
Applied Computer Systems

75

ISSN 2255-8691 (online)

ISSN 2255-8683 (print)

May 2019, vol. 24, no. 1, pp. 75–81
https://doi.org/10.2478/acss-2019-0010
https://content.sciendo.com

©2019 Olga Filipova, Oksana Nikiforova.

This is an open access article licensed under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0), in the manner agreed with Sciendo.

Definition of the Criteria for Layout of the UML

Use Case Diagrams

Olga Filipova1*, Oksana Nikiforova2

1, 2Riga Technical University, Riga, Latvia

Abstract – Nowadays, the topicality and applicability of model-

driven development in the object-oriented development approach

has increased, so it is important that created models and diagrams

display not only the content, but also visually reflect information.

Transparent diagram placement that influences work productivity

is important for displaying information. Manual layout of

diagrams is a time-consuming activity, which can also be

ineffective, so in this paper the application of UML use case

automatic layout is reviewed. The paper also examines the

requirements of use case diagrams and placement criteria, which

will serve as a basis for the creation of an automatic use case

diagram layout algorithm.

Keywords – Automatic layout algorithms, layout guidelines,

UML, use case diagram.

I. INTRODUCTION

Currently, the model-driven development approach is

relevant and widely used. This approach is based on models that

are presented in graphical form as diagrams. Large system

modelling enables software developers to understand its

structure, behaviour and its core elements. For these purposes,

spatial placement of Unified Modelling Language (UML)

diagram elements is used to determine how well the software

system will be understood. The more efficient the placement of

the elements, the easier it is to understand the essence of the

diagram and the more efficient UML usage is. In order to

achieve it, the diagram modeller must place the elements of the

diagram in such a way that its readability will increase.

To improve productivity, diagrams can be generated

automatically, which in turn can release the diagram modeller

from unnecessary work and offer a better result than manual

element placement during diagram design, transformation, or

during diagram export/import. In order to create an algorithm

for automated diagram element placement, it is necessary to

define the principles, according to which the elements of the

diagram should be placed.

Not only content, but also the placement of the elements is

important while creating diagrams, but there are no such

graphical deployment solutions for the diagrams that would

provide the most essential requirements that are needed for

humans. All existing solutions and algorithms have their own

weaknesses, so the present research will examine diagram

element placement requirements, their problems.

In 2017, a group of researchers performed an extended

systematic literature review due to which the trend for the future

development of UML notation was determined. In [1], 33

empirical papers published between 2009 and 2016 related to

*Corresponding author’s e-mail: olga.filipova_2@edu.rtu.lv

the field of UML model were extracted from electronic

databases and considered for review (see Table I).

TABLE I

RESULTS PER TYPE OF DIAGRAM [1]

Available diagram Number of studies Percentage
Class diagrams 19 47.5
Sequence diagrams 6 15.0
Use case diagrams 5 12.5
UML diagrams 3 7.5
Activity diagrams 4 10.0
State chart diagrams 2 5.0
Component diagrams 1 2.5

The study shows that in the future the following diagrams

will be mostly developed: class, sequence and use case

diagrams.

Use cases are the basic concept of several object-oriented

development methods [2]. They are being used throughout the

analysis and design phases during software development life

cycle. Use cases represent what the customer wants system to

do, in other words, customer system requirements. At the high

level of abstraction, use cases show which purposes the

developed system is meant for.

To support use case diagrams in future software

development, in this paper we present guidelines for the layout

of UML use case diagrams, the automatic layout analysis of the

most popular UML diagram tool and the use case diagram

guidelines, which will be used in further work for automatic

layout algorithm creation.

The present paper is structured as follows: In the next section,

UML diagrams are classified for the task of their layout.

Section 3 presents the summary of use case diagram layout

guidelines. Section 4 provides the information on use case

diagram quality measurement. Section 5 summarises the

information about the related work. In conclusion of the paper,

the authors discuss the present research and state the research

directions for the future.

II. CLASSIFICATION OF UML DIAGRAMS

FOR THE TASK OF THEIR LAYOUT

One of the tasks of software development project is to present

different aspects of the system before developing the software

solution for the required system. To solve this task, system

modelling became one of the most important activities during

software development. System modelling gives software

developers an ability to understand system behaviour, structure

and its separate elements. System modelling is a way of

thinking about problems using models, which are based on

Applied Computer Systems

__ 2019/24

76

real-world ideas. Models are useful for understanding

problems, communicating with everyone involved within the

project (customers, domain experts, analysts, designers etc.), as

well as for modelling enterprises, preparing documentation and

designing programs and databases. Modelling promotes a better

understanding of requirements, more clear designs and more

maintainable systems [3].

