
Electrical, Control and Communication Engineering

54

ISSN 2255-9159 (online)

ISSN 2255-9140 (print)
2019, vol. 15, no. 2, pp. 54–61

doi: 10.2478/ecce-2019-0008
https://content.sciendo.com

©2019 Vadim Romanuke.

This is an open access article licensed under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), in the manner agreed with Sciendo.

Generator of a Toy Dataset of Multi-Polygon

Monochrome Images for Rapidly Testing and

Prototyping Semantic Image Segmentation Networks

Vadim Romanuke* (Professor, Polish Naval Academy, Gdynia, Poland)

Abstract – In the paper, the problem of building semantic image

segmentation networks in a more efficient way is considered.

Building a network capable of successfully segmenting real-world

images does not require a real semantic image segmentation task.

At this stage, called prototyping, a toy dataset can be used. Such a

dataset can be artificial and thus may not need augmentation for

training. Besides, its entries are images of much smaller size, which

allows training and testing the network a way faster. Objects to be

segmented are one or few convex polygons in one image. Thus, a

toy dataset generator is created whose complexity is regulated by

the number of edges in a polygon, the maximal number of polygons

in one image, the set of scale factors, and the set of probabilities

determining how many polygons in a current image are generated.

The dataset capacity and image size are concurrently adjustable,

although they are much less influential.

Keywords – Dataset complexity; Multi-polygon object; Semantic

image segmentation; Segmentation network architecture; Toy

dataset; Two-class segmentation.

I. INTRODUCTION TO SEMANTIC IMAGE SEGMENTATION

Semantic image segmentation (SIS) is a computer vision task

of labeling specific regions of an image by subsequently filling

in the regions with respective colors. The colors are chosen so

that they would be distinguishable as much as possible (Fig. 1).

Sometimes, a perceptible rate of transparency is applied

(Fig. 2). More specifically, the goal of SIS is to label each pixel

of an image with a corresponding class or category of what is

being imaged [1], [2].

Theoretically, a semantic segmentation network (SSN)

classifies every pixel in an image [2], [3]. This results in an

image of the same resolution that is segmented by classes or

categories. Inasmuch as the spatial resolution of an image is not

downsampled purposely, the network processes huge amounts

of data. Thus, SIS is a challenge for modern machine learning.

Neural network architecture for SIS is based on an

encoder/decoder structure [4], [5]. The spatial resolution of the

input is downsampled developing lower-resolution feature

mappings, and then the feature representations are upsampled

into a full-resolution segmentation map. A common SSN

consists of three parts: a downsampling subnetwork, an

upsampling subnetwork, and a pixel classification layer. A

downsampling subnetwork is stacked of convolutional layers

(ConvLs), ReLUs, and max pooling layers. The upsampling is

executed using the transposed convolutional layer, which is also

* Corresponding author.

E-mail: romanukevadimv@gmail.com

commonly referred to as deconvolutional layer (DeConvL) [4],

[6]. DeConvL simultaneously performs the upsampling and

filtering, so the upsampling subnetwork is stacked of

DeConvLs and ReLUs. The final set of layers performs pixel

classifications. These final layers process an input that has the

same spatial dimensions of height and width as the input image.

The third dimension, which is equal to the number of filters in

the last DeConvL, is squeezed down to the number of classes

which are tasked to be segmented. The squeezing is performed

by a 1-by-1 ConvL, whose number of filters is equal to the

number of classes. The softmax and pixel classification layers,

following the 1-by-1 ConvL (which is a fully-connected layer),

categorically label each image pixel.

Fig. 1. An image which is to be semantically segmented and the result of
segmentation [7]. There are a few tens of classes of labeled pixels, and each
class is shown with its own color. Some colors are chosen in accordance with
real tints of the corresponding objects or scenes (for instance, the trees in this
example are labeled green, although there is no verdure due to a specific
season). This is an example of a very accurate complex segmentation.

Electrical, Control and Communication Engineering

__2019, vol. 15, no. 2

55

Fig. 2. An example of two-class segmentation by transparency in labeling.
Here, the task is to segment a complex object, which is the landscape and other

items except for the water and sky. The accuracy is not perfect therein.

