COMPUTER SCIENCE
DATORZINATNE

ISSN 1407-7493 2008-34

APPLIED COMPUTER SYSTEMS
LIETISKAS DATORSISTEMAS

SUPPORT OF A USE-CASE CONTROLLER PATTERN BY
TFM4MDA

LIETOSANAS GADIJUMU KONTROLLERU SABLONA
ATBALSTS TFM4MDA PIEEJA

Erika Asnina, riga Technical University,

Faculty of Computer Science and Information Technology,

Institute of Applied Computer Systems, Department of Applied Computer Science,
Meza str. 1/3, Riga, LV 1048, Latvia, Lecturer, Dr.sc.ing., erika.asnina@cs.rtu.lv

MDA, use case, controller, pattern, topological functioning model

1. Introduction

Model Driven Architecture (MDA) was developed in 2001 by the Object Management group
(OMGQG). The main principle of MDA is an emphasis that is put on a model not on code. MDA
supports the so called Separation of Concerns on a problem domain (where the problem
domain is business that is planned to be modeled). This means that MDA models describe a
system of the real world at different abstraction levels, namely, computation independent,
platform independent and platform specific one. Correspondingly, MDA proposes the

following models [1]:

o A Computation Independent Model (CIM) that describes system’s structure and
behavior without any computation, i.e., it shows requirements to the system, business
vocabulary, etc.;

e A Platform Independent Model (PIM) that describes application’s structure and
behavior, but does not show any platform specific information;

o A Platform Specific Model (PSM) that describes application’s structure and behavior
together with added platform specific constructs.

CIMs are constructed from verbal descriptions of the system, e.g., interviews, business

process descriptions, procedure descriptions, experts’ knowledge and so on. PIMs are
obtained by transformation of CIMs, and, analogously, PSMs are obtained by transformation
of PIMs. MDA proposes different kinds of transformations from PIM to PIM, from PIM to

180

PSM, from PSM to PSM, and from PSM to PIM. A transformation from CIM to PIM is
suggested to be intellectual (intuitive, manual) work. Note that a boarder between two models
1S no quite strict. Therefore, result computation independent models are input for
transformation on the PIM level.

Topological Functioning Modeling for Model Driven Architecture (TFM4MDA) is an
approach that suggests a solution to construction of the formal CIM [2]. The main results of
application of TFM4MDA are input models for the PIMs, i.e. a use-case model and a concept
model, as well as formal verification of system requirements both made in compliance with
the formal model of the problem domain. Therefore, a transformation from CIM to PIM
became more formal than it was before.

Model-driven development, especially the fact that a use of models is a core of such
development, leads to build up a collection of both principles and idiomatic solutions that
guide software developers in the creation of software. These principles and idioms, if codified
in a structured format describing the problem and solution and named, are called patterns. As
Craig Larman meant in [3] “a pattern is a named description of a problem and solution that
can be applied to new contexts”. Many patterns, given a specific category of the problem,
guide the assignment of responsibilities to objects. The point of patterns is an attempt to
codify existing tried-and-true knowledge, idioms, and principles; the more honed, old, and
widely used, the better. There are many analysis and design patterns, for example, General
Responsibility Assignment Software Patterns (GRASP) for basic patterns of assigning
responsibilities [3], and Gang-of-Four (GoF) for more advanced design ideas [4]. GRASP
patterns are used mostly at the level of PIMs and PSMs.

This paper discusses how TFM4MDA supports one of GRASP patterns, namely,
Controller Pattern for use cases and makes it in conformity with the formal CIM. Section 2
describes the mentioned pattern and its necessity for modeling. Section 3 considers
TFM4MDA in brief. Section 4 illustrates an example of TFM4MDA application and
transformation to the GRASP Controller pattern. Section 5 concludes this discussion.

