MILD METHODS FOR SYNTHESIS OF 6-AZIDO-2-SULFONYLPURINE DERIVATIVES

Jānis Miķelis Zaķis*, Kristers Ozols

Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena iela 3, Riga, LV-1048, Latvia E-mail: janismikzakis@gmail.com

Purine derivatives are widely studied due to their biological properties and application in medicine. Thiopurine derivatives are already being used in treatment of cancer and autoimmune disorders [1].

We have observed a sulfonyl group dance when substrate 3 was treated with NaN $_3$. The transformation which lead to product 5 can be explained by azido-tetrazolo tautomerism. The latter activates purine cycle towards S_NAr reaction at C2. Reaction conditions were optimized and the best results were achieved using NaN $_3$ and DMSO at room temperature. Under these conditions sulfonyl group dance both with alkyl and aryl sulfones gave good yields.

R	Yield,% 3→5	Yield,% 1→5
4-Cl-C ₆ H ₅	83	54
C_6H_5	77	66
$c-C_6H_{11}$	47	49

Additionally, a simpler synthetic approach for the synthesis of 6-azido-2-sulfon-ylpurine derivatives $\bf 5$ was developed. The reaction was carried out using different so-dium sulfinate salts and after the maximum conversion to substrate $\bf 3$ was achieved, NaN $_3$ was added to the solution giving good yields of target product $\bf 5$.

Supervisors: Dr. chem. M. Turks, Dr. chem. I. Novosjolova

This work was supported by the Latvian Council of Science grant No LZP-2018/2-0037

References:

[1] Sahasranaman, S., Howard D., Roy S. Eur. J. Clin. Pharmacol. 2008, 64, 753-767.