What should an efficient SSN architecture be like for a given

SIS task? Except for the 1-by-1 ConvL inserted before the

softmax and pixel classification layers, how many ConvLs and

DeConvLs should the SSN have? These questions are not trivial

as inserting ConvLs and DeConvLs appropriately cannot be

performed in a single step. The appropriateness here is meant

by a weaker efficiency, at which an SSN would perform at an

acceptable accuracy, although not close to perfect. It will

assuredly take a few tries to build an efficient SSN architecture

even for simple tasks, with two classes (like a task with the

example in Fig. 2). For tasks like that with the segmentation

result in Fig. 1, building an appropriate SSN may take too many

tries, where each lasts for a few hours [5].

II. BACKGROUND AND MOTIVATION FOR TOY DATASETS

Any neural network being built requires a dataset, on which

it is trained, validated, and tested. This stage is an actual

prototyping. The goal of the prototyping is to build an SSN

capable of segmenting successfully real-world images. The

prototyping, however, does not require a real SIS task.

Therefore, a dataset for the prototyping can be selected so that

it would allow building an SSN (including training, validation,

testing) as fast as possible. Obviously, a connection between the

dataset and the real SIS task must exist [3], [4], [6].

As of July 2019, SSNs are prototyped still based on the

experience rather than a strong theory. Datasets of mostly high-

resolution real-world images along with respective labels to

each pixel in every image instance are used for this. Such

datasets like BSDS500, CamVid, Cityscapes, COCO, DUS,

Mapillary Vistas (an example in Fig. 1), MSRCv2, PASCAL

VOC, etc., fit excellently for the corresponding SIS tasks but

training on them is still expensive [7]. Augmentation of training

data, especially needed for smaller datasets (BSDS500 and

DUS), is limited [5], [8]. On the contrary, artificial datasets are

infinitely scalable and thus they do not need augmentation

(Fig. 3), although they fit much simpler SIS tasks (Fig. 4).

Fig. 3. An example of an artificial dataset of triangles (grayscale images above
and labels beneath) used by MATLAB in instructing how to deal with SSNs
(https://www.mathworks.com/help/vision/ref/semanticseg.html). The dataset is

intended for an SIS task with two classes. It consists of 200 32 32 images,

which can be easily reproduced with varying positions of the triangle. The task
is to segment the triangle in a single image or triangles in a stack of multiple
images. Note that the background color coincides with the color of the triangle
interior. This is done intentionally to make the SIS task a bit sophisticated.
Otherwise, such a task would be solved easily by thresholding.

Fig. 4. The SSN architecture in MATLAB for segmenting 32 32 images with

triangles. There are two ConvLs, each of which is followed by a ReLU. A single
DeConvL is used following the second ReLU. The SSN is trained on the dataset
in Fig. 3. After 100 epochs of training, the SSN performs at an acceptable
accuracy (see its testing in Fig. 5), although it is far from perfect.

 1 'imageinput' Image Input

 32x32x1 images with 'zerocenter' normalization

 2 'conv_1' Convolution

 64 3x3x1 convolutions with stride [1 1]

 and padding [1 1 1 1]

 3 'relu_1' ReLU

 4 'maxpool' Max Pooling

 2x2 max pooling with stride [2 2]

 and padding [0 0 0 0]

 5 'conv_2' Convolution

 64 3x3x64 convolutions with stride [1 1]

 and padding [1 1 1 1]

 6 'relu_2' ReLU

 7 'deconv' Transposed Convolution

 64 4x4x64 transposed convolutions

 with stride [2 2] and output cropping [1 1]

 8 'conv_3' Convolution

 2 1x1x64 convolutions with stride [1 1]

 and padding [0 0 0 0]

 9 'softmax' Softmax

10 'classoutput' Pixel Classification Layer

 Class weighted cross-entropy loss

 with classes 'triangle' and 'background'

Electrical, Control and Communication Engineering

__2019, vol. 15, no. 2

56

Fig. 5. A stack of 64 test triangle images and the fused overlay image as a result

of segmentation by an SSN with the architecture in Fig. 4 trained on the dataset

in Fig. 3. Despite all 64 triangles have been spotted, the accuracy of
segmentation is believed to be improved by adjusting parameters of training

and hyperparameters [9] of the SSN. Note that there are three triangle couples

“fused” into one due to lower accuracy. The size of the triangles varies as
dramatically as that in the training dataset in Fig. 3, but the triangle shape is still

the simplest to pretend to be a toy pattern for some simple real-world SIS tasks

(e. g., segmenting one-color objects of not-a-curvilinear shape).