2. GRASP Controller

A popular way of thinking about the design of software objects is in terms of responsibility,
roles, and collaborations. This is a part of a larger approach called responsibility driven design
(RDD). In RDD, software objects are assumed as having responsibilities, i.e. an abstraction of
what they have to do. Responsibilities are related to the obligations or behavior of a classifier
in terms of its role. Basically, the responsibilities are of the following two types: doing and
knowing.

The GRASP defines nine patterns. They are Controller, Creator, High Cohesion,
Indirection, Information Expert, Low Coupling, Polymorphism, Protected Variations, and
Pure Fabrications [3]. Let us consider the Controller pattern.

A simple layered architecture has a user interface (UI) layer and a (application’s) domain
layer, among others. Actors generate Ul events. The UI software objects must then react to
this event. Corresponding to the Model-View Separation Principle', the UI objects should not
contain application’s business logic. Therefore, once the UI objects pick up the event, they
need to delegate (forward the task to another object) the request to domain objects in the

" The Model-View Separation principle states that model (business domain) objects should not have direct
knowledge of view (UI) objects, at least as view objects [3].

181

domain layer. The Controller pattern deals with a basic question in object-oriented design:
How to connect the UI layer to the application logic layer?
The Controller pattern offers the following advice [3]:
e Problem: What first object beyond the UI layer receives and coordinates (“controls”) a
system operation?
e Solution (advice): Assign the responsibility to an object representing one of these
choices:

o Represents the overall “system”, a “root object”, a device that the software is
running within, or a major sub-system (these are all variations of a facade
controller).

o Represents a use case scenario within which the system operation occurs (a use case
or session controller).

A common defect in the design of controllers results from over-assignment of
responsibility. A controller then suffers from low cohesion.
3. Topological Functioning Modeling for Model Driven Architecture in a Nutshell

Informal specifications often have ambiguities, hence, it is more difficult to detect errors and
subsequently correct them than in case of formal specifications. Precision of a formal
specification means that even if such a specification is not what the customer wanted, it is
easier to tell where it is incorrect and improve it. Additionally, missing parts of incomplete
specifications become clearer. On the other hand, the formal or executable nature of models
makes them benefit from automation.

This section discusses Topological Functioning Modeling for MDA or TFM4MDA in
brief. The more detailed description is given in [2], [5], [6]. TFM4MDA suggests
consideration of information about the problem in two contexts — the first one is the business
(or enterprise system’s) context (a problem domain), and the second one is the application
context (a solution). These contexts should be analyzed separately (Figure 1). The first idea is
that the application context constrains the business context, not vice versa (fully satisfies [7]).
And the second one is that functionality determines the structure of the planned system.

CIM level

graph transformation

Knowledge Topological

Functional about the Functioning
characteristics system Model goal-based
identification

of the problem
domain

Characteristics
of the
application at
the high level

of abstraction Client's Functional Use Case Conceptual
. 1 Requirements
Requirements . : Model Model
Specification

Figure 1. Creation of the CIM using TFM4MDA in object-oriented system analysis

182

3.1. The Topological Functioning Model in Brief

The TFM has a solid mathematical base. The TFM satisfies the axiom of separation of
topological spaces. In the particular application described in the paper, the TFM is
represented in the form of a topological space (X,®), where X is a finite set of functional
features of the system under consideration, and ® is the topology that satisfies axioms of
topological structures and is represented in the form of a directed graph. The necessary
condition for constructing a topological space is a meaningful and exhaustive verbal,
graphical, or mathematical system description. The adequacy of a model describing the
functioning of a concrete system can be achieved by analyzing mathematical properties of
such an abstract object [8], [9].

A TFM has topological (connectedness, closure, neighborhood, and continuous mapping)
and functional (cause-effect relations, cycle structure, and inputs and outputs) characteristics.
It is acknowledged that every business and technical system is a subsystem of the
environment. Besides that a common thing for all systems’ (technical, business, or biological)
functioning should be the main feedback, visualization of which is an oriented cycle.
Therefore, it is stated that at least one directed closed loop must be present in every
topological model of system functioning. It shows the “main” functionality that has a vital
importance in the system’s life. Usually it is even an expanded hierarchy of cycles. Therefore,
a proper cycle analysis is necessary in the TFM construction, because it enables careful
analysis of system’s operation and communication with the environment.

