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Abstract – The paper proposes an approach to solving the 

problem of optimal placement of data array replicas in a 

distributed system. It presents a formal model of a distributed 

system with unreliable communication channels. A system is 

represented as a graph with coloured arcs. The formulation of the 

problem of finding the optimal placement of replicas is given. As a 

criterion for optimization, the minimum response time to a data 

request is considered. The task solution heuristic algorithm is also 

proposed in the paper. 
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I. INTRODUCTION 

Various requirements are imposed on the characteristics of 

distributed data processing systems (DDPS). The most 

important requirements are 1) processing of data requests 

within a reasonable time; 2) a high level of security of 

information used in the system; 3) high reliability of the system. 

An effective method to solve these requirements is to use data 

replication. Placing replicas of arrays of data closest to the 

nodes – sources of requests – can significantly reduce the 

system response time to such requests. 

The tasks of finding the optimal location of replicas in 

distributed systems are computationally complex. This is 

especially true for large-scale systems. Therefore, to solve such 

problems, various methods are used to reduce their 

computational complexity [1]–[5]. Different criteria are used 

when formulating such tasks. The most common criteria are the 

minimum cost of system operation, the maximum probability 

of receiving a response to a user request and the minimum 

response time of the system to inquiries. 

The article deals with the problem of finding the optimal 

distribution of replicas of several data arrays in the nodes of a 

distributed system operating on the basis of a computer network 

with unreliable communication channels. The minimum 

average response time of the system to queries against data 

arrays is used as the optimization criterion. The task uses 

restrictions on the maximum cost of the system and the limit on 

the maximum number of replicas located in one network node. 

II. DISTRIBUTED DATA PROCESSING SYSTEM PARAMETERS 

The nodes of the distributed data processing system (user 

servers) run several application processes (tasks) of various 

types, which are initiated by users of the system. During the 

                                                           
* Corresponding author’s e-mail: ssomov2016@ipu.ru 

solution, each task generates information requests and/or 

queries to modify the data arrays. One information query 

requests data from a replica of a single data array. The data 

modification request is addressed to all nodes with replicas of 

the modified data array. If the solution of the problem requires 

data from several arrays, then it sequentially generates the 

corresponding number of queries. 

Suppose that a distributed system operates on the basis of a 

computer network consisting of 𝑁  nodes. The network 

topology is represented by a weighted graph 𝐺 = (𝑋, Г). The 

lengths of the graph arcs are specified. The system uses 

𝑀 (𝑚 = 1, 𝑀̅̅ ̅̅ ̅̅ ) data arrays of different types, differing by a set 

of record attributes. The data transmission network consists of 

𝛷(𝜑 = 1, 𝛷̅̅ ̅̅ ̅) communication channels. The capacity of each   

communication channel is equal to 𝐶𝜑 data units per unit time. 

Let 𝑞𝜑
∗ = 1 − 𝜌𝜑

∗  , (𝜑 = 1, 𝛷̅̅ ̅̅ ̅)  is the probability of an error 

occurring in the  -th channel. The success of the message 

delivery is confirmed by the transfer of ACK 

(ACKnowledgement) receipts. Let 𝑡ACK be the waiting time for 

the sending node to receive the ACK receipt of message 

delivery to the receiving node. If during the time 𝑡ACK  the 

sending node does not receive an ACK receipt, the message is 

retransmitted. 

In a distributed system, several user tasks are solved. Each 

task belongs to one of J possible types. The frequency of 

solving tasks is given by the matrix 

𝐹∗ = ‖𝑓𝑛𝑗
∗ ‖ (𝑛 = 1, 𝑁̅̅ ̅̅ ̅;  𝑗 = 1, 𝐽̅̅ ̅̅ ), where 𝑓𝑛𝑗

∗  is the frequency of 

solving the task of the type j in the network node n. The matrix 

𝐸∗ = ‖𝑒∗
𝑗𝑚‖ determines the frequency 𝑒∗

𝑗𝑚 of the generation 

by the task of the type j of information requests to the array of 

the type m. The matrix 𝑈∗ = ‖𝑢∗
𝑗𝑚‖ determines the frequency 

𝑢∗
𝑗𝑚  of generation by the task of type j of the requests for 

modification of the data array m. 

