

hybrid models with other models.

D. Component Modelling Methods

CPSs are distributed interactive systems that combine

computing and physical processes. CPS software development

is a complex job that causes many problems. Systems are

logical and physically divided; they need to run on different

platforms, meet specific execution times and address

communication issues.

In order to address these complexity issues, component-

based software engineering is deployed by platform-dependent

systems, and therefore domain experts are also software

developers. Random complexity created by this gap between

the problem domain and the deployment domain can be reduced

by modelling techniques.

For example, the CPS in the automotive or robotics industry

includes many different features, such as trajectory planning,

lane correction, battery management, or engine management

that require smooth interaction with the environment for sensors

and actuators. Compiling all these distinctive features is one of

the key challenges in developing such complex systems.

Component and Connector (C&C) models are widely used to

design and develop CPS to display features and their logical

interactions. The advantage of C&C models is that complex

functions can be subdivided hierarchically into sub-functions

developed and managed by different domain experts [29].

The C&C modelling force in the logical layer includes the

ability to describe architectures with components that perform

calculations and information flows modelled using connections

between their interfaces. The paradigm focuses on software

functions and their logical communication. Due to the

hierarchical division of components, different stakeholders can

build extensive and complex systems by dividing them.

Simulink and LabView are excellent examples of C&C

languages used both in the academic world and in the industry

[29].

Table I presents a comparison of C&C tools and standards in

CPS modelling languages [29].

III. MODEL-BASED DEVELOPMENT LIFE CYCLE

Model-based development is a powerful CPS development

technique that is often used, mainly focusing on individual steps

such as simulation, software synthesis, or verification. There is

often a lack of reference to a clear methodology for using this

method, so this section describes the known CPS development

steps based on [30].

The authors of this article propose combining the existing

knowledge and dividing ten steps to create an open and holistic

methodology for model-based CPS development – from

abstraction to architecture and from concept to implementation.

A. Problem Statement

To describe the problem simply, intuitively and generally, it

is possible to use a simple language to describe the situation to

be solved without mathematics or technical terminology.

Developers of large and dangerous critical systems will also

need to develop a project plan consisting of requirements

management, metrics, formal test process descriptions, and

other professional review processes. Given the dependence of

cyber-physical systems on different industries, this step is

necessary to effectively communicate the design requirements

at all levels.

B. Physical Process Modelling

At the first iteration phase of physical processes, it is

necessary to create an insight into the observations and

environment, in which CPS or physically controlled processes

will be located. Physical process models are simplified

representations of real systems and are usually in the form of

differential equations or Laplace transformations. Simple

mathematical models in the next steps can be redefined as the

development of control algorithm, hardware specifications,

components and sub-systems testing.

C. Characterisation of the Problem

At this stage, the separation of fixed parameters, variable

parameters and controlled values takes place. Factors that

identify physical processes, such as configuration space,

security constraints, input and output sets, saturation points, and

modal behaviour are identified. This stage defines how physical

processes can interact with calculations, including end-to-end

latency requirements, error cases and condition, and noise and

quantization. Quantification is an operation that replaces the

discrete signal (pulse sequence) with numbers – the results of

the countdown. This sequence of numbers creates a digital

signal.

Applied Computer Systems

__ 2019/24

4

TABLE I

COMPARISON OF C&C TOOLS AND STANDARDS

Criteria: 1. Unit Support; 2. Unit Conversion; 3. Component Arrays; 4. Domains; 5. Resolutions; 6. Static Analysis; 7. Configuration Parameters;

8. Generics; 9. Matrix Support; 10. Differential Equation; 11. Atypical Modelling; 12. Operating Environment; + Yes, − No, P – Partly