3.2. TFM4MDA: A General Framework

The four TFM4MDA steps and their sub-steps are illustrated by bold lines in Figure 1 and
discussed in this subsection. Having knowledge about a complex system that operates in the
real world, a Topological Functioning Model (TFM) of this system can be composed (STEP
1, Figure 1). The TFM of the system affect and is affected by functional requirements (STEP
2, Figure 1). TFM functional features are decomposed into use cases and appropriate action
sequence diagrams by means of system’s business; this provides identification of business use
cases as well as system use cases in compliance with the problem domain context. Besides
that, functional requirements become not only in conformity with the business system
functionality but can be also traced back to the system use case model (STEP 3, Figure 1).

Problem domain concepts are selected and described in an UML Class Diagram (STEP 4,
Figure 1). STEP 4 is omitted in this paper, but it is described in [2] and [6].

STEP 1: Construction of the Topological Functioning Model. Construction of the TFM
that reflects the problem domain in the context of business systems consists of the following
sub-steps (Figure 2):

183

Information

Informal

system D(relfln!tlor of c:;?;(tas
description physical or —
business functional
« Objects \ characteristics
¢ Functional
features
e External Introduction of the
systems topology
(Cause-and- ™
effect relations
Separation of the

topological
functioning model

Topological
functioning I
model

Figure 2. Construction of the TFM

’

Step 1.1 “Definition of physical or business functional characteristics” consists of the
following iterative activities:

1) Definition of objects and their properties from the problem domain description that
is performed by noun analysis. This means by establishing meaningful nouns and
their direct objects and handling synonyms and homonyms;

2) Identification of external and partially-dependent systems. The former are objects
that are not subordinated to the system’s rules, and the latter are objects that are
partially subordinated to the system’s rules, e.g., system workers’ roles;

3) Definition of functional features using verb analysis in the problem domain
description, i.e., by finding meaningful verbs.

Within TFM4MDA, each TFM functional feature is a tuple <4, R, O, PrCond, E>, where:

e /4 is an object action,

e R is aresult of this action,

e O is an object that receives the result or that is used in this action (for example, a role, a

time period, a catalog, etc.),

e PrCond is a set PrCond = {c,, ..., ¢;}, where ¢; is a precondition or an atomic business

rule (it is an optional parameter),

e [Eis an entity responsible for performing actions.

Both precondition and atomic business rule must be either defined as a functional feature

or assigned to an already defined functional feature. Two forms of the textual description are
defined. The more detailed form is as follows:

<action>-ing the < result> [to, into, in, by, of, from] a(n) <object>,
[PrCond,] E

And the more abstract form is the following:

<action>-ing a(n) <object>, [PrCond,] E

184

Step 1.2 “Introduction of the topology” means establishing cause and effect relations
between TFM functional features. Cause-and-effect relations are represented as arcs of a
digraph that are oriented from a cause vertex to an effect vertex. The particularity of the cause
and effect relations is there ability to compose cycles. All cycles and subcycles should be
carefully analyzed in order to completely identify existing functionality of the system. The
main cycle (cycles) of system’s functioning (i.e. functionality that is vital for system’s life)
must be found and analyzed before starting further analysis. In the case of studying a complex
system, a TFM can be divided into a series of subsystems according to the identified cycles.

Step 1.3 “Separation of the topological functioning model” is the same as in the TFM
approach [8], [9]. This means that it is performed by applying the closure operation of a set of
system’s inner functional features: A topological space is a system represented by Eq. (1).
Where N is a set of inner system functional features and M is a set of functional features of
other systems. The latter include those interacting with the system or those functional features
of the system itself, which affect the external system functionality.

