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Abstract – In the paper, the problem of building semantic image 

segmentation networks in a more efficient way is considered. 

Building a network capable of successfully segmenting real-world 

images does not require a real semantic image segmentation task. 

At this stage, called prototyping, a toy dataset can be used. Such a 

dataset can be artificial and thus may not need augmentation for 

training. Besides, its entries are images of much smaller size, which 

allows training and testing the network a way faster. Objects to be 

segmented are one or few convex polygons in one image. Thus, a 

toy dataset generator is created whose complexity is regulated by 

the number of edges in a polygon, the maximal number of polygons 

in one image, the set of scale factors, and the set of probabilities 

determining how many polygons in a current image are generated. 

The dataset capacity and image size are concurrently adjustable, 

although they are much less influential. 
 

Keywords – Dataset complexity; Multi-polygon object; Semantic 

image segmentation; Segmentation network architecture; Toy 
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I. INTRODUCTION TO SEMANTIC IMAGE SEGMENTATION 

Semantic image segmentation (SIS) is a computer vision task 

of labeling specific regions of an image by subsequently filling 

in the regions with respective colors. The colors are chosen so 

that they would be distinguishable as much as possible (Fig. 1). 

Sometimes, a perceptible rate of transparency is applied 

(Fig. 2). More specifically, the goal of SIS is to label each pixel 

of an image with a corresponding class or category of what is 

being imaged [1], [2]. 

Theoretically, a semantic segmentation network (SSN) 

classifies every pixel in an image [2], [3]. This results in an 

image of the same resolution that is segmented by classes or 

categories. Inasmuch as the spatial resolution of an image is not 

downsampled purposely, the network processes huge amounts 

of data. Thus, SIS is a challenge for modern machine learning. 

Neural network architecture for SIS is based on an 

encoder/decoder structure [4], [5]. The spatial resolution of the 

input is downsampled developing lower-resolution feature 

mappings, and then the feature representations are upsampled 

into a full-resolution segmentation map. A common SSN 

consists of three parts: a downsampling subnetwork, an 

upsampling subnetwork, and a pixel classification layer. A 

downsampling subnetwork is stacked of convolutional layers 

(ConvLs), ReLUs, and max pooling layers.  The upsampling is 

executed using the transposed convolutional layer, which is also 
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commonly referred to as deconvolutional layer (DeConvL) [4], 

[6]. DeConvL simultaneously performs the upsampling and 

filtering, so the upsampling subnetwork is stacked of 

DeConvLs and ReLUs. The final set of layers performs pixel 

classifications. These final layers process an input that has the 

same spatial dimensions of height and width as the input image. 

The third dimension, which is equal to the number of filters in 

the last DeConvL, is squeezed down to the number of classes 

which are tasked to be segmented. The squeezing is performed 

by a 1-by-1 ConvL, whose number of filters is equal to the 

number of classes. The softmax and pixel classification layers, 

following the 1-by-1 ConvL (which is a fully-connected layer), 

categorically label each image pixel. 
 

 

Fig. 1. An image which is to be semantically segmented and the result of 
segmentation [7]. There are a few tens of classes of labeled pixels, and each 
class is shown with its own color. Some colors are chosen in accordance with 
real tints of the corresponding objects or scenes (for instance, the trees in this 
example are labeled green, although there is no verdure due to a specific 
season). This is an example of a very accurate complex segmentation. 
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Fig. 2. An example of two-class segmentation by transparency in labeling. 
Here, the task is to segment a complex object, which is the landscape and other 

items except for the water and sky. The accuracy is not perfect therein. 

 

What should an efficient SSN architecture be like for a given 

SIS task? Except for the 1-by-1 ConvL inserted before the 

softmax and pixel classification layers, how many ConvLs and 

DeConvLs should the SSN have? These questions are not trivial 

as inserting ConvLs and DeConvLs appropriately cannot be 

performed in a single step. The appropriateness here is meant 

by a weaker efficiency, at which an SSN would perform at an 

acceptable accuracy, although not close to perfect. It will 

assuredly take a few tries to build an efficient SSN architecture 

even for simple tasks, with two classes (like a task with the 

example in Fig. 2). For tasks like that with the segmentation 

result in Fig. 1, building an appropriate SSN may take too many 

tries, where each lasts for a few hours [5]. 

