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Abstract. The stochastic dynamic of logistic system problem addresses the movement of vehicles 
between their locations over a given planning horizon. This problem deals with a logistic system 
consisting of a wholesale store, a retail store and automobiles which are taking part in goods 
delivery from a wholesale store to a retail store. Assuming the demands are random and coming 
at random time moments, we construct a stochastic model for this transport logistic scheme and 
derive Gaussian approximation for transport and stock level of goods dynamics.      
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1   Introduction 
 

In the last years, research interest in transport logistics has increasingly focused on dynamical 
theory approach (see [5,6,7,8] and references there) for quantitative and qualitative analysis of 
system behavior. The stochastic dynamic of logistic system problem arises when a carrier must 
allocate vehicles over space and time in an effort to anticipate uncertain demands. Examples are 
railroads, which must distribute empty freight cars, and truckload motor carriers, which must 
supply empty tracks to different cities. Efficient allocation of vehicles, however, requires trying to 
anticipate future demands which must therefore be forecast, usually with considerable uncertainty. 
Even for most simple logistic dynamical system consisting of a wholesale store of capacity Z, a 
retail store of capacity Y and automobiles which are taking part in goods delivery from a 
wholesale store to a retail store the author of paper [1] by means of imitation modeling succeeded 
in finding such a complex mode of the operation as limit cycles and other irregular attractors.  But 
in reality any transport logistics model is dependent at random demand and operates at random 
environment. Besides, a time moment for restocking of goods also is a random value. This means 
that for quantitative analysis for goods growth we have to calculate not only given by 
deterministic dynamical system stock level of goods bet also to estimate possible random 
deviations on these idealized representations.  To do this in our paper we consider some 
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complicate proposed in [1] deterministic model assuming that the demand be random and coming 
at random time moments.  
Previous research in the area of stochastic transshipment problems is relatively sparse. In [5] 
author considered stochastic transportation problem where the flows from supply to demand are 
deterministic and with linear transportation costs. Demands are assumed to be stochastic with 
stockout and holding costs provided as inputs to the model. The objective is to minimize 
transportation costs and expected stockout and holding costs, producing a simple convex, 
nonlinear objective function is easily solved. The simplicity of the model arises from the fact that 
flows must be sent before the demands are known and only one-time period is considered. 
Let us describe the model of paper [1] and our proposed stochastic model more detail. The 
expressed in paper [1] mathematical model for dynamical analysis of the above transport logistics 
scheme is system of three dimensional ordinary differential equations: 
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with right part, that dependent on the number of involving in goods delivery transport ( )x t  and 
stock levels of  goods ( )y t and ( )z t in the corresponding stores. This model constructed under 
assumption that  for any 0t  : 

 the increments ( ) : ( ) ( )x t x t x t     of involving  in goods delivery number of trucks are 
proportional to   multiplied by  to stock ( )z t  at wholesale store and  a number of vacancies  
R ( )y t  at retail store; 
 the increments ( ) : ( ) ( )y t y t y t     of stock levels of  goods are proportional to   
multiplied by involving  in goods delivery number of trucks ( )x t ,  a number of vacancies  
R ( )y t  at retail store, after deduction of  ordering for goods ( )by t  ; 
 the increments ( ) : ( ) ( )z t z t z t     of stock levels of  goods are proportional to   
multiplied by ( )x t ,  a number of vacancies  A ( )z t  at wholesale store, after deduction of  goods 
transportable from wholesale store to retail store. 

To take into account random properties of demand for goods we have to model a demand at the 
time interval  [ , )t t    as a random variable that can arrive or not with dependent on interval 
length probability. That is why we propose for dynamical analysis of the above logistic 
transportation scheme a stochastic model given by following finite-difference approximation: 
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where ,kt k k N   ,  is a small positive parameter, and ( )y kt  is a random sequence defined 
by dependent on two identically independent distributed (i.i.d.) independent uniform R(0,1) 
distributed series  { , }k k N   and exponentially distributed with parameter 1    series 
{ , }k k N  . 