Z=NuM (1)

X =[N]= qu)

The TFM is separated from the topological space of a problem domain by the closure of
the set N as it is shown by Eq. (2). Where X,, is an adherence point of the set N, and capacity
of X is the number n of adherence points of N. An adherence point of the set N is a point,
whose each neighborhood includes at least one point from the set N. The neighborhood of a
vertex x in a digraph is a set of all vertices adjacent to x and the vertex x itself. It is assumed
here that all vertices adjacent to x lie at the distance d=1/ from x on ends of output arcs from x.
Moreover, the closure operation can be applied to chosen subsets of N in order to separate the
TFM into a series of subsystems.

STEP 2: Functional requirements’ conformity to the TFM. This step is the check of
degree of functional requirements’ conformity to the constructed topological functioning
model. On the one side, functional features (hereafter features) specify functionality that
exists in the “problem world”. On the other side, functional requirements specify functionality
that must exist in the “solution domain”. Thus, the mapping of functional requirements
(hereafter requirements) onto the TFM functional features makes it possible to map and to
constrain the “problem domain” by the “solution domain”. Such mapping gives two
outcomes: first, adequacy of the “solution domain” to the “problem domain” is checked at the
very beginning of analysis, and second, the “solution domain’s” functionality enhances and/or
constrains the “problem domain’s” functionality.

Mappings are formally described with arrow predicates. Arrow predicates are constructs
borrowed from the universal categorical logic. Universal categorical (arrow diagram) logic for
computer science is explored in detail in [10]. TFM4MDA suggests mappings of five types
and corresponding arrow predicates. They are as follows:

e One-to-One that is used if the requirement A completely specifies what will be

implemented in accordance with the functional feature B;

e Many-to-One that is used if a set of requirements overlap the specification of what will
be implemented in accordance with the functional feature. In case of the covering
requirements, their specification should be refined. Otherwise, disjoint requirements
together completely specify the functional feature and do not overlap each other.

e One-to-Many is used if a part of the requirement incompletely specifies the functional
feature or if one requirement completely specifies several functional features. This may

185

be because: a) the requirement joins several requirements and can be split up or b)
features are more detailed than the requirement.

e One-to-Zero is used if one requirement specifies some new or undefined functionality.
In this particular case it is necessary to define possible changes in the problem domain
functioning.

e Zero-to-One is used if specification does not contain any requirement corresponding to
the defined feature. This means that it could be a missed requirement, and therefore it
could be left unimplemented in the application. Thus, it is mandatory to take a decision
about the implementation of the discovered functionality together with the client.

Step 2 results are both checked requirements and the TFM that describes needed, possible

functionality of the system and the environment it operates within.

STEP 3: Construction of a use case model. This step is the main subject of the
discussion in this paper. This step is transition from initial CIM models (an informal
description, a requirements specification) to a CIM “output” model — a use case model.
Besides that, this step gives a possibility of more formal tracing of functional requirements to
use cases (Figure 1). This activity includes the following sub-steps.

Step 3.1 “Identification of business system users and their goals” is as follows. Business
system users can be actors and workers [11]. In the TFM, actors are represented as external
systems’ functionality or functional properties of the system under consideration that interact
with external systems (in this case, their identification is necessary), e.g., external companies,
clients, etc. Workers are system’s inner entities, e.g., humans, roles, etc. Identification of
direct goals of business system’s users is related to the identification of the corresponding set
of functional features that are necessary for the goal satisfaction. A goal as the means for
identification of use cases has been chosen because a goal can be achieved by performing
some process that can be long running. For each goal, an input functional feature (input
transaction), an output functional feature (output transaction), and a functional feature chain
between them can be defined. Business actors as well as business workers can be users of the
application. Identification of system (application’s) goals helps for additional check of
requirements, i.e., for discovering “missing” requirements.