II. BACKGROUND AND MOTIVATION FOR TOY DATASETS 

Any neural network being built requires a dataset, on which 

it is trained, validated, and tested. This stage is an actual 

prototyping. The goal of the prototyping is to build an SSN 

capable of segmenting successfully real-world images. The 

prototyping, however, does not require a real SIS task. 

Therefore, a dataset for the prototyping can be selected so that 

it would allow building an SSN (including training, validation, 

testing) as fast as possible. Obviously, a connection between the 

dataset and the real SIS task must exist [3], [4], [6]. 

As of July 2019, SSNs are prototyped still based on the 

experience rather than a strong theory. Datasets of mostly high-

resolution real-world images along with respective labels to 

each pixel in every image instance are used for this. Such 

datasets like BSDS500, CamVid, Cityscapes, COCO, DUS, 

Mapillary Vistas (an example in Fig. 1), MSRCv2, PASCAL 

VOC, etc., fit excellently for the corresponding SIS tasks but 

training on them is still expensive [7].  Augmentation of training 

data, especially needed for smaller datasets (BSDS500 and 

DUS), is limited [5], [8]. On the contrary, artificial datasets are 

infinitely scalable and thus they do not need augmentation 

(Fig. 3), although they fit much simpler SIS tasks (Fig. 4). 

 

 

Fig. 3. An example of an artificial dataset of triangles (grayscale images above 
and labels beneath) used by MATLAB in instructing how to deal with SSNs 
(https://www.mathworks.com/help/vision/ref/semanticseg.html). The dataset is 

intended for an SIS task with two classes. It consists of 200 32 32  images, 

which can be easily reproduced with varying positions of the triangle. The task 
is to segment the triangle in a single image or triangles in a stack of multiple 
images. Note that the background color coincides with the color of the triangle 
interior. This is done intentionally to make the SIS task a bit sophisticated. 
Otherwise, such a task would be solved easily by thresholding. 

 

 

Fig. 4. The SSN architecture in MATLAB for segmenting 32 32  images with 

triangles. There are two ConvLs, each of which is followed by a ReLU. A single 
DeConvL is used following the second ReLU. The SSN is trained on the dataset 
in Fig. 3. After 100 epochs of training, the SSN performs at an acceptable 
accuracy (see its testing in Fig. 5), although it is far from perfect. 

 1 'imageinput'      Image Input 

                     32x32x1 images with 'zerocenter' normalization 

 2 'conv_1'          Convolution 

                     64 3x3x1 convolutions with stride [1  1]  

                     and padding [1  1  1  1] 

 3 'relu_1'          ReLU                          

 4 'maxpool'         Max Pooling 

                     2x2 max pooling with stride [2  2]  

                     and padding [0  0  0  0] 

 5 'conv_2'          Convolution 

                     64 3x3x64 convolutions with stride [1  1]  

                     and padding [1  1  1  1] 

 6 'relu_2'          ReLU                          

 7 'deconv'          Transposed Convolution 

                     64 4x4x64 transposed convolutions  

                     with stride [2  2] and output cropping [1  1] 

 8 'conv_3'          Convolution 

                     2 1x1x64 convolutions with stride [1  1]  

                     and padding [0  0  0  0] 

 9 'softmax'         Softmax                       

10 'classoutput'     Pixel Classification Layer    

                     Class weighted cross-entropy loss  

                     with classes 'triangle' and 'background' 
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Fig. 5. A stack of 64 test triangle images and the fused overlay image as a result 

of segmentation by an SSN with the architecture in Fig. 4 trained on the dataset 

in Fig. 3. Despite all 64 triangles have been spotted, the accuracy of 
segmentation is believed to be improved by adjusting parameters of training 

and hyperparameters [9] of the SSN. Note that there are three triangle couples 

“fused” into one due to lower accuracy. The size of the triangles varies as 
dramatically as that in the training dataset in Fig. 3, but the triangle shape is still 

the simplest to pretend to be a toy pattern for some simple real-world SIS tasks 

(e. g., segmenting one-color objects of not-a-curvilinear shape). 