Usually a system model is presented as a set of diagrams,

where specific notation is defined for each diagram and

regulates diagram syntax and semantics. As far as system

models are abstractions that portray the essentials of a complex

problem or structure by filtering out nonessential details,

models are making the problem easy to understand. Thus, the

systematic approach to element placement within the diagram,

which is specified as a task of diagram layout, plays an

important role in completing the task of system modelling,

which harmonizes with the area of graph theory.

Nowadays one of the leading notations used in system

development is UML (Unified Modelling Language), which is

declared as a standard for presentation of software system

model and provides a notation, which grows from analysis

through design into implementation in object-oriented

programming languages.

As a notation of system modelling for different aspects of the

system, UML introduces different types of diagrams, which can

describe system from different points of view. UML 2.x version

distinguishes 14 diagram types (abstract examples of all 14

types are shown in Fig. 1).

We can assume that all diagrams are represented in a graph

form to some extent – diagram consists of nodes, which are

connected with edges in some manner. However, different

diagram types can have different structure: a diagram can have

different types of nodes or edges, diagram should be

constructed in some special manner.

The simplest presentation of elements from the perspective

of graph layout has a deployment diagram. It has two types of

elements, one of them is a node, which describes physical place

of system deployment, and the other one is an edge between

nodes. The same is within the object diagram, where regarding

UML notation, diagram has two types of elements – objects and

links between them. Layout algorithms used for regular graphs

can be applied to this group of UML diagrams. However,

diagrams having different types of edges or nodes must be

analysed separately from diagrams with one type of edges and

one type of nodes because extra type of elements can require

extra conditions be taken into consideration in diagram layout

[3].

Although the use case diagram has simple structure, where

actors communicate with use cases by relationships, the

diagram can have additional conditions on actors’ placement

according to the set of use cases, which in turn specifies the

boundary of the system. State machine, also known as state

chart, has the same structure as the use case diagram. The UML

communication diagram has similar structure, but a bit

complicated – objects are connected by edges having

complicated structure. The link is presented as a connector,

which is anchored with the message object that passes to

another object. Therefore, in addition to the rules of element

placement according to graph structure, the distance between

objects, the placement of the name of message and, if possible,

the orthogonal layout of the diagram itself should be taken into

consideration to layout the diagram. Composite structure

diagram has the same layout requirements: Diagram has two

types of nodes, which relate to one type of edges and names

placed on them. These four diagram types can be grouped into

one requiring specific regulations for graph nodes.

The UML class diagram has one type of nodes (system

classes) and several types of edges (relationships), where

several aspects of diagram layout should be taken into

consideration, e.g., orthogonality, parents up, tidy up, etc.

Component diagrams have one type of nodes and several types

of edges like class diagram, but in this case different types of

edges have the same semantics and are used for improving

readability of the diagram. The same condition applies to a

profile diagram, which is a rarely used structure diagram in any

specification and describes a lightweight extension mechanism

to the UML by defining custom stereotypes, tagged values, and

constraints. These three diagram types can be joined into

diagrams, which require specific regulations for graph edges.

Logically, a package diagram consists of one type of nodes

that represent packages and several types of edges that show

how packages relate to each other. In most cases, package

diagrams are part of other diagram types – this adds more node

types to diagram. Activity diagram also has several types of

nodes: activity, entry point and exit point; and several arc types.

However, the edge structure is complicated: edges can split into

several flows and then join into one, also edges can be split into

alternative flows. These two types of diagrams can be joined

into diagrams, which require specific regulations for graph

edges and nodes.

Sequence diagram has even more special structure: all the

objects are allocated horizontally at the top of diagram, except

objects created during system operating, each of objects has its

activity time, and the sequence of messages is shown by links

demonstrating its control flows. Interaction overview diagram

has the same structure as an activity diagram, but instead of

activities, nodes of interaction overview diagram can have

separate sequence diagrams, also edges have a simpler

structure – no flow separation and joining. Timing diagram

cannot be considered as a graph because it has no nodes. These

three diagram types can be joined into diagrams with specific

conditions for general structure and should be analysed

separately in the context of diagram layout.