Apparently, a toy dataset can be made more complex. Then,

an appropriate SSN will be tested and prototyped faster anyway

owing to the dataset’s independent augmentation by infinite

scalability. Subsequently, this SSN’s parameters and

hyperparameters could be imparted to real-world SIS tasks with

images of the same or slightly higher resolution [10]. The

number of classes to be labeled, obviously, must be the same.

Nevertheless, for non-toy SIS tasks containing multiple classes

(Fig. 1), the same architecture is expected to be appropriate by

just increasing the values of hyperparameters (for instance,

increasing filter numbers, intensifying pooling).

The connection between a toy dataset and the related real SIS

tasks must be controlled via adjusting parameters of the dataset.

Such parameters are supposed to be complexity of objects to be

labeled and their density in an image. For maintaining a speed

gain in training on toy datasets, they nonetheless must contain

primitive objects [1], [3], [7].

Therefore, the motivation for toy datasets is explained with a

possibility to overcome difficulties in training on real-world

datasets. This is about infiniteness of dataset entries

(independent augmentation) and faster training. Automatic

labeling is another merit of toy datasets. Compared to datasets

of natural images, building a toy dataset is much faster and

cheaper, as toy entries are generated along with labeling them

automatically by an algorithm. Unlike working with natural

images, the algorithm does not perform preprocessing, nor does

it perform any image format conversions. This additionally

saves a lot of time and human resources.

III. GOAL AND TASKS

Proceeding from plausible benefits of toy datasets for SIS

tasks, the goal is to create a toy dataset generator whose

complexity could be regulated from the simplest mode up to the

reasonably most sophisticated one. The simplest mode is to

generate those triangles in Fig. 3. The reasonably most

sophisticated mode will be based on complicating the object’s

shape, scattering its size, and admitting congestions of multiple

objects, which may be eventually perceived as one object. The

generator is believed to produce datasets, which could serve as

a fast prototyping platform for SIS.

Firstly, the image size along with the shape and interior

of the objects to be segmented will be discussed and

substantiated. Secondly, an algorithm of the toy dataset

generator will be stated. Finally, examples should be presented

giving practical recommendations of how real-world SIS tasks

could inherit appropriate parameters and hyperparameters from

the SSN trained on the toy dataset generated by the stated

algorithm.

IV. IMAGE SIZE

In machine learning, and, particularly, in the training of

neural networks on images, there are classical datasets like

CIFAR-10, CIFAR-100, MNIST, NORB, EEACL26, etc. [9],

[11], [12]. For them, researchers tend to set the image size at

dimensions which are raised to some integer power [5]. This

ensures faster training owing to consistency with the binary

system hardware, on which computational algorithms are

physically implemented. Therefore, let the minimal image size

be 32 32 . Generally, the image size is h w (in pixels),

where both height h and width w will be set at integers

divisible by 32.

V. SHAPE AND INTERIOR OF OBJECTS TO BE SEGMENTED

The triangle is the simplest convex polygon. So, let the image

contain one or few convex polygons. The maximal number of

polygons in one image is maxP by maxP  . Then,

occasionally, the object can be non-convex when a few

polygons intersect [13], [14].

The minimal number of polygon vertices is 3. As the

maximal number of polygon vertices cannot be limited, let a

polygon be generated of n vertices, where  max3,n n by

 max \ 1, 2n  . Number maxn is a maximal number of edges

in a polygon, and it is specifically selected for a given SIS task.

Number n will be randomly chosen for every new image. A

greater number maxn makes a given SIS task more complex,

which may require a more complex SSN architecture.

The background remains white. Thus, the most appropriate

color of the polygon interior is white. The object’s color is black

that implies the color of the polygon edges is black. In fact,

the object is 100 % transparent. At that, whichever image size

would be, the thickness of the polygonal edges will be just one

pixel. This implies that the segmentation is harder for bigger

images because always only a one-pixel border separates

the object’s white interior off the white background.

Electrical, Control and Communication Engineering

__2019, vol. 15, no. 2

57

VI. ALGORITHM OF THE TOY DATASET GENERATOR

The toy dataset generator has eight input arguments: a

number of images N to be generated, h , w , a minimal

number of edges minn in a polygon, maxn , maxP , a set S of

scale factors (to scale the polygon with respect to the image

size), a set R of different probabilities (to determine how many

polygons in an image will be generated). Whereas set S must

contain at least one element, set R must consist of at least

max 1P − elements:

  
1

K

k k
S s

=
= , ()0; 1ks  1,k K = , K , (1)

  
1

L

l l
R r

=
= , ()0; 1lr  , 1l lr r + 1, 1l L = − , max 1L P − . (2)

Obviously,  min max3,n n .