 

Apparently, a toy dataset can be made more complex. Then, 

an appropriate SSN will be tested and prototyped faster anyway 

owing to the dataset’s independent augmentation by infinite 

scalability. Subsequently, this SSN’s parameters and 

hyperparameters could be imparted to real-world SIS tasks with 

images of the same or slightly higher resolution [10]. The 

number of classes to be labeled, obviously, must be the same. 

Nevertheless, for non-toy SIS tasks containing multiple classes 

(Fig. 1), the same architecture is expected to be appropriate by 

just increasing the values of hyperparameters (for instance, 

increasing filter numbers, intensifying pooling). 

The connection between a toy dataset and the related real SIS 

tasks must be controlled via adjusting parameters of the dataset. 

Such parameters are supposed to be complexity of objects to be 

labeled and their density in an image. For maintaining a speed 

gain in training on toy datasets, they nonetheless must contain 

primitive objects [1], [3], [7]. 

Therefore, the motivation for toy datasets is explained with a 

possibility to overcome difficulties in training on real-world 

datasets. This is about infiniteness of dataset entries 

(independent augmentation) and faster training. Automatic 

labeling is another merit of toy datasets. Compared to datasets 

of natural images, building a toy dataset is much faster and 

cheaper, as toy entries are generated along with labeling them 

automatically by an algorithm. Unlike working with natural 

images, the algorithm does not perform preprocessing, nor does 

it perform any image format conversions. This additionally 

saves a lot of time and human resources. 

III.  GOAL AND TASKS 

Proceeding from plausible benefits of toy datasets for SIS 

tasks, the goal is to create a toy dataset generator whose 

complexity could be regulated from the simplest mode up to the 

reasonably most sophisticated one. The simplest mode is to 

generate those triangles in Fig. 3. The reasonably most 

sophisticated mode will be based on complicating the object’s 

shape, scattering its size, and admitting congestions of multiple 

objects, which may be eventually perceived as one object. The 

generator is believed to produce datasets, which could serve as 

a fast prototyping platform for SIS. 

Firstly, the image size along with the shape and interior  

of the objects to be segmented will be discussed and  

substantiated. Secondly, an algorithm of the toy dataset 

generator will be stated. Finally, examples should be presented 

giving practical recommendations of how real-world SIS tasks 

could inherit appropriate parameters and hyperparameters from 

the SSN trained on the toy dataset generated by the stated 

algorithm. 

IV.  IMAGE SIZE 

In machine learning, and, particularly, in the training of 

neural networks on images, there are classical datasets like  

CIFAR-10, CIFAR-100, MNIST, NORB, EEACL26, etc. [9], 

[11], [12]. For them, researchers tend to set the image size at 

dimensions which are raised to some integer power [5]. This 

ensures faster training owing to consistency with the binary 

system hardware, on which computational algorithms are 

physically implemented. Therefore, let the minimal image size 

be 32 32 . Generally, the image size is h w  (in pixels), 

where both height h  and width w  will be set at integers 

divisible by 32. 

V.  SHAPE AND INTERIOR OF OBJECTS TO BE SEGMENTED 

The triangle is the simplest convex polygon. So, let the image 

contain one or few convex polygons. The maximal number of 

polygons in one image is maxP  by maxP  . Then, 

occasionally, the object can be non-convex when a few 

polygons intersect [13], [14]. 

The minimal number of polygon vertices is 3. As the 

maximal number of polygon vertices cannot be limited, let a 

polygon be generated of n  vertices, where  max3,n n  by 

 max \ 1, 2n  . Number maxn  is a maximal number of edges 

in a polygon, and it is specifically selected for a given SIS task. 

Number n  will be randomly chosen for every new image. A 

greater number maxn  makes a given SIS task more complex, 

which may require a more complex SSN architecture. 