Step 3.2 “Identification and refinement of system use cases” is as follows. Functional
features needed to achieve a business goal and specified by functional requirements describe
the achievement of the corresponding system goal, and, therefore, compose a system use case.
A user of the business system who established this goal is an (UML) actor that communicates
with this use case. This principle enables formal identification of a use case model from the
topological functioning model. Moreover, this principle also provides additional possibilities
for the refinement of system use cases. An inclusion use case is an intersection of functional
feature sets needed to achieve different system goals. These shared functional features can be
located either in the main flow or alternate flow (i.e., a sub-cycle or a branch of the TFM) of
the use case. In the TFM, a sub-cycle or a branch, existing within the system goal is an
extension use case where an extending point is a start point of the branch.

Step 3.3 “Use case scenario reflection”. Scenario of the identified use cases can be
represented in an UML activity and sequence diagram by transforming corresponding TFM
functional features into diagram’s activities and corresponding cause-and-effect relations into
diagram’s control flows.

Besides that, a good style for construction of application systems is separate developing of
a user interface layer, and a coordination or controller layer. The user interface should not
have responsibility for performing system events. According to GRASP Patterns, a controller
is “the first object beyond the user interface layer that is responsible for receiving or handling

186

a system operation message” [3]. The controller responsibility can be assigned to a class
representing the overall “system”, a major subsystem or a use case scenario. The latter is the
case under discussion.

Basically, the elaboration of these objects should be done further during the analysis and
design phases, but TFM4MDA enables to define the core of them as an input for the analysis
phase. As previously mentioned, after constraining with functional requirements the
topological functioning model represents the domain logic that will be implemented in the
application. A responsible user initiates a functional feature in accordance with the domain
logic. Some functional features can be generated as an effect of the functional feature initiated
by a user. If a user initiates this functional feature, this means that he/she interacts using some
user interface. Therefore, an action of this functional feature initiated by a user can be
assigned to a controller, which then coordinates the fulfillment of this functionality by some
responsible class. In case of large systems and used use-case driven techniques, the use-case
level is a suitable scope for controller class representation. For example, in the Unified
Process, control objects are use-case handlers as described in this Controller pattern. Usually,
a controller class is named <UseCaseName>Handler, <UseCaseName>Coordinator, or
<UseCaseName>Session [3]. In this work, the first one is used.

Step 3.4 “Use case prioritizing” 1is as setting priorities to use cases (and hence
requirements) that usually is done in accordance with client’s desires using some requirement
attribute systems, e.g. MoSCoW or GRASP [3]. Within TFM4MDA, implementation
priorities to use cases are set in conformity with the main cycle of the system as critical,
important, or useful.

4. A Demonstration of the TFM4MDA Use for Identification of the Controller

Direct users of the business system identified for the system reflected by the TFM in Figure 3
(a) are shown in the 1* column of Table 1. The business system users are a Registrar, a
Reader and a Librarian. Besides that, the Reader is a business actor, but the Registrar and
Librarian are business workers. Their business goals identified in accordance with the
functionality represented by the TFM and functional features that implement them and that
are planned to be implemented in the application are shown correspondingly in the 4™ and 5
column of Table 1. The use case diagram illustrated in Figure 4 then was obtained.

Let us consider the functionality specified by the use case “Take out copy”. Descriptions of
those functional features are shown in Figure 3 (b). The corresponding UML sequence
diagram and its relation to the TFM functional features and cause and effect relations are
shown in Figure 5.

187

Functional features needed to achieve BG5:
11. Taking the request form from a reader,
Librarian, inner

12. Checking the availability of a copy,
Librarian, inner

13. Calculating the book amount of a reader,
[if the copy is available], Librarian, inner

14. Checking the book limit of a reader,
Librarian, inner

15. Checking out the copy to a reader, [if the
book amount is smaller than the book limit],

Librarian, inner

b)

Figure 3. The TFM of the library in the application context (a) and descriptions of the TFM functional
features for BG5 (b); functional features in shadowed vertices are those needed to be implemented in the
application system