The system operates in a steady state, the nodes have endless 

queues for service, all requests are successfully processed. 

Suppose that the processing time of each request in any node of 

the system is the same and is equal to 𝑇pr. 

Information requests are sent along the shortest paths to the 

nearest nodes with replicas. The shortest paths between all pairs 

of vertices of a weighted graph G are determined using one of 

the known shortest-path search algorithms on weighted graphs 

[6]. The algorithm results in the matrix 𝑆𝑃 = (𝑠𝑝𝑛𝑘)𝑁×𝑁 of the 

shortest paths in the graph G, where the element 𝑠𝑝𝑛𝑘  is equal 

to the length of the shortest path/route between nodes n and k. 
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The distribution of replicas M data arrays across nodes of the 

system is described by the matrix 𝐴 = ‖𝑎𝑛𝑚‖ , in which 

𝑎𝑛𝑚 ∈ {0,1}, and 𝑎𝑛𝑚 = 1, if the network node n contains a 

replica of the array m. Each of M data arrays can have several 

replicas located on the nodes of the system. The number 𝑝𝑚 of 

replicas of the array m in the system is 𝑝𝑚 = ∑ 𝑎𝑛𝑚
𝑁
𝑛=1 . 

The elements of the three-dimensional matrix 𝐵 = ‖𝑏𝑛𝑘𝑚‖ 

of “proximity” of the nodes of the network are calculated based 

on the SP and A matrices. The matrix 𝐵 has the dimension N × 

N × M. The element of the matrix 𝐵  is 𝑏𝑛𝑘𝑚 ∈ {0,1} , and 

𝑏𝑛𝑘𝑚 = 1 if the replica of the data array m is located at node k, 

and the node k is the closest node for node n. In this case, 

information requests to the array m, initiated at the node n, are 

addressed to node k for processing. 

The average length 𝑙𝑚̅
𝑞

 of the information query to the data of 

the array m is known. The average length 𝑙𝑚̅
𝑟  of the response to 

this request is also known. The average length 𝑙𝑚̿
𝑞

 of the request 

for modification of the array m and the average length 𝑙𝑚̿
𝑟  of the 

answer to this request are determined. 

III. THE PROBLEM OF OPTIMAL PLACEMENT OF ARRAY 

REPLICAS IN SYSTEM NODES 

It is necessary to place the replicas of M data arrays in the 

nodes of the distributed system in a way that ensures the 

minimum value of the F(A) functional. The functional F(A) is 

the average time of processing queries generated by user tasks 

per unit time. The value of the functional consists of 3 

components and is calculated as follows: 

𝐹(𝐴) = 𝑇̃ + 𝑇pr + 𝑇̃ ,                                (1) 

where:  

𝑇̃ – average time to send a request from the user server to the 

system node with a replica of the required data array (replica 

server); 

𝑇pr – average request processing time by the replica server; 

𝑇̃ – average time to send a response to a request from the 

replica server to the user server. 

Thus, it is necessary to find the minimum of the functional: 

min 𝐹(𝐴) = min (𝑇̃ + 𝑇pr + 𝑇̃).                     (2) 

In this task, the following restrictions apply: 

Limit on the cost of 𝑂𝑃cost of the system (the cost of storing 

replicas and processing requests in the network nodes, and the 

cost of using the communication channels of the system): 

𝑂𝑃cost ≤ 𝐶𝑂𝑆𝑇MAX.                              (3) 

Restriction 𝑅𝑁MAX𝑛
 to the maximum number of replicas of 

arrays that can be placed in separate nodes of the system: 

∑ 𝑎𝑛𝑚
𝑀
𝑚=1 ≤ 𝑅𝑁MAX𝑛

,            𝑛 = 1, 𝑁̅̅ ̅̅ ̅              (4) 

IV. THE VALUE OF THE AVERAGE DELAY OF MESSAGES IN THE 

SYSTEM 

We define messages as information requests to the replicas 

of data, requests for modification of the replicas and answers to 

these questions (ACK receipts are not considered). Consider the 

message traffic between any two nodes i and k. In both nodes, 

user tasks can be solved. These tasks generate requests to the 

replicas. These two nodes can also store replicas of data arrays. 