The background remains white. Thus, the most appropriate 

color of the polygon interior is white. The object’s color is black 

that implies the color of the polygon edges is black. In fact,  

the object is 100 % transparent. At that, whichever image size 

would be, the thickness of the polygonal edges will be just one 

pixel. This implies that the segmentation is harder for bigger 

images because always only a one-pixel border separates  

the object’s white interior off the white background. 
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VI.  ALGORITHM OF THE TOY DATASET GENERATOR 

The toy dataset generator has eight input arguments: a 

number  of  images  N   to  be  generated,  h ,  w ,  a  minimal 

number of edges minn  in a polygon, maxn , maxP , a set S  of 

scale factors (to scale the polygon with respect to the image 

size), a set R  of different probabilities (to determine how many 

polygons in an image will be generated). Whereas set S  must 

contain at least one element, set R  must consist of at least 

max 1P −  elements: 

  
1

K

k k
S s

=
= , ( )0; 1ks   1,k K = , K , (1) 

  
1

L

l l
R r

=
= , ( )0; 1lr  , 1l lr r +  1, 1l L = − , max 1L P − . (2) 

Obviously,  min max3,n n . 

First of all, a number of polygons, which are to be drawn in 

one image, is determined. If max 1L P − , then vector 

 
( )*

max1 1
l

P
r

 −
 =  R  (3) 

is formed from set (2), from which max 1P −  elements are taken 

out, whose indices are given by function ( )max, 1L P −  

returning a row vector containing a random permutation of 

max 1P −  integers from 1 to L  inclusive, and the permutation is 

sorted in descending order. So, 

  
max

*
*

1

1

P

l
l

r R
−

=
 , 

* *1l lr r−   * max1, 1l P = −  (4) 

by, formally, 0 1r = . Otherwise, if max 1L P= − , then 

 
( )

  ( )* maxmax
1 11 1

l l PP
r r

 − −
 = = R . (5) 

Let 1  be a value of a random variable uniformly distributed on 

the open interval ( )0;1 . If 

 
*1 lr   and 

*1 1lr −  (6) 

then max * 1P l− +  polygons are drawn, where * max1, 1l P= − . 

Otherwise, if  

 
max1 1Pr −  (7) 

then just a single polygon is drawn. 

An initial number of the polygon vertices is 

 ( )( )max min 2 min1n n n n= − +  + , (8) 

where value 2  is random generated analogously to 1  by a 

function  ( )    returning  the  integer  part of  number   . 

Initially, coordinates of the vertices are taken from a vector 

  
( )

( ) ( )( )
1 2

1, 2 min , 1i n
y n h w


= =     +Y , (9) 

where function ( )1, 2n  returns a pseudorandom ( )1 2n  

vector whose entries are drawn from the standard uniform 

distribution on the open interval ( )0;1 , and ( ), 1K
s


 =  is a 

coefficient to scale the polygon with respect to the image size. 

In this scale factor, ( ),1K  is a random integer between 1 and 

K  to choose one of elements in set (1). The horizontal 

coordinates are 

 ( )( )31 1i iz y h= + −    +   for  1,i n=  (10) 

and the vertical coordinates are 

 ( )( )41 1n i n iz y w+ += + −    +   for  1,i n= , (11) 

where values 3  and 4  are random generated analogously to 

1 . So, the i -th vertex is a plane point  i n iz z +
 for 1,i n= . 

Generation of vector (9) and coordinates (10) and (11) is 

repeated until the resulting polygon becomes convex. For 

obtaining the convexity faster, one or a few vertices may be 

deleted. Sets of values  
1

n

i i
z

=
 and  

1

n

n i i
z + =

 are sorted in 

ascending order into sets  
1

n

i i
z

=
 and  

1

n

n i i
z + =

, respectively. 

Along with that, for a given positive integer  , inequalities  

 1i iz z −−    for  2,i n=  (12) 

and 

 
1n j n jz z+ + −−    for  2,j n=  (13) 

help in controlling that the coordinates of the same axis are not 

too close. In practice, value  5,10  is acceptable. 

Nonetheless, the requirement of inequalities (12) and (13) can 

be relaxed so that one of them or both may be violated for a 

single  2,i n  and a single  2,j n . 