First of all, a number of polygons, which are to be drawn in

one image, is determined. If max 1L P − , then vector

()*

max1 1
l

P
r

 −
 =  R (3)

is formed from set (2), from which max 1P − elements are taken

out, whose indices are given by function ()max, 1L P −

returning a row vector containing a random permutation of

max 1P − integers from 1 to L inclusive, and the permutation is

sorted in descending order. So,

  
max

*
*

1

1

P

l
l

r R
−

=
 ,

* *1l lr r−  * max1, 1l P = − (4)

by, formally, 0 1r = . Otherwise, if max 1L P= − , then

()

  ()* maxmax
1 11 1

l l PP
r r

 − −
 = = R . (5)

Let 1 be a value of a random variable uniformly distributed on

the open interval ()0;1 . If

*1 lr  and

*1 1lr − (6)

then max * 1P l− + polygons are drawn, where * max1, 1l P= − .

Otherwise, if

max1 1Pr − (7)

then just a single polygon is drawn.

An initial number of the polygon vertices is

 ()()max min 2 min1n n n n= − +  + , (8)

where value 2 is random generated analogously to 1 by a

function ()  returning the integer part of number  .

Initially, coordinates of the vertices are taken from a vector

  
()

() ()()
1 2

1, 2 min , 1i n
y n h w


= =     +Y , (9)

where function ()1, 2n returns a pseudorandom ()1 2n

vector whose entries are drawn from the standard uniform

distribution on the open interval ()0;1 , and (), 1K
s


 = is a

coefficient to scale the polygon with respect to the image size.

In this scale factor, (),1K is a random integer between 1 and

K to choose one of elements in set (1). The horizontal

coordinates are

 ()()31 1i iz y h= + −    + for 1,i n= (10)

and the vertical coordinates are

 ()()41 1n i n iz y w+ += + −    + for 1,i n= , (11)

where values 3 and 4 are random generated analogously to

1 . So, the i -th vertex is a plane point  i n iz z +
 for 1,i n= .

Generation of vector (9) and coordinates (10) and (11) is

repeated until the resulting polygon becomes convex. For

obtaining the convexity faster, one or a few vertices may be

deleted. Sets of values  
1

n

i i
z

=
 and  

1

n

n i i
z + =

 are sorted in

ascending order into sets  
1

n

i i
z

=
 and  

1

n

n i i
z + =

, respectively.

Along with that, for a given positive integer  , inequalities

 1i iz z −−  for 2,i n= (12)

and

1n j n jz z+ + −−  for 2,j n= (13)

help in controlling that the coordinates of the same axis are not

too close. In practice, value  5,10 is acceptable.

Nonetheless, the requirement of inequalities (12) and (13) can

be relaxed so that one of them or both may be violated for a

single  2,i n and a single  2,j n .

Such a dataset generator does not necessarily return a

polygon having at least minn vertices (or edges). While

searching for the convex hull by the given coordinates, those

vertices that violate the convexity are deleted. This decreases

the factual number of polygon edges, especially for small-sized

images and/or by small scale factors. For an increased minn , as

the image size increases, the generator produces polygons

having a greater number of edges with greater probability.

Given a number N of dataset entries, the dataset generator

produces N images with polygonal objects along with

respective N labeled images. The dataset represents two

classes – “polygonal object/objects” (shortly, “polygon”) and

“background”. The labeled image is almost a negative of the

original polygonal image (see an example in Fig. 6). The matter

is that when a few polygons intersect, the non-convex object

interior in the labeled image does not have “inner” lines. These

“inner” lines, invisible for an SSN while training, serve as an

additional impediment to improve generalization.

Electrical, Control and Communication Engineering

__2019, vol. 15, no. 2

58

Fig. 6. A toy dataset of 36 polygonal 96 96 images in a stack and their respective labeled images. The images are generated by
min 4n = ,

max 6n = ,

() 
5

1
0.3 0.1 1

k
S k

=
= +  − , () 

9

1
0.9 0.1 1

l
R l

=
= −  − ,

max 4P = . None of 2 images, whose polygonal objects are made of 4 convex polygons, factually (in their labels)

have 4 convex polygons because they intersect. One of those images contains 2 objects; another one contains just a single object of an intricate shape (the third
from the left in the bottom row). There are only 2 images having 3 polygonal objects (which occasionally appear to be convex due to no intersections). Eventually,

16 images are made of one polygon. So, a rate of randomness here is satisfactory, although the 6 6 lattice of polygonal objects can be marked out.