Information requests from node i to node k are addressed if node 

k has a replica of the desired array, and it is the closest node for 

node i. Then the number 𝑦𝑖𝑘
𝑞

 of information requests and 

requests for data modification generated in node i is equal to: 

𝑦𝑖𝑘
𝑞

= ∑ 𝑓𝑖𝑗
∗𝐽

𝑗=1 · ∑ (𝑒𝑗𝑚
∗ · 𝑏𝑖𝑘𝑚 + 𝑎𝑘𝑚 · 𝑢𝑗𝑚

∗ )𝑀
𝑚=1 . 

On the other hand, node i can also store replicas of data 

arrays and receive requests from node k. After their processing, 

the node i sends responses to the node k with an intensity equal 

to: 

𝑦𝑖𝑘
𝑟 = ∑ 𝑓𝑘𝑗

∗𝐽
𝑗=1 · ∑ (𝑒𝑗𝑚

∗ · 𝑏𝑘𝑖𝑚 + 𝑎𝑖𝑚 · 𝑢𝑗𝑚
∗ )𝑀

𝑚=1 . 

In total, the number of messages transmitted per unit of time 

from node i to node k equals 

𝑦𝑖𝑘 = 𝑦𝑖𝑘
𝑞

+ 𝑦𝑖𝑘
𝑟 . 

In the entire network, message traffic Y is generated per unit 

of time: 

𝑌 = ∑ ∑ (𝑦𝑖𝑘
𝑞

+ 𝑦𝑖𝑘
𝑟 )𝑁

𝑘=1
𝑁
𝑖=1 . 

The average length 1 𝜇⁄  of messages transmitted over 

network communication channels is equal to: 

1 𝜇⁄ = 𝑌−1 {∑ ∑ ∑ 𝑓𝑖𝑗
∗

𝑁

𝑗=1

[ ∑ 𝑎𝑘𝑚 · 𝑑1

𝑀

𝑚=1

𝑁

𝑘=1

𝑁

𝑖=1

+ ∑ 𝑎𝑖𝑚 · 𝑑2

𝑀

𝑚=1

]}                                      (5) 

𝑑1 = (𝑙𝑚̅
𝑞

∗ 𝑒∗
𝑗𝑚

· 𝑠𝑝𝑖𝑘 + 𝑙𝑚̿
𝑞

· 𝑢∗
𝑗𝑚

),  

𝑑2 = 𝑙𝑚̿
𝑞

· 𝑒∗
𝑗𝑚

· 𝑠𝑝𝑘𝑖 + 𝑙𝑚̿
𝑟 · 𝑢∗

𝑗𝑚. 

To determine the average message delay 𝑇∗ in the distributed 

system, we use the results published in [7], [8]. In these works, 

it is shown that in networks with average network connectivity 

(i.e., for networks in which a majority of nodes have more than 

one input and more than one output communication channel) 

each message originating from an internal network node has a 

random length with a distribution density: 

𝑝(𝑏) = 𝜇𝑒−𝜇𝑏 (𝑏 ≥ 0),  where 𝜇−1  is the average message 

length. 

Let us assume that the message is processed according to the 

FCFS discipline [7], [9]. Then each 𝜑 th communication 

channel can be considered a queuing system (QS) of the form 

𝑀|𝑀|1|∞. This QS has a Poisson input stream with an average 

value of 𝛾𝑖𝑘  messages per second and an exponential 

distribution of service time with an average value of 𝜇−1 𝐶𝜑⁄  
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(bits per second). Then, taking into account the assumptions 

made, the average message delay will be [7]: 

     𝑇∗ = ∑ ∑
𝛾𝑖𝑘

𝛾
𝑍𝑖𝑘 𝑁

𝑘=1
𝑁
𝑖=1 ,                               (6) 

where 𝑍𝑖𝑘 is the average delay of the message transmitted from 

node i to node k along the shortest path 𝑠𝑝𝑖𝑘. 