Language

U
n

it
 S

u
p
p

o
rt

U
n

it

C
o
n
v

er
si

o
n

s

C
o

m
p
o

n
en

t

A
rr

ay
s

D
o

m
ai

n
s

R
es

o
lu

ti
o
n

s

S
ta

ti
c

A
n

al
y

si
s

C
o
n

fi
g

u
ra

ti
o
n

P
ar

am
et

er
s

G
en

er
ic

s

M
at

ri
x

S
u

p
p
o

rt

D
if

fe
re

n
ti

al

E
q
u

at
io

n

A
ty

p
ic

al

M
o
d

el
li

n
g

O
p

er
at

in
g

E
n
v

ir
o

n
m

en
t

Simulink − − − + − P + − + − − −

Modelica + + P + + P + + + + + −

SysML + + − P P − + + − − − −

Marte + + − P P − + + + + − −

AutoFocus3 − − − + − + + − − − − −

xADL P − − P − P P − − − − −

AutoSAR + + − + + P + − − − − −

LabView + + − + + + + − + P − −

MontiArc − − − + + P + + − − − −

MontiCar + + + + + + + + + − − +

Ptolemy − − + − − + + + − − − −

Verilog + P + + + + + + − P + −

VHDL + P + + + + + + − P − −

Rapide − − − − − + + − − − − −

SADL − − − − − + + − − − − −

SCADE − − − − − + − − − − − −

SystemC − − + − − + + + − − − −

TECS − − − − − + + − − − − −

UniCon + − + + + + + − − − − −

WRIGHT − − + − − + + − − − − −

D. Expression of Control Algorithm

This step determines the conditions under which physical

processes will be controlled and obtains an appropriate

management algorithm that can be executed by the embedded

computer. Based on the previous step, the requirements for

latency and retention, sampling rate, jitter and quotation can be

specified to such an extent that the physical dynamics of interest

can be accurately measured and appropriately controlled. These

attributes must meet the requirements of the computing

platform used. In highly distributed applications or systems that

are globally asynchronous but locally synchronous, it may be

particularly important to choose calculation models before

retrieving control algorithms. This step needs to be reviewed

after the calculation models and hardware are selected, which

determines the latency jitter or the variable sampling frequency,

which is determined by the asinhronic calculation model, or

saturation, or any other hardware-induced non-linear artifacts.

E. Choice of Computing Models

The calculation model is a set of permitted instructions in the

calculations, as well as the rules governing the components of

interaction, communication and computational control flows

[31]. The formal calculation model defines semantics, which

often leads to a higher level of analysis and gives the potential

to simulate CPS using heterogeneous modelling tools. Models

that are defined as formal calculation models can be used to

simplify the analysis of execution time, state reach, memory

usage and delay [32], [33]. The dynamics of this software

changes the development of CPS and can be generalised and

used in the MBD workflow. The complexity of many CPSs

often requires the composition of multiple calculation models

and their interaction. The advantages of using a particular

computing model depend on its semantics, timing constructs,

and whether it can be calculated as a Turing complete.

F. Determination of the Hardware to be Used

In this step, hardware that can withstand the environment

interacts with the simulated physical systems, and the

implemented control algorithm is selected. For each

component, it is necessary to consider its input and output

bandwidth, delays from input to output, power consumption,

measurement resolution and frequency, as well as mechanical

parameters such as form factor, rejection of electrical

interference, durability and service life. Mechanical actuators

must be able to create forces and torques that exceed the

minimum values obtained from earlier problem characteristics.

It can be emphasised that it is important to consider and model

the effects of replacing the ideal parts with, for example,

cheaper ones, given that the manufacturer’s specifications are

not always accurate and that the hardware components should

be independently tested. The choice of embedded computer

may depend on a deeper understanding of the latency and

execution time requirements of the control algorithms, the

measurement of the worst run time of the synthesised software,

and the rationale for the software to interact with a particular

hardware architecture. This step may require several iterations

with software development and simulation before the

embedded computer can be chosen with confidence.

G. Simulation

In this step, the problem is solved using simulation software.