The toy dataset whose entries are generated by the algorithm

of (1) – (13) has its own rate of randomness. It shows the dataset

complexity. The rate of randomness is complex itself implying

the following properties:

1) how scattered and sparse images appear in a stack (like in

Fig. 6);

2) how many objects in an image are scattered (for images

containing multiple objects);

3) how sophisticated an object of intersecting polygons

appear (whether it is single or there are a few such objects

in an image);

4) what the range of object’s size is (difference between the

tiniest and biggest objects).

In a way, another characteristic of the randomness is whether

it is easy to see a lattice in a stack of images. This property is

controlled by changing sets (1) and (2). Namely, the greater

number of scale factors, independently of set (2), makes a

rectangular stack of dataset images appear more scattered

(Fig. 7).

Eventually, when a toy dataset is generated, it is divided into

a training set, a validation set, and a testing set. The division is

fulfilled without choosing random indices as the dataset entries

are already randomly indexed. The percentage of each set type

is determined by peculiarities of a SIS task, but it is not essential

owing to the fact that the dataset generator produces as many

images as needed without any restrictions.

Fig. 7. An example of four datasets stacked in a row, where every dataset is of 36 images stacked as a 6 6 lattice. The set of scale factors has more elements and

a wider interval of their values moving from left to right. Set (2) is of three elements: 0.75, 0.5, 0.25 (from 1 to 4 polygons are produced by equal probabilities in

any image). Whereas the 6 6 lattice of polygonal objects can be easily marked out in the dataset on the left, such lattice is not so apparent in the dataset on the

right. Difference between the tiniest and biggest objects in the dataset on the right is the greatest. Moreover, here images appear the most scattered and sparse.
Some objects have pretty intricate shapes but similar intricacy can be found in three other datasets (from the left).

Electrical, Control and Communication Engineering

__2019, vol. 15, no. 2

59

VII. EXAMPLES OF TRAINING AN SSN ON THE TOY DATASET

For illustration purposes, let a toy dataset be generated by

min 3n = , max 8n = , max 4P = and the following sets (1) and (2):

  
7

1k k
S s

=
= , 1 0.2s = , ()1 0.01 2k ks s k+ = +  + 1, 6k = , (14)

  
14

1l l
R r

=
= , 1 0.85r = ,

()
1 2

1

2 1
l l

l
r r

l
+

+
= −

+
 1,13l = . (15)

Let 2000 medium-sized square images be generated. So,

2000N = , 64h w= = . This is expected to be sufficient to

obtain consistent and reliable results. The first 10 images

generated by the mentioned parameters and by sets (14) and

(15) are shown along with their labels in Fig. 8.

Fig. 8. A stack of 10 images and their labels (only for training) of the dataset of
64 64 images generated by

min 3n = ,
max 8n = ,

max 4P = , and (14), (15).

For validation and testing, it is sufficient to use 10 % of the

dataset, which is 200 images. We can start from a simpler SSN

whose architecture is similar to that in Fig. 4. At the first stage,

this SSN (Fig. 9) is trained for 120 epochs by the initial learning

rate of 0.001 and the learning rate drop factor of 0.975

multiplied by the learning rate after every 10 epochs. Then, at

the second stage, the SSN is trained for additional 80 epochs if

the SSN does not start segmenting the empty image (in which

class “background” exists only). Nevertheless, the accuracy of

the SSN in Fig. 9 is pretty low (Fig. 10). In general, it

“captures” multi-polygon objects, but the final segmentation

looks sloppy. So, the SSN architecture is made deeper by

inserting one ConvL and one DeConvL (Fig. 11).

Fig. 9. An SSN architecture for segmenting 64 64 images (Fig. 8). This SSN

is a replica of that in Fig. 4, wherein the numbers of convolutions and
deconvolutions are just twice increased (as the input size is twice increased).

Fig. 10. A stack of 200 images with the segmentation result by the trained SSN (Fig. 9). The weighted IoU [15] is 0.88, whereas the mean IoU is just 0.75402.