Applied Computer Systems

__ 2019/24

77

Use case diagram Statechart diagram

Activity
diagram

Object diagram

Class diagram

Package diagram

Component diagram

Deployment diagram

Communication
 diagram

Composite structure
diagram

“Pure” graph

Graph with
requirements
for nodes or
edges

Graphs with specific placement of nodes Graph with specific requirements for edges

Diagram with
specific
structure

Interaction overview diagram

Graph with specific requirements for both – nodes and edges

Sequence
diagram Timing diagram

Profile diagram

Fig. 1. Classification of UML diagrams in the context of their layout (modified from [3]).

 Taking into consideration the specific requirements to

structure, placement of elements and construction principles

described above, UML diagrams are grouped as it is shown in

Fig. 1. Tilley and Huang in [4] discuss that UML diagram

efficiency depends on UML syntax and semantics, layout of

UML diagram elements and domain knowledge. Therefore, the

diagram layout is an essential factor for diagram reading and

comprehension, which should be studied based on diagrams

aesthetics trying to explain effective diagram construction

principles and developing algorithms for automatic diagram

layout.

Not all 14 different types of UML diagrams are used on a

regular basis when documenting systems and/or architectures.

The Pareto principle seems to apply in terms of UML diagram

usage as well – 20 % of the diagrams are being used 80 % of

the time by developers. The common ones in software

development are class diagrams, sequence diagrams and use

case diagrams [1]. All these three diagrams belong to different

groups in the context of their layout according to classification

in Fig. 1, so far, they should be analysed separately. The authors

started their research on layout of UML diagrams with class

diagram in 2011 offering the algorithm based on application of

genetic algorithm [5]. The algorithm gave good results on

matching requirements for class diagram layout, but worked

very slow – about 10 minutes to layout 40 classes. The research

for class diagram continued and the algorithm based on

principle of modularity was offered in [6]. It was quite fast, but

not all the criteria were supported. In parallel, criteria for layout

of UML sequence diagram and layout abilities offered in UML

modelling tools have been studied since 2014. As a result, the

algorithm for sequence diagram layout has been developed to

support 14 criteria out of 16 stated. The main results of this

Applied Computer Systems

__ 2019/24

78

research were published by authors in [6]–[8]. So far, the focus

of this paper is placed on the layout of UML use case diagrams.

III. GUIDELINES FOR USE CASE DIAGRAM LAYOUT

Reorganising diagram elements may take a lot of time that

would be better spent on content improvement and addition of

missing information. Therefore, in this case, it is useful to leave

diagram element placement operation to the automatic element

placement algorithm. When the use case diagram consists of a

few elements, it can be improved manually because it will not

take much time. In turn, use case diagrams often contain much

more elements, so the application of the algorithm becomes

more topical.

Since the creation of use case diagrams, a few authors have

adopted several parts of this idea, especially Cockburn [9]

offering guidelines for use case diagrams. Use cases are adopted

as part of the UML standard and their diagrams are most widely

used in parts of this language. Several other books and articles

were published for use cases, describing a variety of systems –

not just software, but also business systems (such as embedded

systems). Nowadays, the Internet of Things and Industrial

Internet choose use cases [10]. Prior to the development of the

diagram placement algorithm, the requirements to be met by

this algorithm were defined. Until now only two books [9] and

[11] are known to describe UML use case diagrams, because

placement and diagram perception questions are rarely

discussed in UML.

After performing a literature survey, it was determined that

guidelines for use case diagrams could be separated into two

levels: macro and micro levels (see Table II).

TABLE II

GUIDELINE TYPES OF USE CASE DIAGRAM

Level Guideline type Number of guidelines

Micro level
Actor layout guidelines 5
Relationship layout guidelines 4
Note layout guidelines 2

Macro level Readability guidelines 8
Simplicity guidelines 2

Micro level includes 11 guidelines, while macro level

contains 10 guidelines that together make up 21 guidelines.

IV. DETERMINATION OF USE CASE DIAGRAM LAYOUT

QUALITY

The quality of use case diagrams is very difficult to

determine, but there are some aspects that are simple, such as a

number of intersecting lines and line curves are obvious

drawbacks and should be avoided.
When it comes to the quality of diagram, its elements and

size are determined in the beginning.
According to [12], a diagram element is any line, shape, or

textual label that appears in a diagram and:
• can be positioned within the diagram by itself; or

• can be shown or hidden by itself; or

• contains other diagram elements.