Table 1. Business users, their goals and corresponding functional features

User Business Goal Functional Features Functional Features to
be Realized

Label Title

Registrar BGl1 Register a new reader 2,3,4,5,6,31,7 3,4,5,6,31
BG2 Add a new entry 25,26,27,28,24 26,27, 28,24

Reader BG3 Consult a catalogue 8 none
BG4 Complete a request 9,10 none

Librarian BG5S Take out a copy 11, 12,13, 14, 15 12, 13,14, 15
BG6 Take back a copy 16,17, 18,19, 23, 24 17,18, 19, 23,24
BG7 Send a copy to a restoration 20, 21 20
BG8 Remove a copy 22 22
BG9 Impose a fine 18, 19 18, 19

188

Take Out Copy :
Register New Reader %
O Registrar
Send Copy to Restoration

Add New Catalogue Entry

/ <<include>>
Remove Copy
) V
<<include>>
- %
Librarian

Take Back Copy Ensure Availability of Copy
AN
<<extend>> Condition: {Librarian selected DAMAGED_COPY }
—— —extension point: DAMAGED_COPY

Impose Fine

Figure 4. The use case diagram resulted from the TFM by TFM4MDA

The part of the TFM

corresponding to BG1 UML Sequence Diagram for BG1

X

: Librarian System

‘1 . checkAvailabilityofC OQA

2. checkLimitofReader ‘

P2

2.1. checkBpokAmountofReader

=
@ 2.2. checkBookLimitofReader
B
L]
@ 3. checkOutCopy |
\

Figure 5. The part of the TFM and corresponding UML sequence diagram
The Controllers for use cases can be defined in accordance with the identified use cases.

As mentioned in the preceding subsection, the controller object handles events received from
the user interface objects. The defined controller for the use case “Take out copy” is

189

illustrated in Figure 6. A name of the controller consists of the use case name and the word
“Handler”. The controller TakeOutCopyHandler manages direct user interaction for the
functional features 12, 13, and 15.

<<control>>

TakeOutCopyHandler

¥checkAvailabilityofCopy()
%checkLimitofReader()
¥checkOutCopy()

Figure 6. The Controller for the use case “Take out copy”

5. Conclusions

TF4MDA can be used to analysis of the complex business and physical systems that have
evident, clear-cut functionality. Generally, TFM4MDA can be applied for any development
methodology, because it describes system’s functioning on the very high level of abstraction.
However, this paper considers application of TFM4MDA in the context of both use-case
driven approaches and object-oriented paradigm.

The application of TFM4MDA has the following advantages. Careful analysis of TFM
cycles can help to identify all at that moment possible functional and causal relations between
objects in complex business systems. Therefore, this makes it possible to make a decision
about acceptability of changes in the problem domain functioning before their realization.
TFM4MDA helps to check completeness and consistency of functional requirements as well
as does not limit the use of any requirement gathering techniques. It provides use case
completeness, avoids conflicts among use cases, and shows their affect on each other. Use
case (requirement) implementation priorities can be ordered not only in accordance with the
client’s wishes, but also in accordance with the functioning cycles.

TFM4MDA supports the Controller pattern application. The TFM in the application
context shows cause-and-effect chains in the functionality of the system. The mapping of the
TFM into UML sequence diagrams enables identification of use case controllers. Thus,
TFM4MDA supports the Model-View Separation Principle.

The further research is related to investigation of TFM4MDA properties in support of other
analysis and design patterns that deals with responsibility delegation.

References

1. OMG “OMG: MDA Guide Version 1.0.1°, Miller J., Mukerji J. (eds.), 2003 // Internet. —
http://www.omg.org/doc/omg/03-06-01.pdf

2. Asnina E. “Formalization of Problem Domain Modeling within Model Driven Architecture” //
PhD Thesis, Riga Technical University, RTU Publishing House, Riga, Latvia, 2006

3. Larman Cr. “Applying UML and Patterns: An Introduction to Object-Oriented Analysis and
Design and Iterative Development. 3rd ed. ’ // Prentice Hall PTR, 2005, 703 pages