 1 'imageinput' Image Input

 64x64x1 images with 'zerocenter' normalization

 2 'conv_1' Convolution

 128 3x3x1 convolutions with stride [1 1]

 and padding [1 1 1 1]

 3 'relu_1' ReLU

 4 'maxpool' Max Pooling

 2x2 max pooling with stride [2 2]

 and padding [0 0 0 0]

 5 'conv_2' Convolution

 128 3x3x128 convolutions with stride [1 1]

 and padding [1 1 1 1]

 6 'relu_2' ReLU

 7 'deconv' Transposed Convolution

 128 4x4x128 transposed convolutions

 with stride [2 2] and output cropping [1 1]

 8 'conv_3' Convolution

 2 1x1x128 convolutions with stride [1 1]

 and padding [0 0 0 0]

 9 'softmax' Softmax

10 'classoutput' Pixel Classification Layer

 Class weighted cross-entropy loss

 with classes 'triangle' and 'background'

Electrical, Control and Communication Engineering

__2019, vol. 15, no. 2

60

Fig. 11. A deeper SSN architecture in MATLAB for segmenting 64 64 images
(Fig. 8). Here, one more ConvL and one DeConvL have been inserted.

The deeper SSN trained by the same parameters for those two

stages performs much better (Fig. 12). Multi-polygon objects

are segmented accurately now, although some sloppy

segmentation results are still observed, where background pixels

in the neighborhood of the object are highlighted. Besides, there

are a few objects, whose interiors are not fully highlighted. Such

a poor one-image segmentation result is compared to the best

one in Fig. 13 (8-bit JPEG format conversion is seen).

These examples show that the deeper SSN has successfully

“inherited” the architecture of simpler SSN. Further optimization

is surely possible by manipulating with the numbers of

convolutions and deconvolutions. As the optimization of the SSN

is completed, the toy dataset generation should be made more

complicated, step-by-step moving towards the most

complicated SSN for such datasets, where the image size can be

set to roughly the same values as the objects to be segmented

for a real-world SIS task. Eventually, an initial SSN for a real-

world SIS task will be that most complicated SSN optimized for

the most complicated toy dataset. The initial SSN will be further

fine-tuned by just manipulating with (mainly, increasing) the

numbers of convolutions and/or deconvolutions, without

changing the network layers. The second training stage plays a

quite important role here. With an appropriate maximal number

of additional epochs cmax, the algorithm of this stage is as

follows:

Fig. 12. The stack of 200 images with the segmentation result by the trained SSN (Fig. 11). The weighted and mean IoUs are 0.91331 and 0.81367, respectively.

Fig. 13. The best and worst cases of segmentation (the test image versus truth and segmented images) from Fig. 12 by IoUs equal to 0.93 and 0.67, respectively.

 1 'imageinput' Image Input

 64x64x1 images with 'zerocenter' normalization

 2 'conv_1' Convolution

 128 3x3x1 convolutions with stride [1 1]

 and padding [1 1 1 1]

 3 'relu_1' ReLU

 4 'maxpool_1' Max Pooling

 2x2 max pooling with stride [2 2]

 and padding [0 0 0 0]

 5 'conv_2' Convolution

 128 3x3x128 convolutions with stride [1 1]

 and padding [1 1 1 1]

 6 'relu_2' ReLU

 7 'maxpool_2' Max Pooling

 2x2 max pooling with stride [2 2]

 and padding [0 0 0 0]

 8 'conv_3' Convolution

 128 3x3x128 convolutions with stride [1 1]

 and padding [1 1 1 1]

 9 'relu_3' ReLU

10 'deconv_1' Transposed Convolution

 128 4x4x128 transposed convolutions

 with stride [2 2] and output cropping [1 1]

11 'deconv_2' Transposed Convolution

 128 4x4x128 transposed convolutions

 with stride [2 2] and output cropping [1 1]

12 'conv_4' Convolution

 2 1x1x128 convolutions with stride [1 1]

 and padding [0 0 0 0]

13 'softmax' Softmax

14 'classoutput' Pixel Classification Layer

 Class weighted cross-entropy loss

 with classes 'triangle' and 'background'

Electrical, Control and Communication Engineering

__2019, vol. 15, no. 2

61

1. Train for some number of epochs (the first stage);

2. Set the current number of additional epochs to zero

(
AE 0c =);

3. While the number of segmented pixels in the empty image

for class “polygon” is zero and
AE maxc c do:

3.1. Drop the learning rate after every new
LRDg epochs;

3.2. Train;

3.3. Increase
AEc by 1.

In the examples above,
LRD 10g = but integer

LRDg ,

generally speaking, can be non-constant. Surely, the other

training parameters may be slightly adjusted as well [9], [16].