Communication channel 𝜑  is included in the path 𝑠𝑝𝑖𝑘 , if 

messages transmitted along this path use this channel. Then we 

can assume that we are given a set of 𝛷  matrices 

𝑋𝜑 = ‖𝑥𝑖𝑘
𝜑

‖ , (𝜑 = 1, 𝛷̅̅ ̅̅ ̅ ,   𝑖, 𝑘 = 1, 𝑁̅̅ ̅̅ ̅) , in which the element 

𝑥𝑖𝑘
𝜑

= 1 if the communication channel 𝜑 is a part of path 𝑠𝑝𝑖𝑘 . 

Stream of messages passing through the channel 𝜑   has an 

intensity equal to: 

𝜆𝜑
∗ = ∑ ∑ 𝛾𝑖𝑘

𝑁

𝑘=1

𝑁

𝑖=1

𝑥𝑖𝑘
𝜑

 .    

Denote by 𝑇𝜑
∗ the average time spent by a message waiting 

in a queue for service and transmitting it over the 𝜑-th channel. 

Then the value 𝑍𝑖𝑘   of the average delay of a message sent from 

node i to node k will be equal to the sum of times 𝑇𝜑
∗  of its 

service in all channels included in the 𝑠𝑝𝑖𝑘 route through which 

messages between these two nodes are transmitted: 

𝑍𝑖𝑘 = ∑ 𝑥𝑖𝑘
𝜑𝛷

𝜑=1 · 𝑇𝜑
∗ . 

Considering formula (6), the average message delay in the 

network is equal to: 

𝑇∗ = ∑ ∑
𝛾𝑖𝑘

𝑌
 ∑ 𝑥𝑖𝑘

𝜑

𝛷

𝜑=1

· 𝑇𝜑
∗ .

𝑁

𝑘=1

𝑁

𝑖=1

 

After changing the order of summation, we have: 

𝑇∗ = ∑
𝑇𝜑

∗

𝑌

𝛷
𝜑=1 ∑ ∑ 𝛾𝑖𝑘

𝑁
𝑘=1 𝑥𝑖𝑘

𝜑𝑁
𝑖=1  .                   (7) 

Using formula (7), we get: 

𝑇∗ = ∑
𝜆𝜑

∗

𝑌

𝛷
𝜑=1 𝑇𝜑 

∗ .                                      (8) 

In formula (8), the average delay 𝑇∗  of messages in the 

network is determined using the values of average delays 𝑇𝜑
∗ of 

messages in communication channels.  

Let us determine the value 𝑇𝜑
∗. 

The communication channel 𝜑 can be considered a queuing 

system of the form 𝑀|𝑀|1|∞ with a Poisson input flow with 

intensity 𝜆𝜑
∗  and exponential distribution of service time with 

an average value 𝜇−1 𝐶𝜑⁄ . In [7], it is shown that in such a 

system the time of stay of the application in the system (time of 

delay of the message in the 𝜑 channel) is defined as follows: 

 𝑇𝜑
∗ = 1      (𝜇𝐶𝜑 − 𝜆𝜑

∗ )⁄ . (9) 

This formula is valid for networks with reliable 

communication channels. Then the average delay 𝑇∗  of a 

message in a network with reliable communication channels 

will be equal to: 

𝑇∗ = ∑
𝜆𝜑

∗

𝛾

𝛷
𝜑=1 𝑇𝜑

∗ =  
1

𝛾
∑

𝜆𝜑
∗

𝜇𝐶𝜑−𝜆𝜑
∗

𝛷
𝜑=1  . 