In turn, the size of a diagram is the number of its diagram

elements. While counting use case diagram elements, the

following aspects are also considered:

• names can be neither hidden nor moved so they do not

count as separate elements. Stereotypes, on the other hand,

can be hidden so they count as labels,

• adornments with fixed position relative to the adorned

element are not counted, e.g., arrow heads. Adornments

that can be moved include multiplicities, association

names.

According to [12], a diagram flaw is an instance of:

1) bends of lines that are considered flaws;

2) intersections that are considered flaws if they are visible

and not a syntactic element of the language;

3) touching elements that are considered a flaw, unless they

have close syntactic or semantic association;

4) sets of merged lines or aligned lines that are close together

and are considered a flaw, unless they have the same type

and share exactly one of their endpoints;

5) two flaws that are fused into one flaw, if they are very

close together and caused by the same intersecting

elements.

Finally, the topological quality of a diagram is defined as the

number of laws it contains.

It should be considered that several deficiencies are

considered as one, if they are close to each other and caused by

the same elements.

When it comes to the quality of diagram, counting only the

drawbacks of diagrams would be wrong, because with an

increase in the number of diagram elements, the number of

drawbacks is also increasing, which makes it obvious that a

number of drawbacks in diagrams with a small number of

elements will also not be large. Therefore, the following

formula is used to determine the level of deficiency:

𝐺 =
𝑚

𝑛
 , (1)

where n – a number of use case diagram elements, m – a

number of use case diagram flaws.
Further in the paper, automatic algorithms are reviewed and

the quality of element layout is calculated by using the

previously mentioned formula (1). The acquired results are

marked as follows: a high value means that the quality of use

case diagram is poor, and vice versa, a small value means the

diagram quality is good.
The authors have reviewed the five most popular UML

modelling tools such as MetaEdit+, Astah, Enterprise Architect,

Visual Paradigm and MagicDraw and their automatic layout

algorithms. They are selected as the only ones from the most

popular tools, which offer automatic layout abilities for UML

diagrams. The very brief review shows that usually tools

suggest applying regular algorithms used for graph layout (tree,

circular, organic, compact, hierarchical, orthogonal etc.), which

can be applicable to use case diagram; therefore, the authors

have selected them for a deeper analysis.

While performing automatic algorithm analysis one and the

same use case diagram has been created in all reviewed tools.

Diagram has the following elements: 8 actors, 8 use cases, 13

relationships, one system border, 11 text titles which in total

makes 41 diagram elements.

Initial diagram flaw rate was different in all reviewed tools

due to a specific diagram element display. Some tools, such as

Applied Computer Systems

__ 2019/24

79

MetaEdit + and Astah, offer only one automatic layout

algorithm that in both cases reduces the quality of the diagram.

Other tools include several layout algorithms, such as

hierarchical, orthogonal, automatic, etc., but these algorithms

do not fully support the guidelines defined in the work. The

highest flaw rate was determined by the use case diagram after

the automatic layout algorithm usage in Astah. This algorithm

doubles the flaw rate value.

According to [12], a flaw rate of a diagram should not exceed

0.5 and number of flaws should not exceed 15–20, otherwise a

diagram flaw rate makes it less readable and some important

information might get lost. By analysing the layout algorithms,

it may be seen that only few of the algorithms can reduce the

flaw rate to be less than 0.5.

Based on the results of layout algorithm analysis, given in

Table III, the authors suggest development of the UML use case

diagram layout algorithm for their further research.

TABLE III

USE CASE DIAGRAM FLAW RATE

Case tool Layout Flaw rate

MetaEdit+
Without layout 0.6829

Automatic 0.7561

Astah
Without layout 0.6585

Automatic 1.3415

Enterprise Architect

Without layout 0.6585

Circular/Ellipse 0.8537

Neaten 0.6098

Spring 1.0240

Digraph 1.0730

Converge 0.9024

Diverge 0.6585

Auto route 0.2439

Visual Paradigm for
UML

Without layout 0.4634

Orthogonal edge route 0.2683

Automatic 0.5366

Hierarchic 0.6341

Orthogonal 0.7561

Compact circular 0.8048

Organic 0.6829

Compact 0.4634

MagicDraw

Without layout 0.7805

Quick 0.9756

Hierarchic 0.9756

Orthogonal 0.3415

Organic 0.9756

Circular 1.0240

Grid 1.2439

V. RELATED WORK

Already in 1985, several works were devoted to the entity

relationship diagrams. Batini, Furlani and Nardelly in their

research [13] reviewed several aesthetic and applied topology-

form-metric approaches.
The authors of the study [14] defined two algorithms that