If multiple computing models are used, then this simulation

software should support composition and interaction between

these multiple computing models. Depending on the robustness

Applied Computer Systems

__ 2019/24

5

of the development environment, models of sensors, actuators

and physical processes can be included. Platform-based design

to separate application logic and architecture-specific software

modules or modular components can improve code portability,

reduce hardware component change effects, and allow

components to be reused in other contexts [34].

Models of individual components and subsystems are as

important as the end-to-end model. Component models enable

the creation of automated testing frameworks for the

verification and testing of synthesised software. If no modelling

tool can fully describe the system, a modelling tool that best

reflects its dynamics can be used for each subsystem. Although

unmatched simulations cannot represent the relationship

between the signals crossing the boundaries of the subsystem or

the behaviour of the composition of these subsystems, this step

facilitates the harmonisation of physical modelling, simulation

and testing. For example, the Ptolemy 2 modelling tool [31]

developed at the University of California, Berkeley, is a

versatile tool for studying heterogeneity. This allows

developers to easily create new computing models and simulate

their behaviour.

H. Design

In this step, the design of the device can be started according

to the specifications, taking into account where exceptions are

made, which may affect the earlier modelling (in this case, it is

necessary to return to the previous steps). The design must be

designed to allow for testing of individual components and sub-

systems against theoretical models, facilitating the

harmonisation of simulation and testing.

I. Software Synthesis

This step uses code synthesizers that can work with software

simulation environments, for example, LabVIEW and

Ptolemay mentioned above 2. Software of this type can provide

direct support to an embedded computer or a generic code that

can be manually adapted to the architecture specific code.

Assuming that the code synthesizer creates a code that truly

executes the semantics of the calculation models, it can be

assumed that the logic of the synthesized code is correct by

structure. However, the timing should be checked because code

generators and compilers can implement software timing

artifacts, and hardware features such as pipelines and caches

that can trigger trembling errors. Other restrictions, such as

Memory Footprint or Processor Usage, may also require

independent verification. Time and other constraints should be

checked against existing models.

J. Verification, Validation and Testing

In this step, changeable parameters are configured to create

as simple a testing environment as possible and to check each

component and sub-system independently. Computing systems

can be isolated from physical systems using hardware-in-the-

loop testing where programmable hardware, such as embedded

computers or FPGA (Field-programmable Gate Array),

simulates feedback from physical or other computing

processes. Performance time and latency measurements can be

used to improve previous models, and unexpected test results

may indicate errors in modelling or deployment. Formal

verification and validation provide insight into the behaviour of

the algorithm for all or certain combinations of its inputs or

throughout the cycle. Accurately set requirements transform

them into a physical verification and validation specification.

List Invariant – constant values to be tested during testing.

Verification and validation are probably the most complex

aspects of CPS development.

IV. APPLICATION DOMAINS

Examples of CPS include Smart Grid, Autonomous Car

Systems, Medical Monitoring Equipment, Process Process

Control Systems, Robotic Equipment, Autonomous Avionics

Systems, and many other industries [35]. CPS uses

transdisciplinary approaches combining cybernetics,

mechatronics, design, and science. Process management is

often referred to as embedded systems [36]. In these systems,

the greatest emphasis is placed on computing elements and less

on the intensive link between computing and physical elements.

In this context, CPS is more like the Internet of Things (IoT)

because it uses the same basic architecture. However, CPS

provides a higher level of combination and coordination

between computing and physical elements [37]. Thus, the

distinctive features of CPS are:

1) Digital integration;

2) Digital communication sharing and distribution;

3) Parallel processes;

4) Upward, downward and regulatory process flows;

5) Managing synchronous and asynchronous processes, etc.

Typical CPSs are found in manufacturing, automotive, smart

energy, avionics and distributed robots. Modern software

systems are becoming more widespread, autonomous and

incorporated into the physical world. Such systems are

important in science and technology because they offer socio-

economic benefits in addition to classical embedded systems.

For example, self-driving cars promise a dramatic reduction in

the number of accidents.