When transferring a unit of data in distributed systems with 

unreliable communication channels, an error may occur with 

the probability 𝑞𝜑
∗ = 1 − 𝜌𝜑

∗  in the 𝜑 -th channel. The 

occurrence of an error leads to a re-transmission of the message. 

This increases the total service time of the message in the 

communication channel, and thereby reduces its throughput. 

The probability of 𝑞𝜑 = 1 −  𝜌𝜑,  the occurrence of an error 

during transmission on the 𝜑 channel of one message having an 

average length of 𝑙 = 𝜇−1 units of data, according to formula 

(5), is equal to: 

𝑞𝜑 = 1 −  𝜌𝜑 = 1 − (1 − 𝑞𝜑
∗ )

𝑙
= 1 −  (𝜌𝜑

∗ )
𝑙
. 

Then the average time 𝑡𝜑
′  of the transmission of one message 

with the length 𝑙 = 𝜇−1 over an unreliable 𝜑-th communication 

channel is equal to: 

  𝑡𝜑
′ = 𝜌𝜑𝑇𝜑

∗ + (𝑡𝐴𝐶𝐾 +  𝜌𝜑𝑇𝜑
∗)𝑞𝜑(1 − 𝑞𝜑),−1     (10) 

where 𝑞𝜑 = 1 − (𝜌𝜑
∗ )

𝑙
. 

Let 𝐶𝜑
′  denote the actual throughput of the unreliable 𝜑-th 

communication channel. The value of 𝐶𝜑
′  depends on the 

reliability of the channel, its physical bandwidth 𝐶𝜑  and the 

value of time 𝑡𝐴𝐶𝐾. 

The value of the average time 𝑡𝜑
′  of sending a message over 

an unreliable communication channel is determined by formula 

(10). At the same time, it is equal to the ratio of the length of 

the message to the actual bandwidth of the communication 

channel, i.e.: 

𝑡𝜑
′ =

𝜇−1

𝐶𝜑
′

 . 

Then the actual bandwidth of the unreliable communication 

channel is equal to: 

𝐶𝜑
′ =

𝜇−1

𝑡𝜑
′

  , 

where 𝑡𝜑
′  is determined by formula (10). 

The average time 𝑇𝜑
′  of the message delay in the 𝜑 -th 

unreliable communication channel (by analogy with formula 

(9)) will be equal to: 

 𝑇𝜑
′ = 1 / (𝜇𝐶𝜑

′ − 𝜆𝜑
∗ ).  

Therefore, in a system with unreliable communication 

channels, the value 𝑇̃ of the average delay time of the message 

during its transmission over the network channels will be equal 

to: 
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 𝑇̃ = ∑ ∑
𝛾𝑖𝑘

𝛾
𝑍𝑖𝑘  

𝑁

𝑘=1

, where      𝑍𝑖𝑘 = ∑ 𝑥𝑖𝑘
𝜑

𝛷

𝜑=1

· 𝑇𝜑
′

𝑁

𝑖=1

 .     (11) 

In this formula, Z̃𝑖𝑘 is the value of the average message delay 

transmitted from node i to node k via unreliable communication 

channels of the network. 

V. COST OF DISTRIBUTED SYSTEM FUNCTIONING 

The cost of the functioning of a distributed system depends 

on several system parameters: the cost of data transmission via 

communication channels, number of replicas and their 

distribution across the system nodes, the cost of storing replicas 

in the system nodes, the intensity of requests to the system and 

the cost of processing them. 