corresponded to certain functions of visual organisation. The

first algorithm gradually enlarged the image by selecting and

applying placement guidelines to the nodes for as long as no

raw node remained and the second was a parallel genetic

algorithm.
New approaches and techniques for graph placement were

offered in [15] and [16].
Some studies were also carried out for class diagram

placement. Battista and his colleagues [17] studied the

algorithms of graph formation and their aesthetics. Class

diagram work [18] offered aesthetic criteria reflecting complex

features of a UML class diagram, a placement algorithm

supporting all these features, as well as a graph-building

framework capable of producing images according to these

criteria. Authors of [19] proposed an algorithm based on a

topology-form-metric approach for class diagram automatic

layout. In contrast, in [20], authors formulated the main criteria

for effective class diagram placement from the perception

theory point of view.
Other UML diagrams were also studied. For example, [21]

offered an approach that facilitated communication among

project participants by creating sequence diagrams in technical

documentation.
The authors [22] proposed several criteria for sequence

diagrams based on the traditional aesthetics of graphs. The

latest research [23], which was dedicated to sequence diagrams,

offered a deployment algorithm that could calculate the life line

sequence according to different optimization criteria. This work

also looks at the problem of sequence diagram size by

introducing vertical compression and managing its text labels

to compress them horizontally.
Activity diagrams were not left behind as well. In [24], an

automated visualization tool for UML activity diagrams was

proposed.
There are also several works devoted to an understanding of

diagrams. Harald Störrle demonstrated how the diagram size

affected the diagram flaw rate in [12], the more elements

diagram contained, the greater number of flaws there were. In

another work [25], the author also demonstrated that the quality

of the placement of diagram elements affected its

understanding.
As can be seen from the foregoing, researchers have recently

devoted their attention to the automatic placement of UML

sequences, activities and class diagram elements, but some

diagram layout mechanisms are not considered at all, such as

use case diagrams. The study [26] offered an automatic use case

diagram layout algorithm in 2008. In this work, Sugiyama

algorithm [27] was used as a basis for use case diagram layout

algorithm development. Unfortunately, this algorithm does not

follow all previously mentioned guidelines as well as the result

of the layout does not support the latest version of XMI.

VI. CONCLUSION AND FURTHER RESEARCH

Within the framework of the present research, the authors

have discussed the necessity of use case diagrams for the high-

level understanding of system functionality and the automatic

layout of UML use case diagrams. Based on the existing

studies, the authors have collected a set of guidelines which

have been divided into two levels: micro and macro levels. In

total, the authors defined more than 20 guidelines, which should

be followed while creating use case diagrams to make them

easy to understand.
To ensure that an automatic algorithm that meets all defined

guidelines does not exist, the authors have analysed automatic

layout algorithms. As a result, none of the available algorithms

have met all previously defined guidelines.

Applied Computer Systems

__ 2019/24

80

The main conclusions of the research are the following:
• the layout of the diagram is a complicated task due to a

large number of guidelines that should be taken into

consideration when placing elements in the diagram;

• modeller cannot use convenient algorithms for graph

presentation to layout the UML use case diagram due to its

specific structure; therefore, some unique methods should

be applied;

• layout quality affects the understanding of UML use case

diagrams;

• the quality of the layout algorithm strongly depends on the

size of a use case diagram.

As a further research step, the automatic use case diagram

layout algorithm, which will support all the above-mentioned

guidelines, will be created.

REFERENCES

[1] M. Guo, C. Zhang, and F. Wang, “What is the Further Evidence

about UML? - A Systematic Literature Review” in 2017 24th Asia-
Pacific Software Engineering Conference Workshops (APSECW),

2017, pp. 106–113. https://doi.org/10.1109/APSECW.2017.28

[2] M. Seidl, M. Scholz, C. Huemer, and G. Kappel, Introduction. In:
UML @ Classroom. Undergraduate Topics in Computer Science.