The most popular CPS application domains can be listed

[38]:

1) Healthcare (National Health Information Network,

Electronic Patient Record Initiative, Remote Monitoring,

Home Care, Operating Room, etc.);

2) Aviation (Transportation Systems, Aircraft Systems);

3) Smart Grid (Smart-Grid Metering and Control Systems);

4) Emergency Management Systems (e.g., Resource

Tracking, Personnel Management, Developing and

Implementing Response Contingency Plans);

5) Other Domains (e.g., Distributed Physical Games, Traffic

Control and Safety, Financial Networks and Systems,

Assisted Living, Advanced Automotive Systems,

Environmental Control, Distributed Robotics, Military

Systems, Smart Structures, etc.).

A. CPS and Embedded Systems

An embedded system is an independent system that includes

elements of control logic and real world interaction. Unlike

Applied Computer Systems

__ 2019/24

6

CPS, an embedded system is usually just one device, and CPS

can include many systems and devices [39].

Embedded systems typically have a limited number of tasks

to complete with software and hardware components

specifically designed to accomplish these tasks, usually with

very limited resources [39].

In contrast, while embedded systems are very important

elements for many CPS, CPS itself operates on a much larger

scale, possibly including many embedded systems or other

devices and systems, including human and social systems [39].

If an organisation works with embedded systems, especially

connected or network-based systems, this project or product

may be classified as CPS [39].

B. CPS and Internet of Things

The Internet of Things (IoT) overlapped significantly. The

IoT’s vision for the future is millions of devices connected to

the Internet, allowing them to remotely collect information

about the real world and share it with other systems and devices.

IoT and CPS have many common problems, but there are also

some significant differences [39].

IoT places great emphasis on uniquely identifiable and

Internet-related devices and embedded systems, while CPS

engineering science plays an important role in the relationship

between computing and the physical world (for example,

between complex software and hardware aspects of the system)

[39].

For example, if an organisation is working with IoT,

especially if it involves interaction with the physical world

using sensors and/or actuators, then this project or product can

be classified as CPS [39].

C. CPS and Systems of Systems

System of Systems (SoS) is a system consisting of

components that are independent systems in themselves [40].

These systems are leading and functionally independent,

physically divided, constantly evolving and collaborating to

create new global behaviours that they cannot produce

separately [39]. Or it is the integration of a limited number of

independent and functioning systems, which are linked together

for a fixed period of time to achieve a certain higher target [41].

SoS is a relatively new concept and defines the five key features

[41], [42]:

1) Independence of the components of the general system;

2) Independence of control management of the component

system;

3) Geographical distribution;

4) Emerging behaviour;

5) Evolutionary development processes.

CPS and SoS have a lot in common – many CPSs are made

up of independent components and, like SoS, CPS also

addresses the problems of addiction, development and

distribution [39].

Although CPS component systems are often independent, it

is not the key to describing CPS. Similarly, with SoS, although

SoS includes computing elements as a real world interaction, it

is not the main characteristic of SoS [39].

Conversely, if an organisation or project works with SoS,

especially if it involves interaction with the real world, using

sensors and/or actuators, we can talk about classification as CPS

[39].

V. CONCLUSION AND FUTURE WORK

Modelling and simulation are essential to improve CPS

design, performance and continuous development. CPS design

is increasingly based on models, but reliable and accurate

system models often require a significant investment.

Modelling challenges include high costs associated with model

creation and maintenance, as well as difficulties associated with

model reuse, modelling, simulation and stochastic behaviour

analysis, towing tools of various strengths without the need for

re-modelling, detailed and abstract models, and effort necessary

to create models that include failure states and response to

unusual situations for validation and verification purposes.

Different stages and types of models need to be provided for the

various stages of the design process as well as the support for

defect detection and operation. Updating and consistency of

these models (model management) is an important issue, as well

as modelling effort and cost reduction by reusing the model

(object or module modelling) and pre-defined and customisable

standard models. Changes in suppliers’ technical or software

elements as well as changes in the business model may lead to

situations where simulation models for potential system

components are delivered in such a way that the whole system

can be designed for these models.