We will use the following notation: 

• 𝑑𝑠𝑡(𝑥𝑖 , 𝑥𝑘) – length of the shortest path/route between the 

nodes 𝑥𝑖 and 𝑥𝑘, equal to the value of the element 𝑠𝑝𝑖𝑘; 

• dtc – data transmission cost – the cost of transferring a unit 

of data along a unit length path;  

• 𝑣𝑒 , 𝑣𝑢– the average amount of data transmitted over the 

communication channels of the network when processing 

an information request and a request for data modification; 

• 𝑆_𝑐𝑠𝑡𝑚(𝑥𝑘) – the cost of storing one replica of the m-th 

array of data in the node 𝑥𝑘; 

• 𝐸_𝑐𝑠𝑡𝑚(𝑥𝑘) , 𝑈_𝑐𝑠𝑡(𝑥𝑘)  – the cost of processing an 

information request and a request to modify the replica of 

the m-th array located in the node 𝑥𝑘; 

• 𝑊 =  {𝑤1, … , 𝑤𝑘 , … , 𝑤𝑁}  – the vector of  “weights” of 

nodes of the graph. The weight 𝑤𝑘 of the node k is equal 

to the average amount of data that the node k exchanges 

with other nodes of the system when processing requests 

are generated in this node per unit of time. Weight 𝑤𝑘 is 

equal to: 

𝑤𝑘 = ∑ 𝑓𝑘𝑗
∗𝐽

𝑗=1 (∑ 𝑒∗
𝑗𝑚

𝑀
𝑚=1 𝑣𝑒 + ∑ 𝑢∗

𝑗𝑚
𝑀
𝑚=1 𝑣𝑢). 

Using the matrix A and the set X of all network nodes, it is 

easy to obtain M sets 𝑋𝑚
𝑟  (𝑚 = 1, 𝑀̅̅ ̅̅ ̅̅ ) with the numbers of those 

nodes of X in which the replicas of M data arrays are located. 

The set 𝑋𝑚
𝑟  contains the 𝑝𝑚 numbers of nodes of the set X, in 

which the 𝑝𝑚  replicas of the data array m are located. These 

nodes process requests for replicas. 

Denote by 𝑑𝑚(𝑥𝑛 , 𝑋𝑚
𝑟 )  the minimum distance from some 

node 𝑥𝑛 of the set X to one of the nodes of the set 𝑋𝑚
𝑟 : 

𝑑𝑚(𝑥𝑛 , 𝑋𝑚
𝑟 ) = min

𝑥𝑗∈𝑋𝑚
𝑟

𝑑𝑠𝑡(𝑥𝑛 , 𝑥𝑗) ,    𝑚 = 1, 𝑀.̅̅ ̅̅ ̅̅
 

For each set 𝑋𝑚
𝑟  we define a transmission number σ equal to 

the cost of data exchange between the nodes of the set 𝑋𝑚
𝑟  and 

nodes from the set X when processing queries at the nodes of 

the set 𝑋𝑚
𝑟 : 

𝜎(𝑋𝑚
𝑟 ) = ∑ 𝑑𝑚(𝑥𝑛 , 𝑋𝑚

𝑟 ) ·𝐼
𝑛=1 𝑑𝑡𝑐 · 𝑤𝑛 . 

Then the costs 𝐶𝑜𝑠𝑡𝑑𝑡𝑟  of the system for data exchange 

between network nodes when processing requests per unit of 

time will be equal to: 

𝐶𝑜𝑠𝑡𝑑𝑡𝑟 = ∑ 𝜎(𝑋𝑚
𝑟 )

𝑀

𝑚=1

. 

The cost of storing all the replicas of the data arrays located 

in the nodes of the system is equal to: 

𝐶𝑜𝑠𝑡𝑆𝑡 = ∑ ∑ 𝑆𝑐𝑠𝑡 𝑚
(𝑥𝑘) · 𝑎𝑛𝑚  𝑀

𝑚=1
𝑁
𝑛=1 . 

The cost of processing information requests and requests for 

data modification generated in the system is equal to: 

𝐶𝑜𝑠𝑡𝐸𝑈 = ∑ ∑ 𝑓𝑛𝑗
∗ ·𝐽

𝑗=1
𝑁
𝑛=1 ∑ (𝑒𝑗𝑚

∗ · ∑ 𝑏𝑛𝑘𝑚 ·𝑁
𝑘=1

𝑀
𝑚=1

𝐸𝑐𝑠𝑡 𝑚
(𝑥𝑘) + 𝑢𝑗𝑚

∗ ∑ 𝑎𝑘𝑚 · 𝑈_𝑐𝑠𝑡(𝑥𝑘)𝑁
𝑘=1 ). 