Such a dataset generator does not necessarily return a 

polygon having at least minn  vertices (or edges). While 

searching for the convex hull by the given coordinates, those 

vertices that violate the convexity are deleted. This decreases 

the factual number of polygon edges, especially for small-sized 

images and/or by small scale factors. For an increased minn , as 

the image size increases, the generator produces polygons 

having a greater number of edges with greater probability. 

Given a number N  of dataset entries, the dataset generator 

produces N  images with polygonal objects along with 

respective N  labeled images. The dataset represents two 

classes – “polygonal object/objects” (shortly, “polygon”) and 

“background”. The labeled image is almost a negative of the 

original polygonal image (see an example in Fig. 6). The matter 

is that when a few polygons intersect, the non-convex object 

interior in the labeled image does not have “inner” lines. These 

“inner” lines, invisible for an SSN while training, serve as an 

additional impediment to improve generalization. 
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Fig. 6. A toy dataset of 36 polygonal 96 96  images in a stack and their respective labeled images. The images are generated by 
min 4n = , 

max 6n = , 

( ) 
5

1
0.3 0.1 1

k
S k

=
= +  − , ( ) 

9

1
0.9 0.1 1

l
R l

=
= −  − , 

max 4P = . None of 2 images, whose polygonal objects are made of 4 convex polygons, factually (in their labels) 

have 4 convex polygons because they intersect. One of those images contains 2 objects; another one contains just a single object of an intricate shape (the third 
from the left in the bottom row). There are only 2 images having 3 polygonal objects (which occasionally appear to be convex due to no intersections). Eventually, 

16 images are made of one polygon. So, a rate of randomness here is satisfactory, although the 6 6  lattice of polygonal objects can be marked out. 

The toy dataset whose entries are generated by the algorithm 

of (1) – (13) has its own rate of randomness. It shows the dataset 

complexity. The rate of randomness is complex itself implying 

the following properties: 

1) how scattered and sparse images appear in a stack (like in 

Fig. 6); 

2) how many objects in an image are scattered (for images 

containing multiple objects); 

3) how sophisticated an object of intersecting polygons 

appear (whether it is single or there are a few such objects 

in an image); 

4) what the range of object’s size is (difference between the 

tiniest and biggest objects). 

In a way, another characteristic of the randomness is whether 

it is easy to see a lattice in a stack of images. This property is 

controlled by changing sets (1) and (2). Namely, the greater 

number of scale factors, independently of set (2), makes a 

rectangular stack of dataset images appear more scattered 

(Fig. 7).  

Eventually, when a toy dataset is generated, it is divided into 

a training set, a validation set, and a testing set. The division is 

fulfilled without choosing random indices as the dataset entries 

are already randomly indexed. The percentage of each set type 

is determined by peculiarities of a SIS task, but it is not essential 

owing to the fact that the dataset generator produces as many 

images as needed without any restrictions. 

 

Fig. 7. An example of four datasets stacked in a row, where every dataset is of 36 images stacked as a 6 6  lattice. The set of scale factors has more elements and 

a wider interval of their values moving from left to right. Set (2) is of three elements: 0.75, 0.5, 0.25 (from 1 to 4 polygons are produced by equal probabilities in 

any image). Whereas the 6 6  lattice of polygonal objects can be easily marked out in the dataset on the left, such lattice is not so apparent in the dataset on the 

right. Difference between the tiniest and biggest objects in the dataset on the right is the greatest. Moreover, here images appear the most scattered and sparse. 
Some objects have pretty intricate shapes but similar intricacy can be found in three other datasets (from the left). 
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VII.  EXAMPLES OF TRAINING AN SSN ON THE TOY DATASET 

For illustration purposes, let a toy dataset be generated by 

min 3n = , max 8n = , max 4P =  and the following sets (1) and (2): 

   
7

1k k
S s

=
= , 1 0.2s = , ( )1 0.01 2k ks s k+ = +  +  1, 6k = , (14) 

       
14

1l l
R r

=
= , 1 0.85r = , 

( )
1 2

1

2 1
l l

l
r r

l
+

+
= −

+
 1,13l = . (15) 

Let 2000 medium-sized square images be generated. So, 

2000N = , 64h w= = . This is expected to be sufficient to 

obtain consistent and reliable results. The first 10 images 

generated by the mentioned parameters and by sets (14) and 

(15) are shown along with their labels in Fig. 8. 
 