One of the solution for such kind of composition of CPS is

offered in [43], where a two-hemisphere model is used to

integrate all components together. The system in that case has

one conceptual model of general system structure and different

scenarios for behaviour of different system components.

The simulation challenges are large-scale heterogeneous

system simulation, efficient hybrid (continuous discrete)

simulation, system simulation with many different time scales,

and system physical part and management strategy integrated

modelling performance analysis, including emergency

situations. Effective modelling of complex systems with

reconfiguration and behaviour change requires dynamic

modelling by modelling model, including transition between

different levels of detail according to required precision and

operating conditions, as well as high performance numerical

algorithms.

Model-based CPS modelling requires an elementary

collaborative environment and integration of the legacy system

simulation [44], as well as open and efficient integration and

consolidation of data, models, engineering tools and other

information across different platforms. An important topic for

further research is the behavioural modelling of users or

operators of CPS or CPS components and the formation of

structures among users.

REFERENCES

[1] P. Gao, R. Hensley, and A. Zielke, “A road map to the future for the auto
industry,” McKinsey Quarterly, October 2014.

Applied Computer Systems

__ 2019/24

7

[2] E. A. Lee, “CPS Foundations,” Proceedings of the 47th Design

Automation Conference, DAC ’10, New York, pp. 737–742, 2010.

[3] E. A. Lee, “Cyber Physical Systems: Design Challenges,” In Proceedings
of the 11th Symposium on Object Oriented Real-Time Distributed

Computing, IEEE Computer Society, Washington, pp. 363–369, 2008.

[4] V. Gunes, S. Peter, T. Givargis, and F. Vahid, “A Survey on Concepts,
Applications, and Challenges in Cyber-Physical Systems,” KSII

Transactions on Internet and Information Systems, vol. 8, no. 12,

pp. 4242–4268, 2014. https://doi.org/10.3837/tiis.2014.12.001
[5] Y. Z. Lun, A. D’Innocenzo, I. Malavolta, and M. D. Di Benedetto,

“Cyber-Physical Systems Security: a Systematic Mapping Study.

pp. 1–32, 2016. Available from:
https://www.researchgate.net/publication/303698739_Cyber-

Physical_Systems_Security_a_Systematic_Mapping_Study

[6] A. Barišić, STSM Report: Systematic literature review on multi-paradigm
modeling for CPS Systems, Visiting University of Belgrade, Faculty of

Organizational Sciences, Belgrade (RS), The STSM report, MPMCPS

2018.
[7] K-D. Kim, and P. R. Kumar, “An Overview and Some Challenges in

Cyber-Physical Systems,” Journal of the Indian Institute of Science,

vol. 93, no. 3, pp. 341–352, 2013.
[8] V. Ya. Tsvetkov, “Information Constructions,” European Journal of

Technology and Design, vol. 5, no. 3, pp. 147–152, 2014.

https://doi.org/10.13187/ejtd.2014.5.147
[9] I. Ruchkin, “Integration of Modeling Methods for Cyber-Physical

Systems,” PhD thesis, Institute for Software Research School of

Computer Science, Carnegie Mellon University, Pittsburgh, 2018.
[10] J. Magee and J. Kramer, Concurrency: State Models & Java Programs,

Wiley, 1999.

[11] A. Platzer, Logical foundations of cyber-physical systems. Springer,
Berlin Heidelberg, New York, NY, 2018.

[12] A. Platzer, “Differential Dynamic Logic for Hybrid Systems,” Journal of

Automated Reasoning, vol. 41, no. 2, pp. 143–189, 2008.

https://doi.org/10.1007/s10817-008-9103-8

[13] J. Dabney and T. L. Harman, Mastering SIMULINK 2. Prentice Hall,

Upper Saddle River, NJ, 1998.
[14] R. Alur, T. A. Henzinger, H. Wong-toi, “Symbolic Analysis of Hybrid

Systems,” In Proceedings of the IEEE CDC, 1997.