4. Gamma E., Helm R., Johnson R. and Vlissides J.M. “Design Patterns: Elements of Reusable
Object-Oriented Software” // Addison-Wesley, 1995

190

5. Osis J., Asnina E., Grave A. “MDA Oriented Computation Independent Modeling of the Problem
Domain” // In: Proceedings of the 2™ International Working Conference on Evaluation of Novel
Approaches to Software Engineering, Barcelona, Spain, 2007, p. 66- 71

6. Osis J., Asnina E., Grave A. “Formal Computation Independent Model of the Problem Domain
within the MDA // In: Proceedings of the 10th International Conference on Information System
Implementation and Modeling, CEUR-WS Vol. 252, Hradec-nad-Moravici, Czech republic, 2007,
p. 47-54

7. Jackson M. “Problem Frames and Software Engineering” // In: Information and Software
Technology, Volume 47, Issue 14, November 2005, p. 903-912

8. Osis J. “Formal Computation Independent Model within the MDA Life Cycle” // In: International
Transactions on Systems Science and Applications, Vol. 1, Nr. 2, Xiaglow Institute Ltd, Glasgow,
UK, 2006, p. 159-166.

9. Osis J. “Software Development with Topological Model in the Framework of MDA” // In:
Proceedings of the 9th CaiSE/IFIP8.1/EUNO International Workshop on Evaluation of Modeling
Methods in Systems Analysis and Design (EMMSAD’2004) in connection with the CaiSE’2004,
Vol. 1, Riga: RTU, Riga, Latvia, 2004, p. 211 — 220.

10.Diskin Z., Kadish B., Piessens F., and Johnson M. “Universal Arrow Foundations for Visual
Modeling” // In: Proc. Diagramms’2000: 1st Int. Conference on the theory and application of
diagrams. Springer LNAI, No. 1889, 2000, p. 345-360.

11.O0MG “UML Extension for Business Modeling, Version 1.1”, 1997 // Internet. - umlcenter.visual-
paradigm.com/umlresources/exte 11.pdf

Asnina E. LietoSanas gadijumu kontrolleru $ablona atbalsts TFM4MDA pieeja

Saja raksta tiek apskatita TEM4MDA (Topological Functioning Modeling for Model-Driven Architecture)
pieejas pielietosana lietosanas gadijumu kontrolleru Sablonu definésanai no problémvides modela. TFM4MDA
merkis ir padarit modelvadamu arhitektiru (Model Driven Architecture vai MDA), kurd akcents ir uzlikts uz
modeliem nevis kodu, par formalaku. MDA nodrosina tris skatijjumus uz sistému: no skaitloSanas neatkarigu,
platformneatkarigu un platformai specifisku. TFM4MDA pamata ir topologiskais funkcionésanas modelis, kas
attélo sistemas funkcionalitati neatkarigi no , skaitlosanas”. Tas apraksta sarezgitas sistemas funkcionalitati
orienteta grafa veida, kur mezgli ir sistémas funkcionalas ipasibas un loki ir célonu seku attiecibas starp tam, un
nodrosina Sis informdcijas kartesanu uz lietoSanas gadijumu specifikacijam. Bez tam, TFM4MDA atbalsta Sts
informdcijas kartésanu uz lietosSanas gadijumu kontrolleru sablonu. Saskana ar GRASP Sabloniem, lietoSanas
gadijuma kontrolleris ir pirmais objekts péc lietotaja saskarnes slana, kas ir atbildigs par lietotaja generétu
notikumu sapemSanu un apstradi. Dati no topologiska funkcionésanas modela tiek karteti uz UML secibu
diagrammam un tad uz kontrolleriem. Tas nozimé, ka TFM4MDA atbalsta slanu programmatiiras arhitektiiras
sadaliSanas principu ,, Modelis-Skats” (Model-View).