Springer, Cham, 2015, pp. 206. https://doi.org/10.1007/978-3-319-

12742-2_1
[3] A. Galapovs, and O. Nikiforova, “UML Diagram Layouting: the

State of the Art”, Computer Science. Applied Computer Systems,

vol. 44, no. 1, 2012, pp. 101–108. https://doi.org/10.2478/v10143-
011-0027-0

[4] S. Tilley, and S. Huang, “A qualitative assessment of the efficacy of

UML diagrams as a form of graphical documentation in aiding

program understanding”, SIGDOC: Proceedings of the 21st Annual

International Conference on Documentation, ACM Press, 2003,

pp. 184–191. https://doi.org/10.1145/944905.944908
[5] A. Galapovs, and O. Nikiforova, “Several Issues on the Definition

of Algorithm for the Layout of the UML Class Diagram”,

Proceedings of MDA&MDSD 2011, 3rd International Workshop on
Model Driven Architecture and Modeling Driven Software

Development In conjunction with the 6th International Conference

on Evaluation of Novel Approaches to Software Engineering.
Lisbon: SciTePress, pp. 68–78, 2011.

[6] O. Nikiforova, D. Ahilcenoka, D. Ungurs, K. Gusarovs, and L.

Kozacenko, “Several Issues on the Layout of the UML Sequence and
Class Diagram”, Proceedings of the 9th International Conference on

Software Engineering Advances, ICSEA, October 12–16, 2014,

pp. 40–47. Available from http://www.thinkmind.org/
[7] O. Nikiforova, S. Putintsev, and D. Ahilcenoka “Analysis of

Sequence Diagram Layout in Advanced UML Modelling Tools”,

Applied Computer Systems, vol. 19, no. 1, 2016, pp. 37–43.

https://doi.org/10.1515/acss-2016-0005

[8] O. Nikiforova, and K. Gusarovs, “Comparison of BrainTool to Other

UML Modeling and Model Transformation Tools”, AIP Conference
Proceedings, International Conference on Numerical Analysis and

Applied Mathematics ICNAAM 2016, vol. 1863, no. 1, 2017.

https://doi.org/10.1063/1.4992503
[9] A. Cockburn, Writing Effective Use Cases. Boston: Addison-

Wesley, 2001, pp. 304.

[10] I. Jacobson, I. Spence, and B. Kerr, “Use-case 2.0”,
Communications of the ACM, vol. 59, no. 5, 2016, pp. 61–69.

https://doi.org/10.1145/2890778

[11] S. W. Ambler, The Elements of UML 2.0 Style. New York:
Cambridge University Press, 2005, pp. 201.

https://doi.org/10.1017/CBO9780511817533
[12] H. Störrle, “Diagram Size vs. Layout Flaws: Understanding Quality

Factors of UML Diagrams”, in ESEM '16 Proceedings of the 10th

ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, Article No. 31, 2016, pp. 10.

https://doi.org/10.1145/2961111.2962609

[13] C. Batini, L. Furlani, and E. Nardelly, “What is a Good Diagram? A

Pragmatic Approach. In Entity-Relationship Approach: The Use of
ER Concept in Knowledge Representation”, Proceedings of the

Fourth International Conference on Entity-Relationship Approach,

USA, IEEE Computer Society and North-Holland, 1985,
pp. 312–319.

[14] C. Kosak, J. Marks, and S. Shieber, “Automating the Layout of

Network Diagrams with Specified Visual Organization”, IEEE
Trans. Systems, Man and Cybernetics, vol. 24, no. 3, 1994,

pp. 440–454. https://doi.org/10.1109/21.278993

[15] K. Freivalds, and P. Kikusts, “Optimum Layout Adjustment
Supporting Ordering Constraints in Graph-Like Diagram Drawing”.

Proc. of the Latvian Academy of Sciences, 2001,

pp. 43–51.
[16] K. Freivalds, U. Dogrusoz, and P. Kikusts, “Disconnected Graph

Layout and the Polyomino Packing Approach,” Proc. of Graph

Drawing 2001, Lecture Notes in Computer Science, vol. 2265, 2002,
pp. 378–391. https://doi.org/10.1007/3-540-45848-4_30

[17] G. D. Battista, P. Eades, R. Tamassia, and I. G. Tollis, Graph

Drawing: Algorithms for the Visualization of Graphs. Pearson,
1999.

[18] H. Eichelberger, “Aesthetics of class diagrams”, Proceedings of the

1st International Workshop on Visualizing Software for
Understanding and Analysis, VISSOFT, 2002, pp. 23–31.