[15] I. Ruchkin, B. Schmerl, and D. Garlan, “Architectural Abstractions for
Hybrid Programs,” in Proceedings of the 18th International ACM

SIGSOFT Symposium on Component-Based Software Engineering,

CBSE ’15, Montréal, QC, Canada, pp. 65–74, 2015.
https://doi.org/10.1145/2737166.2737167

[16] D. Jackson, Software abstractions: logic, language, and analysis. MIT

Press, Cambridge, Mass., 2012.
[17] L. Lamport, Specifying Systems: The TLA+ Language and Tools for

Hardware and Software Engineers. Addison-Wesley Professional,
Boston, 1st edition edition, July 2002.

[18] G. Smith, Introduction. In: The Object-Z Specification Language.

Advances in Formal Methods, vol 1. Springer, Boston, MA, 2000.

https://doi.org/10.1007/978-1-4615-5265-9_1

[19] P. G. Larsen, K. Lausdahl, N. Battle, J. Fitzgerald, S. Wolff, S. Sahara,

M. Verhoef, P. W. V. Tran-Jorgensen, T. Oda, and P. Chisholm, “VDM-
10 Language Manual. Overture Technical Report Series TR-001”,

pp. 39–234, 2018. Available from: www.overturetool.org.

[20] K. Lano, The B Language and Method: A Guide to Practical Formal
Development (Formal Approaches to Computing and Information

Technology (FACIT)). Springer-Verlag, London, 1996.

[21] R. Marinescu, Model-driven Analysis and Verification of Automotive
Embedded Systems, PhD thesis, Maladaren University, 2016.

[22] E. Hairer, S. P. Nørsett, and G. Wanner, Solving Ordinary Differential

Equations I Nonstiff Problems, Springer Series in Computational
Mathematics, 2nd edition, 1993.

[23] P. Fritzson, Principles of Object-Oriented Modeling and Simulation with

Modelica 2.1. John Wiley-IEEE Press, 2010.
[24] G. Walde, and R. Luckner, “Bridging the tool gap for model-based design

from flight control function design in Simulink to software design in

SCADE”, IEEE/AIAA 35th Digital Avionics Systems Conference (DASC),
2016. https://doi.org/10.1109/DASC.2016.7778044

[25] M. Wermelinger, and T. Margaria-Steffen, “Fundamental Approaches to

Software Engineering”, Proceedings 7th International Conference, FASE
2004. Held as Part of the Joint European Conferences on Theory and

Practice of Software, ETAPS, Barcelona, Spain, 2004.

https://doi.org/10.1007/b95935

[26] A. Benveniste, T. Bourke, B. Caillaud, J. Colao, C. Pasteur, and M.

Pouzet, “Building a Hybrid Systems Modeler on Synchronous Languages

Principles,” Proceedings of the IEEE, vol. 106, no. 9, 2018.
https://doi.org/10.1109/JPROC.2018.2858016

[27] K. G. Larsen, P. Pettersson, and W. Yi, “Model-Checking for Real-Time

Systems,” In H. Reichel (eds). Fundamentals of Computation Theory,
Lecture Notes in Computer Science, vol. 965, pp. 62–88, 1995.

https://doi.org/10.1007/3-540-60249-6_41

[28] A. Basu, M. Bozga, and J. Sifakis, “Modeling Heterogeneous Real-time
Components in BIP”, Proceedings of the Fourth IEEE International

Conference on Software Engineering and Formal Methods, Washington,

DC, USA, 2006.
[29] E. Kusmenko, A. Roth, B. Rumpe, and M. von Wenckstern, “Modeling

Architectures of Cyber-Physical Systems,” in A. Anjorin, H. Espinoza

(Eds) Modelling Foundations and Applications. ECMFA 2017. Lecture
Notes in Computer Science, vol 10376, pp. 34–50, 2017.