 

Fig. 8. A stack of 10 images and their labels (only for training) of the dataset of 
64 64  images generated by 

min 3n = , 
max 8n = , 

max 4P = , and (14), (15).  

For validation and testing, it is sufficient to use 10 % of the 

dataset, which is 200 images. We can start from a simpler SSN 

whose architecture is similar to that in Fig. 4. At the first stage, 

this SSN (Fig. 9) is trained for 120 epochs by the initial learning 

rate of 0.001 and the learning rate drop factor of 0.975 

multiplied by the learning rate after every 10 epochs. Then, at 

the second stage, the SSN is trained for additional 80 epochs if 

the SSN does not start segmenting the empty image (in which 

class “background” exists only). Nevertheless, the accuracy of 

the SSN in Fig. 9 is pretty low (Fig. 10). In general, it 

“captures” multi-polygon objects, but the final segmentation 

looks sloppy. So, the SSN architecture is made deeper by 

inserting one ConvL and one DeConvL (Fig. 11). 

 

Fig. 9. An SSN architecture for segmenting 64 64  images (Fig. 8). This SSN 

is a replica of that in Fig. 4, wherein the numbers of convolutions and 
deconvolutions are just twice increased (as the input size is twice increased).  

 

Fig. 10. A stack of 200 images with the segmentation result by the trained SSN (Fig. 9). The weighted IoU [15] is 0.88, whereas the mean IoU is just 0.75402. 

 1 'imageinput' Image Input 

  64x64x1 images with 'zerocenter' normalization 

 2 'conv_1'    Convolution                   

  128 3x3x1 convolutions with stride [1  1]  

  and padding [1  1  1  1] 

 3 'relu_1' ReLU                          

 4 'maxpool' Max Pooling                   

  2x2 max pooling with stride [2  2]  

  and padding [0  0  0  0] 

 5 'conv_2' Convolution                   

  128 3x3x128 convolutions with stride [1  1]  

  and padding [1  1  1  1] 

 6 'relu_2' ReLU                          

 7 'deconv' Transposed Convolution        

  128 4x4x128 transposed convolutions  

  with stride [2  2] and output cropping [1  1] 

 8 'conv_3' Convolution                   

  2 1x1x128 convolutions with stride [1  1]  

  and padding [0  0  0  0] 

 9 'softmax' Softmax                       

10 'classoutput' Pixel Classification Layer    

  Class weighted cross-entropy loss  

  with classes 'triangle' and 'background' 
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Fig. 11. A deeper SSN architecture in MATLAB for segmenting 64 64  images 
(Fig. 8). Here, one more ConvL and one DeConvL have been inserted. 

The deeper SSN trained by the same parameters for those two 

stages performs much better (Fig. 12). Multi-polygon objects 

are segmented accurately now, although some sloppy 

segmentation results are still observed, where background pixels 

in the neighborhood of the object are highlighted. Besides, there 

are a few objects, whose interiors are not fully highlighted. Such 

a poor one-image segmentation result is compared to the best 

one in Fig. 13 (8-bit JPEG format conversion is seen). 

These examples show that the deeper SSN has successfully 

“inherited” the architecture of simpler SSN. Further optimization 

is surely possible by manipulating with the numbers of 

convolutions and deconvolutions. As the optimization of the SSN 

is completed, the toy dataset generation should be made more 

complicated, step-by-step moving towards the most 

complicated SSN for such datasets, where the image size can be 

set to roughly the same values as the objects to be segmented 

for a real-world SIS task. Eventually, an initial SSN for a real-

world SIS task will be that most complicated SSN optimized for 

the most complicated toy dataset. The initial SSN will be further 

fine-tuned by just manipulating with (mainly, increasing) the 

numbers of convolutions and/or deconvolutions, without 

changing the network layers. The second training stage plays a 

quite important role here. With an appropriate maximal number 

of additional epochs cmax, the algorithm of this stage is as 

follows:  

 

Fig. 12. The stack of 200 images with the segmentation result by the trained SSN (Fig. 11). The weighted and mean IoUs are 0.91331 and 0.81367, respectively. 