 

The total amount 𝑂𝑃_𝑐𝑜𝑠 of all costs for the operation of a 

distributed system is: 

𝑂𝑃𝑐𝑜𝑠 = 𝐶𝑜𝑠𝑡𝑑𝑡𝑟 + 𝐶𝑜𝑠𝑡𝑆𝑡 +  𝐶𝑜𝑠𝑡𝐸𝑈. 

VI. PROBLEM SOLVING ALGORITHM 

The formulated task (2)–(3) has large computational 

complexity. Therefore, it is suggested to use the heuristic 

algorithm, which is described below. The flowchart of the 

algorithm is shown in Figure 1.  

 

The detailed description of the algorithm: 

• Step 1. We calculate the frequency 𝑓𝑟𝑚  of requests to 

each m-th array of data generated when solving user tasks 

in all N nodes of the system: 

𝑓𝑟𝑚 = ∑ 𝑓𝑛𝑗
∗  (𝑣∗

𝑗𝑚 + 𝑢∗
𝑗𝑚)𝑁

𝑛=1 ;   𝑚 = 1, 𝑀̅̅ ̅̅ ̅̅ . 

 

 



 

Applied Computer Systems 

________________________________________________________________________________________________ 2019/24 

 

73 

Fig. 1. The flowchart of the problem-solving algorithm. 

• Step 2. Sort the numbers of all M data arrays in descending 

order of their corresponding frequencies 𝑓𝑟𝑚  (m = 1, M̅̅ ̅̅ ̅). 

• Step 3. We form the vector 𝑉𝑀 = 〈𝑣𝑚𝑘〉, 𝑘 = 1, M̅̅ ̅̅ ̅ . The 

element 𝑣𝑚1 of the vector contains the number of the array 

to which the largest number of queries is generated. 

Accordingly, the element 𝑣𝑚𝑀 contains the number of the 

data array to which the least number of queries is generated.  

• Step 4. Set minimum 𝑃min and maximum 𝑃max number of 

network nodes, in which each of M replicas of data array 

may be placed. 

• Step 5. In a loop by the number of p nodes with replicas, 

taking values from 𝑃min to 𝑃max, we perform the steps of the 

algorithm from 6 to 11: 

• Step 6. In the loop, one-by-one select the numbers 

𝑣𝑚𝑘  (𝑘 = 1, M̅̅ ̅̅ ̅) of data arrays from the vector VM.  

For each of the next m-th data array, the following actions are 

performed: 

- Randomly, from the set of nodes X, p nodes are selected 

to place in them replicas of the m-th array.  

- The numbers of selected nodes form the set 

𝑋𝑝
𝑚 = {𝑥𝑝𝑖

𝑚 |𝑖 = 1, 𝑝̅̅ ̅̅̅} . The element 𝑥𝑝𝑖
𝑚  contains the 

node number i in which one of the replicas of the m-th 

data array is located. The numbers of these nodes are 

recorded into the set of 𝑋𝑚  “m-tested” nodes. The 

remaining numbers of nodes of the set X that are not 

included in the set 𝑋𝑝
𝑚 are included into the set 𝑋̅𝑚 of the 

numbers of “untested” nodes, i.e., 𝑋̅𝑚 = {𝑋\𝑋𝑝
𝑚}. 

• Step 7. Assign the value “1” to those elements 𝑎𝑛𝑚
𝑝

 of the 

m-th column of the matrix 𝐴𝑝, whose number n of the row 

of the matrix is equal to the number 𝑥𝑝𝑖
𝑚 of the network node 

with the replica.  

The matrix 𝐴𝑝 = ‖𝑎𝑛𝑚
𝑝

‖  determines the distribution of p 

replicas of each of the M arrays over the network nodes. The 

element 𝐴𝑝 = ‖𝑎𝑛𝑚
𝑝

‖ of the matrix is equal to “1” if the replica 

of the m-th array is located in node n. 