https://doi.org/10.1007/978-3-319-61482-3_3

[30] J. C. Jensen, D. H. Chang, and E. A. Lee, “A Model-Based Design
Methodology for Cyber-Physical Systems,” 7th International Wireless

Communications and Mobile Computing Conference, Istanbul, Turkey,

2011. https://doi.org/10.1109/IWCMC.2011.5982785
[31] J. Eker, J. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer,

S. Sachs, and Y. Xiong, “Timing Heterogeneity - The Ptolemy

Approach,” Proceedings of the IEEE, vol. 91, no. 1. 2003.
https://doi.org/10.1109/JPROC.2002.805829

[32] E. A. Lee, “Computing needs time, ACM Communications,” vol. 52,

no. 5, pp. 70–79, May 2009. https://doi.org/10.1145/1506409.1506426
[33] J. Eidson, E. A. Lee, S. Matic, S. A. Seshia, and J. Zou, “Time-centric

Models for Designing Embedded Cyber-Physical Systems,” California

Univ. Berkeley Dept. of Electrical Engineering and Computer Science,
Technical report. UCB/EECS-2009-135, October 2009.

https://doi.org/10.21236/ADA538747

[34] K. Keutzer, A. R. Newton, J. Rabaey, and A. Sangiovanni-Vincentelli,

“System-Level Design: Orthogonalization of Concerns and Platform-

Based Design,” IEEE Transactions, vol. 19, no. 12. December 2000.

https://doi.org/10.1109/43.898830
[35] Khaitan et al., “Design Techniques and Applications of Cyber Physical

Systems: A Survey,” IEEE Systems Journal, 2014.

[36] E. A. Lee, and S. A. Seshia, “Introduction to Embedded Systems - A
Cyber-Physical Systems Approach,” LeeSeshia.org, 2011.

[37] C-R. Rad, O. Hancu, I-A. Takacs, G. Olteanu, “Smart Monitoring of

Potato Crop: A Cyber-Physical System Architecture Model in the Field of
Precision Agriculture,” Agriculture and Agricultural Science Procedia,

vol. 6, pp. 73 – 79, 2015. https://doi.org/10.1016/j.aaspro.2015.08.041

[38] M. N. Al-Mhiqani, R. Ahmad, K. H. Abdulkareem, and N. S. Ali,
“Investigation study of Cyber-Physical Systems: Characteristics,

application domains, and security challenges,” Journal of Engineering
and Applied Sciences, vol. 12, no. 22, 2017.

[39] CPSE Labs, 2018. [Online] Available from: http://www.cpse-

labs.eu/cps.php [Accessed: 27th October 2018].

[40] J. O. Clark, “System of Systems Engineering and Family of Systems

Engineering from a standards, V-Model, and Dual-V Model perspective,”

3rd Annual IEEE Systems Conference, IEEE, 2009.
https://doi.org/10.1109/SYSTEMS.2009.4815831

[41] S. Engell, “Cyber-physical Systems of Systems – Definition and core

research and innovation areas,” Working Paper of the Support Action
CPSoS, pp.1–11, 2014.

[42] M.W. Maier, “Architecting Principles for System of Systems,” Systems

Engineering, vol. 1, no. 4, 1998. https://doi.org/10.1002/(SICI)1520-
6858(1998)1:4<267::AID-SYS3>3.0.CO;2-D

O. Nikiforova, N. El Marzouki, K. Gusarovs, H. Vangheluwe, T. Bures,

R. Al-Ali, M. Iacono, P. O. Esquivel, and F. Leon “The Two-Hemisphere
Modelling Approach to the Composition of Cyber-Physical Systems”

Proceedings of International Conference on Software Technologies

(ICSOFT 2017), 24–26 July, 2017, Madrid, Spain. SCITEPRESS Digital
Library, pp. 286–293. https://doi.org/10.5220/0006424902860293