 

Fig. 13. The best and worst cases of segmentation (the test image versus truth and segmented images) from Fig. 12 by IoUs equal to 0.93 and 0.67, respectively. 

 1 'imageinput' Image Input 

  64x64x1 images with 'zerocenter' normalization 

 2 'conv_1'    Convolution                   

  128 3x3x1 convolutions with stride [1  1]  

  and padding [1  1  1  1] 

 3 'relu_1' ReLU                          

 4 'maxpool_1' Max Pooling                   

  2x2 max pooling with stride [2  2]  

  and padding [0  0  0  0] 

 5 'conv_2' Convolution                   

  128 3x3x128 convolutions with stride [1  1]  

  and padding [1  1  1  1] 

 6 'relu_2' ReLU                          

 7 'maxpool_2' Max Pooling                   

  2x2 max pooling with stride [2  2]  

  and padding [0  0  0  0] 

 8 'conv_3' Convolution                   

  128 3x3x128 convolutions with stride [1  1]  

  and padding [1  1  1  1] 

 9 'relu_3' ReLU                          

10 'deconv_1' Transposed Convolution        

  128 4x4x128 transposed convolutions  

  with stride [2  2] and output cropping [1  1] 

11 'deconv_2' Transposed Convolution        

  128 4x4x128 transposed convolutions  

  with stride [2  2] and output cropping [1  1] 

12 'conv_4' Convolution                   

  2 1x1x128 convolutions with stride [1  1]  

  and padding [0  0  0  0] 

13 'softmax' Softmax                       

14 'classoutput' Pixel Classification Layer    

  Class weighted cross-entropy loss  

  with classes 'triangle' and 'background' 
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1. Train for some number of epochs (the first stage); 

2. Set the current number of additional epochs to zero  

(
AE 0c = ); 

3. While the number of segmented pixels in the empty image 

for class “polygon” is zero and 
AE maxc c  do: 

3.1. Drop the learning rate after every new 
LRDg  epochs; 

3.2. Train; 

3.3. Increase 
AEc  by 1. 

In the examples above,  
LRD 10g =   but integer 

LRDg , 

generally speaking, can be non-constant. Surely, the other 

training parameters may be slightly adjusted as well [9], [16]. 

VIII.   DISCUSSION 

Obviously, it is very likely that the adjustment of an SSN for 

a real-world SIS task will be needed anyway. Nevertheless, 

“playing” with the toy dataset allows significantly reducing the 

volume of such an adjustment. Apart from the faster training, a 

toy-dataset SSN is tested a way faster: those exemplary SSNs 

occupy only 1.48 MB (Fig. 9) and 2.93 MB (Fig. 11), 

respectively, that makes them rapid. 

It should be noted that the SSN performance on the test set 

can be estimated by using minimal IoUs, without referring to 

the topmost IoUs. It is believed so because the main problem 

seen in Fig. 12 is those interiors not fully highlighted, which are 

characterized by low IoUs. Such interiors, by the way, spring 

from objects composed of bigger polygons. Another open 

question is how to reduce highlighting outside polygons. 

Similarly to missed internal regions, this question is addressed 

to bigger objects, composed of more than a single polygon (a 

few such cases are easily seen in Fig. 12). 

IX.  CONCLUSION 

The created generator for toy datasets is a simple mathematical 

object whose complexity is regulated by the number of edges in 

a polygon, the maximal number of polygons in one image, the set 

of scale factors, and the set of probabilities determining how 

many polygons in a current image are generated. The dataset 

capacity and image size are concurrently adjustable, although 

they are much less influential. 

The toy dataset generator is a convenient tool for prototyping 

SSNs capable of segmenting real-world (complex) objects. In 

particular, the complex object can be an aggregate of landscape 

scenes (Fig. 2). The generator works best for a two-class SIS. 

However, it can be used for prototyping a more complex toy 

dataset generator fitting multi-class SIS. 
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