This means that there are  random time moments { , }k k N   when the trajectory for stock levels 
of  goods ( )y t  has small jumps ( ) ( )k kb y t   bet these jumps occur very close: 

1N : E{ }k kk       . The  sample trajectories for equations (2) for 
0.01, 0.001, 1, 1, 10,c 1,k h R        100, ( ) 2A b u bu   and some values of  initial 

conditions and parameters b are  shown below. 
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Fig.1. Logistic system: Sample trajectories for (1)-(3) 

X(0)=2; Y(0)=2; Z(0)=2 ;delta = 0.001; k=1; R=10; c=1; A=100; a2=5; h=1; b=0.25;
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Fig.1.Sample trajectory for (1) - (2). .25.0,2)0(,2)0(,2)0(  bzyx   

As we can see most dependent on random demand are dynamics for stock levels of  goods ( )y t . 
At the next sections applying the stochastic averaging method [3] we derive approximatively 
solution for  (2) as a three dimensional Gaussian process and discuss a behavior of mean value and 
variance for stock levels of  goods ( )y t . 

2  Diffusion approximation procedure 

The defined in previous section stochastic dynamical system in more general form has been 
analyzed in our previous paper [2]. The corresponding to finite-difference equation (2) random 
process possess Markov property and may be analyzed through intermediary of generator [3] 
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where ( , , )v x y z  is an arbitrary sufficiently smooth bounded function . Now we have to derive a 
limit 
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and 
1

0

( )b b u du  . The operator (4) correspond to dynamical system (1) and  therefore for 

sufficiently small 0   a behavior of  defined by finite-difference equation (2) random dynamical 
system we can approximate by solution of equation (1), that is, if 
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As it has been prove in [2] the deviations of solutions (2) on corresponding solutions of (1) have 
an order   and we may analyze these deviations applying diffusion approximation procedure  to 
no homogeneous three dimensional Markov process 
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with zero initial conditions. The same as before we should derive a generator for (6) 
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and 
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2 2

0

( )b u du   .       (8) 

This operator identifies no homogeneous Markov process{ ( ), ( ), ( ), 0}X t Y t Z t t   which satisfies to  
systems of two ordinary equations and one stochastic Ito equation [3]: 
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with initial conditions { (0) 0, (0) 0, (0) 0}X Y Z   . As it has been proved in [2] finite 
dimensional distributions of  the defined by equations (2) Markov process  { ( ), ( ), ( )}x t y t z t    
may be approximated by corresponding finite dimensional distributions of the process  

).()()(),()()(),()()( tZtztztYtytytXtxtx       (12) 

Unfortunately, we cannot analyze variance separately approximation for stock levels of goods 
given by equation (10). We have to derive and solve the system of differential equations for all 
elements of a covariance matrix for the three dimensional Gaussian random vector  
{ ( ), ( ), ( )}X t Y t Z t :
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with zero initial conditions. Applying the Runge-Kutta method for solution of equations (13) we  
calculate approximation for variance ( )XYq t  of stock levels of  goods for 

0.01, 1, 10,c 1, 5h R a      100, ( ) 2A b u bu   with the same as in Fig.1 values of  initial 
conditions and parameters b. 

 

Fig.2. Variance )(tqXY , for .25.0,2)0(,2)0(,2)0(  bzyx   

 

 

Fig.3. Other variances )(),( tqtq YZXZ  , for .25.0,2)0(,2)0(,2)0(  bzyx   
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Fig.4. Variances )(),(),( tqtqtq ZZYYXX   for .25.0,2)0(,2)0(,2)0(  bzyx   

As we can see all above variances converges to constant values, hence the system (1) - (2) - (3) will be 
stable. 

 

3 Conclusion 

The considered model is of the class related to the dissipative dynamic systems expressed in the form of 
nonlinear ordinary differential equations with stochastic coefficients. They allow us to consider the 
following important features of transport systems: 

1) a combination of deterministic and stochastic factors of functioning; 

2) the collective nature of the transport systems’ functionality (the large amount of vehicles; numerous 
processes in transport systems); 

3) the non-equilibrium state of the open logistic system in the form of persisting positive inventory. 
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