[43] P. Derler, E. A. Lee, S. Tripakis, and M. Torngren, “Cyber-physical

System Design Contracts,” in Proceedings of the ACM/IEEE 4th
International Conference on Cyber-Physical Systems, ICCPS ’13,

pp. 109–118, 2013.

https://doi.org/10.1145/2502524.2502540

https://doi.org/10.3837/tiis.2014.12.001
https://www.researchgate.net/publication/303698739_Cyber-Physical_Systems_Security_a_Systematic_Mapping_Study
https://www.researchgate.net/publication/303698739_Cyber-Physical_Systems_Security_a_Systematic_Mapping_Study
https://doi.org/10.13187/ejtd.2014.5.147
https://doi.org/10.1007/s10817-008-9103-8
https://doi.org/10.1145/2737166.2737167
https://doi.org/10.1007/978-1-4615-5265-9_1
https://doi.org/10.1109/DASC.2016.7778044
https://doi.org/10.1007/b95935
https://doi.org/10.1109/JPROC.2018.2858016
https://doi.org/10.1007/3-540-60249-6_41
https://doi.org/10.1007/978-3-319-61482-3_3
https://doi.org/10.1109/IWCMC.2011.5982785
https://doi.org/10.1109/JPROC.2002.805829
https://doi.org/10.1145/1506409.1506426
https://doi.org/10.21236/ADA538747
https://doi.org/10.1109/43.898830
https://doi.org/10.1016/j.aaspro.2015.08.041
https://doi.org/10.1109/SYSTEMS.2009.4815831
https://doi.org/10.1002/(SICI)1520-6858(1998)1:4%3C267::AID-SYS3%3E3.0.CO;2-D
https://doi.org/10.1002/(SICI)1520-6858(1998)1:4%3C267::AID-SYS3%3E3.0.CO;2-D
https://doi.org/10.5220/0006424902860293
https://doi.org/10.1145/2502524.2502540

Applied Computer Systems

__ 2019/24

8

Kristaps Babris received the Master degree

in Computer Systems from Riga Technical

University, Latvia, in 2018. He is at present
the first-year Ph. D. student at the Department

of Applied Computer Science, Riga

Technical University.
In parallel, he is a CTO at company that

develops Business Intelligence solutions.
His current research interests include design
and modelling.
E-mail: kristaps.babris@edu.rtu.lv

Oksana Nikiforova received the Doctoral

degree in Information Technologies

(system analysis, modelling and design)

from Riga Technical University, Latvia, in
2001.
At present, she is a Professor at the
Department of Applied Computer Science,
Riga Technical University, where she has
been working since 1997. Her current
research interests include object-oriented
system analysis, design and modelling,
especially the issues in model driven
software development.
E-mail: oksana.nikiforova@rtu.lv

ORCID iD: https://orcid.org/0000-0001-
7983-3088

Uldis Sukovskis. Professor Uldis

Sukovskis holds doctor degree in

information technology since 1992, he is
corresponding member of Latvian

Academy of Science since 2008. His

scientific research interests are model-
driven system development, IT security

and improvement of educational systems.

He is Vice-Rector for Academic Affairs
and Head of the Department of Applied

Computer Science at Riga Technical

University, Latvia. He has work
experience in company Exigen Services

Latvia in the position of Director for IT

Consulting and Audit.
Professor Sukovskis is member of

Information Systems Audit and Control

Association (ISACA) and Certified
Information Systems Auditor (CISA).

E-mail: uldis.sukovskis@rtu.lv

ORCID iD: http://orcid.org/0000-0002-
7960-1049

mailto:kristaps.babris@edu.rtu.lv
mailto:oksana.nikiforova@rtu.lv
https://orcid.org/0000-0001-7983-3088
https://orcid.org/0000-0001-7983-3088
mailto:uldis.sukovskis@rtu.lv
http://orcid.org/0000-0002-7960-1049
http://orcid.org/0000-0002-7960-1049