• Step 8. For the matrix 𝐴𝑝 = ‖𝑎𝑛𝑚
𝑝

‖  we perform the 

following operations: 

- Calculate the value of the functional 𝐹(𝐴𝑝)  in 

accordance with formula (1). 

- Remember the resulting value: 𝐹𝑚𝑖𝑛
𝑝

=  𝐹(𝐴𝑝). 

• Step 9. In the loop, one-by-one select the numbers 

𝑣𝑚𝑘  (𝑘 = 1, M̅̅ ̅̅ ̅)of data arrays from the vector VM.  

For each of the next m-th data array, the following actions 

are performed: 

- From the set 𝑋̅𝑚 with numbers of “untested” nodes we 

randomly select the network node number and store it 

in the variable 𝑥𝑖
𝑚∗. 

- If there are no more “untested” nodes, then return to 

Step 9. 

- Step 9.1. In the cycle, each vertex 𝑥𝑝𝑖
𝑚  from the set 

𝑋𝑝
𝑚 = {𝑥𝑝𝑖

𝑚 |𝑖 = 1, 𝑝̅̅ ̅̅̅} is replaced by the vertex 𝑥𝑖
𝑚∗.  

- We get a new set 𝑋𝑝
𝑚∗ in which one of the vertices is 

replaced by the vertex 𝑥𝑖
𝑚∗. 

- Create a copy of the matrix 𝐴𝑝 as the matrix 𝐴𝑝∗. 

- As in Step 7 assign the value “1” to the elements 𝑎𝑛𝑚
𝑝∗

 

of the m-th column of the matrix 𝐴𝑝∗ according to the 

values of the elements of the set 𝑋𝑝
𝑚∗. 

- Calculate the functional 𝐹(𝐴𝑝∗) for the matrix 𝐴𝑝∗. 

- If 𝐹(𝐴𝑝∗) ≥ 𝐹min
𝑝

 then return to Step 9.1.  

- Check the task constraints (3) and (4) for a new 

distribution 𝐴𝑝∗ of replicas. 
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- If one or both constraints are violated, we return to 

Step 9.1. 

- Remember the new value of the functional and the new 

distribution of replicas: 

- 𝐹𝑚𝑖𝑛
𝑝

=  𝐹(𝐴𝑝∗), 𝐴𝑝 = 𝐴𝑝∗ 

- If the loop on the vertices of the 𝑋𝑝
𝑚 is not completed, 

then we return to Step 9. 

• Step 10. If not all the data arrays from the 𝑉𝑀 vector are 

viewed, go back to Step 6. 

• Step 11. If the cycle by the number of p replicas is not 

completed (𝑝 < 𝑃max), then return to Step 5. 

• Step 12. Search for replica distribution of M data arrays is 

completed. 

The distribution of replicas 𝐴𝑝 is found close to the optimal 

one over the nodes of the distributed system. This distribution 

provides the value of the average response time of the system 

to the request, equal to 𝐹𝑚𝑖𝑛
𝑝

. 

VII. CONCLUSION 

The article considers the problem of optimal placement of 

replicas of data arrays across nodes of a distributed system. The 

formulation of this task has several features that distinguish it 

from other tasks of this class. The formulation of the problem 

considers the possibility of errors during the transmission of 

requests and responses to them via communication channels. In 

the event of a failure in the channel, a message is sent again to 

the destination node, which leads to a decrease in system 

performance. The search for optimal replica placement is 

performed for several data arrays simultaneously. As a rule, in 

similar tasks the cost optimization criterion is used. In this 

paper, as a criterion for optimization, we consider the minimum 

average response time of a system to a request for data. An 

original heuristic algorithm for solving the formulated problem, 

implemented in C ++, is proposed. The use of this algorithm 

provides an improvement in the response time of the system by 

5–8 % and reducing the cost of operating the system by 8–10 %. 
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