VIII. DISCUSSION

Obviously, it is very likely that the adjustment of an SSN for

a real-world SIS task will be needed anyway. Nevertheless,

“playing” with the toy dataset allows significantly reducing the

volume of such an adjustment. Apart from the faster training, a

toy-dataset SSN is tested a way faster: those exemplary SSNs

occupy only 1.48 MB (Fig. 9) and 2.93 MB (Fig. 11),

respectively, that makes them rapid.

It should be noted that the SSN performance on the test set

can be estimated by using minimal IoUs, without referring to

the topmost IoUs. It is believed so because the main problem

seen in Fig. 12 is those interiors not fully highlighted, which are

characterized by low IoUs. Such interiors, by the way, spring

from objects composed of bigger polygons. Another open

question is how to reduce highlighting outside polygons.

Similarly to missed internal regions, this question is addressed

to bigger objects, composed of more than a single polygon (a

few such cases are easily seen in Fig. 12).

IX. CONCLUSION

The created generator for toy datasets is a simple mathematical

object whose complexity is regulated by the number of edges in

a polygon, the maximal number of polygons in one image, the set

of scale factors, and the set of probabilities determining how

many polygons in a current image are generated. The dataset

capacity and image size are concurrently adjustable, although

they are much less influential.

The toy dataset generator is a convenient tool for prototyping

SSNs capable of segmenting real-world (complex) objects. In

particular, the complex object can be an aggregate of landscape

scenes (Fig. 2). The generator works best for a two-class SIS.

However, it can be used for prototyping a more complex toy

dataset generator fitting multi-class SIS.

REFERENCES

[1] J. Rogowska, “Overview and Fundamentals of Medical Image

Segmentation,” in: Handbook of Medical Image Processing and Analysis,

2nd edition, Bankman I. N. (ed.). Academic Press, San Diego, 2009,
pp. 73–90. https://doi.org/10.1016/B978-012373904-9.50013-1

[2] H.-J. He, C. Zheng, and D.-W. Sun, “Image Segmentation Techniques,”

in: Computer Vision Technology for Food Quality Evaluation, 2nd
edition, Sun D.-W. (ed.). Academic Press, San Diego, 2016,

pp. 45–63. https://doi.org/10.1016/B978-0-12-802232-0.00002-5

[3] Ç. Kaymak and A. Uçar, “A Brief Survey and an Application of Semantic
Image Segmentation for Autonomous Driving,” in: Handbook of Deep

Learning Applications. Smart Innovation, Systems and Technologies,

Balas V., Roy S., Sharma D., Samui P. (eds). Springer, Cham, 2019,

pp. 161–198. https://doi.org/10.1007/978-3-030-11479-4_9
[4] J.-T. Chien, “Deep Neural Network,” in: Source Separation and Machine

Learning, Chien J.-T. (ed.). Academic Press, 2019,

pp. 259–320. https://doi.org/10.1016/B978-0-12-804566-4.00019-X
[5] V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A Deep

Convolutional Encoder-Decoder Architecture for Image Segmentation,”

IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 39, no. 12, pp. 2481–2495, 2017.

https://doi.org/10.1109/TPAMI.2016.2644615

[6] H. Liu, J. Xu, Y. Wu, Q. Guo, B. Ibragimov, and L. Xing, “Learning
deconvolutional deep neural network for high resolution medical image

reconstruction,” Information Sciences, vol. 468, pp. 142–154, 2018.

https://doi.org/10.1016/j.ins.2018.08.022
[7] G. Neuhold, T. Ollmann, S. R. Bulò, and P. Kontschieder, “The Mapillary

Vistas Dataset for Semantic Understanding of Street Scenes,” 2017 IEEE

International Conference on Computer Vision, Venice, 2017,

pp. 5000–5009. https://doi.org/10.1109/ICCV.2017.534

[8] J.-J. Lv, X.-H. Shao, J.-S. Huang, X.-D. Zhou, and X. Zhou, “Data

augmentation for face recognition,” Neurocomputing, vol. 230,
pp. 184–196, 2017. https://doi.org/10.1016/j.neucom.2016.12.025

[9] V. Romanuke, “Optimal training parameters and hidden layer neuron

number of two-layer perceptron for generalised scaled object
classification problem,” Information Technology and Management

Science, vol. 18, no. 1, pp. 42– 48, 2015.
https://doi.org/10.1515/itms-2015-0007