Asnina E. Support of a Use-Case Controller Pattern by TFM4MDA

This paper discusses how Topological Functioning Modeling for Model-Driven Architecture or TFM4MDA can
be applied for definition of use case controllers from the problem domain model. TFM4MDA aim is to make
Model Driven Architecture (MDA), where the main emphasis is put on models not code, more formal. MDA
supports separation of concerns and provides three viewpoints on the system: computation independent,
platform independent and platform specific. TFM4MDA considers the system from the computation independent
viewpoint. There is a topological functioning model in TFM4MDA foundations that represents functionality of a
complex system as a directed graph, where nodes are system’s functional features and arcs are cause-and-effect
relations among them. TFM4MDA provides mapping of this information to use case specifications. Besides that,
TFM4MDA supports mapping of this information to a use case controller pattern. According to GRASP
Patterns, a use case controller is the first object beyond the user interface layer that is responsible for receiving
or handling events generated by the user. Data of the topological functioning model are mapped to UML
sequence diagrams to the pattern. This means that TFM4MDA supports the Model-View separation principle of
layered software architecture.

191

Acnuna J. IToaaep:kka mada10Ha KOHTPOJLIEPOB NMpeneieHToB uenoab3osanus B TFM4MDA

B oannoti cmamve paccmampusaemcs npumenerue nooxooa TFM4MDA (Topological Functioning Modeling for
Model-Driven Architecture) ons onpedenenusi wabIOHA KOHMPOLLEPOS NPeyedeHmos UCHONb306a s, beps 3a
ocHo8y mMoOdenb npodnemnol cpedwvi. Lenv TEFM4MDA coenams Oonee opmanvhou Ynpasusiemyo Mooensimu
Apxumexmypy (Model Driven Architecture unu MDA), 6 xomopoul ycunena poab modenu, a He xooa. MDA
npeonazaem mpu cnocoba ONUCAHUSL CUCMEM. HE3ABUCUMbLIL OM 6bIYUCIEHUL, He3A8UCUMBLI OM NAAM@OPM U
cneyuguuecxuti o5 naameopmol. B TFM4AMDA cucmema onucvl8aemcst ¢ He3a8UCUMOLL OM GbIYUCTEHUL MOYUKU
spenus. Tononoeuueckas Mmoodenv @yHKyuonuposanus, aexcawas 6 ocrHose TFM4MDA, onucvieaem
@dyHKYUOHUPOBAHUE CROJCHOU CcucmemMbl 8 Gopme Hanpasiennozo epagha, 2oe ysniamu epaga A6siomcs
DyHKYOUHATbHBIE CBOUCMBA CUCMEMbL, 4 OPUCHMUPOBAHHBIMU PeOPAMU — NPUHUHHO-CIEOCMGEHHbIE C653U
meocdy Humu. B TFM4MDA npedycmompeno omobpadicenue OaHHOU uHpopmayuu 6 cneyupurayuro
npeyedenmos ucnoivzoganus. Kpome mozo, 6 TFM4MDA peanuzoano 803modicHoe omobpasiceHue OAHHOU
unpopmayuu 8 WAbNOHbI KOHMPOJIEPO8 NPeyedeHmos UCnOIb3068anus. B coomeemcmeuu ¢ wabronamu
GRASP, konmponnep npeyeoeHmo8 UCHONb306AHUL — OJMO Nepevlii 00vbeKm nocie Cclos uxnmepgetica
noav3oeamens, OMEEMCMEEHHbI 3d NOJYYeHue U 0OpabomKy coObIMUL, C2eHePUPOBAHHBIX NOTb308AMENEM.
Jannvie u3 mononozcuueckol MoOenu QYHKYUOHUPOBAHUSL CHAYANA OMOOPANCAIOMC 6 OUSPAMMbL
nociedosamenviocmeti szvika UML, a 3amem 6 camu wabnronvt. Taxkum obpasom 6 TFM4MDA
noooepoicugaemesi npunyun pazoeienust «Moodenb-Buody MHO20YPOBHEGOU apXUMEKMypbl RPOSPAMMHO0
obecneueHus.

192