[19] M. Eiglsperger, M. Kaufmann, and M. Siebenhaller, “A topology-
shape-metrics approach for the automatic layout of UML class

diagrams”, Soft Vis‘03: Proceedings of the 2003 ACM Symposium

on Software Visualization, 2003, pp. 189–198.
https://doi.org/10.1145/774833.774860

[20] D. Sun, and K. Wong, “On evaluating the layout of UML class

diagrams for program comprehension” 13th International Workshop
on Program Comprehension (IWPC'05), 2005, pp. 1–10.

[21] G. Bist, N. MacKinnon, and S. Murphy, “Sequence diagram

presentation in technical documentation”, SIGDOC‘04:
Proceedings of the 22nd Annual International Conference on Design

of Communication, New York, NY, USA, 2004,

pp. 128–133. https://doi.org/10.1145/1026533.1026566
[22] T. Poranen, E. Makinen, and J. Nummenmaa, “How to draw a

sequence diagram”, Proceedings of the Eighth Symposium on

Programming Languages and Software Tools, SPLST‘03,
University of Kuopio, Department of Computer Science, 2003,

pp. 91–102.

[23] C. D. Schulze, G. Hoops, and R. von Hanxleden, “Automatic Layout
and Label Management for Compact UML Sequence Diagrams”,

2018 IEEE Symposium on Visual Languages and Human-Centric

Computing (VL/HCC), Lisbon, 2018, pp. 187–191.
https://doi.org/10.1109/VLHCC.2018.8506571

[24] A. Malesevic, D. Brdjanin, and S. Maric, “Tool for automatic layout

of business process model represented by UML activity diagram”,
Eurocon, 2013, pp. 537–542.

[25] H. Störrle, “On the Impact of Layout Quality to Understanding UML

Diagrams: Size Matters”, Proceedings of 17th International
Conference on Model Driven Engineering Languages and Systems,

MODELS 2014, pp. 518–534. https://doi.org/10.1007/978-3-319-

11653-2_32
[26] H. Eichelberger, “Automatic layout of UML use case diagrams”,

SoftVis '08, Proceedings of the 4th ACM symposium on Software

visualization, 2008, pp. 105–114.
https://doi.org/10.1145/1409720.1409738

[27] K. Sugiyama, S. Tagawa, and M. Toda, “Methods for Visual

Understanding of Hierarchical System Structures”, IEEE
Transactions on Systems, Man, and Cybernetics, vol. 11, no. 2, 1981,

pp. 109–125. https://doi.org/10.1109/TSMC.1981.4308636

https://doi.org/10.1109/APSECW.2017.28
https://doi.org/10.1007/978-3-319-12742-2_1
https://doi.org/10.1007/978-3-319-12742-2_1
https://doi.org/10.2478/v10143-011-0027-0
https://doi.org/10.2478/v10143-011-0027-0
https://doi.org/10.1145/944905.944908
https://doi.org/10.1515/acss-2016-0005
https://doi.org/10.1063/1.4992503
https://doi.org/10.1145/2890778
https://doi.org/10.1017/CBO9780511817533
https://doi.org/10.1145/2961111.2962609
https://doi.org/10.1109/21.278993
https://doi.org/10.1007/3-540-45848-4_30
https://doi.org/10.1145/774833.774860
https://doi.org/10.1145/1026533.1026566
https://doi.org/10.1109/VLHCC.2018.8506571
https://doi.org/10.1007/978-3-319-11653-2_32
https://doi.org/10.1007/978-3-319-11653-2_32
https://doi.org/10.1145/1409720.1409738
https://doi.org/10.1109/TSMC.1981.4308636

Applied Computer Systems

__ 2019/24

81

Olga Filipova received the Bachelor degree in

Computer Systems from the Transport and
Telecommunication Institute, Riga (Latvia) in

2011. At present, she is a second-year Master

student at the Department of Applied Computer
Science, Riga Technical University.

E-mail: olga.filipova_2@edu.rtu.lv

Oksana Nikiforova received the Doctoral degree

in Information Technologies (system analysis,
modelling and design) from Riga Technical

University, Latvia, in 2001. She is a Professor at

the Department of Applied Computer Science,
Riga Technical University, where she has been

working since 1997. Her current research interests

include object-oriented system analysis, design
and modelling, especially the issues in model

driven software development.
E-mail: oksana.nikiforova@rtu.lv

ORCID iD: https://orcid.org/0000 0001-7983-3088

mailto:olga.filipova_2@edu.rtu.lv
mailto:oksana.nikiforova@rtu.lv
https://orcid.org/0000%200001-7983-3088