[10] H. Hofbauer, E. Jalilian, and A. Uhl, “Exploiting superior CNN-based iris

segmentation for better recognition accuracy,” Pattern Recognition
Letters, vol. 120, pp. 17–23, 2019.

https://doi.org/10.1016/j.patrec.2018.12.021

[11] V. V. Romanuke, “Appropriateness of DropOut layers and allocation of
their 0.5 rates across convolutional neural networks for CIFAR-10,

EEACL26, and NORB datasets,” Applied Computer Systems, vol. 22,

no. 1, pp. 54–63, 2017. https://doi.org/10.1515/acss-2017-0018

[12] V. V. Romanuke, “An attempt of finding an appropriate number of

convolutional layers in CNNs based on benchmarks of heterogeneous

datasets,” Electrical, Control and Communication Engineering, vol. 14,
no. 1, pp. 51–57, 2018. https://doi.org/10.2478/ecce-2018-0006

[13] D. Avis, H. ElGindy, and R. Seidel, “Simple On-Line Algorithms for

Convex Polygons”, in: Machine Intelligence and Pattern Recognition
(vol. 2), Toussaint G. T. (ed.). North-Holland, 1985, pp. 23–42.

https://doi.org/10.1016/B978-0-444-87806-9.50007-4

[14] E. Horowitz and M. Papa, “Polygon Clipping: Analysis and Experiences”,
in: Theoretical Studies in Computer Science, Ullman J. D. (ed.). Academic

Press, 1992, pp. 315–339.

https://doi.org/10.1016/B978-0-12-708240-0.50016-2
[15] M. A. Rahman and Y. Wang, “Optimizing Intersection-Over-Union in

Deep Neural Networks for Image Segmentation”, in: Advances in Visual

Computing (ISVC 2016), Bebis G. et al. (eds). Springer, Cham, 2016,
pp. 234–244. https://doi.org/10.1007/978-3-319-50835-1_22

[16] P. M. Radiuk, “Impact of training set batch size on the performance of

convolutional neural networks for diverse datasets,” Information
Technology and Management Science, vol. 20, no. 1, pp. 20–24, 2017.

https://doi.org/10.1515/itms-2017-0003

Vadim V. Romanuke was born in 1979 and received higher education in 2001.
In 2006, he received the Degree of the Candidate of Technical Sciences in

Mathematical Modeling and Computational Methods. The Candidate

Dissertation suggested a way of increasing interference noise immunity of data
transferred over radio systems. The degree of Doctor of Technical Sciences in

Mathematical Modeling and Computational Methods was received in 2014. The

Doctor-of-Science Dissertation solved a problem of increasing efficiency of
identification of models for multistage technical control and run-in under

multivariate uncertainties of their parameters and relationships. In 2016, he

received the status of a Full Professor.
He is a Professor at the Faculty of Navigation and Naval Weapons of the Polish

Naval Academy. His research interests concern decision making, game theory,

statistical approximation, job scheduling, and control engineering based on
statistical correspondence. Vadim Romanuke has good programming skills in

MATLAB. For practical implementations, Vadim Romanuke uses Python.

Address for correspondence: 69 Śmidowicza Street, Gdynia, Poland, 81-127.
E-mail: romanukevadimv@gmail.com

ORCID iD: https://orcid.org/0000-0003-3543-3087

http://dx.doi.org/10.1016/B978-012373904-9.50013-1
http://dx.doi.org/10.1016/B978-0-12-802232-0.00002-5
https://doi.org/10.1007/978-3-030-11479-4_9
https://doi.org/10.1016/B978-0-12-804566-4.00019-X
https://doi.org/10.1109/TPAMI.2016.2644615
https://doi.org/10.1016/j.ins.2018.08.022
https://doi.org/10.1109/ICCV.2017.534
http://dx.doi.org/10.1016/j.neucom.2016.12.025
https://doi.org/10.1515/itms-2015-0007
https://doi.org/10.1016/j.patrec.2018.12.021
https://doi.org/10.1515/acss-2017-0018
https://doi.org/10.2478/ecce-2018-0006
https://doi.org/10.1016/B978-0-444-87806-9.50007-4
https://doi.org/10.1016/B978-0-12-708240-0.50016-2
https://doi.org/10.1007/978-3-319-50835-1_22
https://doi.org/10.1515/itms-2017-0003
mailto:romanukevadimv@gmail.com
https://orcid.org/0000-0003-3543-3087

