
Applied Computer Systems
ISSN 2255-8691 (online)

ISSN 2255-8683 (print)

May 2020, vol. 25, no. 1, pp. 62–69

https://doi.org/10.2478/acss-2020-0008

https://content.sciendo.com

62

©2020 Vadim Romanuke.

This is an open access article licensed under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), in the manner agreed with Sciendo.

A Prototype Model for Semantic Segmentation

of Curvilinear Meandering Regions

by Deconvolutional Neural Networks

Vadim Romanuke*

Polish Naval Academy, Gdynia, Poland

Abstract – Deconvolutional neural networks are a very accurate

tool for semantic image segmentation. Segmenting curvilinear

meandering regions is a typical task in computer vision applied to

navigational, civil engineering, and defence problems. In the study,

such regions of interest are modelled as meandering transparent

stripes whose width is not constant. The stripe on the white

background is formed by the upper and lower non-parallel black

curves so that the upper and lower image parts are completely

separated. An algorithm of generating datasets of such regions is

developed. It is revealed that deeper networks segment the regions

more accurately. However, the segmentation is harder when the

regions become bigger. This is why an alternative method of the

region segmentation consisting in segmenting the upper and lower

image parts by subsequently unifying the results is not effective. If

the region of interest becomes bigger, it must be squeezed in order

to avoid segmenting the empty image. Once the squeezed region is

segmented, the image is conversely rescaled to the original view.

To control the accuracy, the mean BF score having the least value

among the other accuracy indicators should be maximised first.

Keywords – Curvilinear meandering region, deconvolutional

layer, empty image segmentation, mean BF score, neural network,

overfitting, semantic segmentation, toy dataset.

I. INTRODUCTION

In computer vision, semantic image segmentation (SIS) is a

problem of labelling specific regions of an image or a series of

video frames [1], [2]. This problem has been intensively studied

since the 2010s. However, methods and tools for SIS have been

developed by experiencing practical tasks rather than based on

theoretic aspects and principles [1], [3], [4]. Thus, as of 2020,

still no unified theory of SIS is built.

Typical tasks solved by SIS arise in autopilot-induced

driving, traffic engineering, surveillance systems, marine

prospecting and defence, medicine, geological exploration,

geothermal prospecting and other associated fields where the

tasks are to spot and control definite objects or regions, or to

retrieve useful information from the image or video [2], [4], [5].

The potential application of SIS will probably have an impact

on civil engineering, metallurgy, highway engineering, rescue

operations, and microbiology.

The simplest method of SIS is the thresholding mostly

suitable for grayscale images in order to label plain regions [1].

* Corresponding author’s e-mail: romanukevadimv@gmail.com

Colour images can also be thresholded, where a separate

threshold for each of the RGB components of the image is

designated, and then these three are combined with logical

conjunction [1]. More complicated SIS is fulfilled with

clustering methods [6], histogram-based methods [7], and

methods based on solving partial differential equations [8]. The

most promising approach to SIS is in developing neural

networks whose performance is close to perfect if they are

properly trained. However, one of the main open problems of

SIS is the absence of a general routine to solve a specific task.

Once the task is described, a heuristic process of choosing an

approach and its parameters starts [1], [2], [7].

Commonly, a neural network for SIS named the semantic

segmentation network (SSN) classifies every pixel in an image

[5], [9], so the network processes huge amounts of data. The

SSN architecture is based on an encoder/decoder structure [2],

[9] consisting of three parts: a downsampling subnetwork, an

upsampling subnetwork, and a pixel classification layer. A

downsampling subnetwork is stacked of convolutional layers

(ConvLs), ReLUs, and max pooling layers. An upsampling

subnetwork is stacked of deconvolutional layers (DeConvLs)

and ReLUs. The final layer starts with a set of 1-by-1 ConvLs

(which is a fully-connected layer), whose number is equal to the

number of classes, followed by the softmax and pixel

classification layers which categorically label each image pixel

[10]. Notwithstanding the relative simplicity of the SSN

architecture, specification of its parameters and

hyperparameters is not a trivial task.

II. MOTIVATION

Effective SIS requires optimally configured SSNs. Optimal

SSN configuration should not be based on rules of thumb,

which do not always fit real-world problems. It should be rather

based on a theoretically sound prototyping using toy datasets

[2]. The goal of the prototyping is to quickly build an SSN

capable of segmenting successfully real-world images by using

artificially created images containing generalized objects or

regions of interest [3], [5], [8]. At this stage, SSNs are trained

and tested on a toy dataset whose volume is unlimited and

image size is small that allows quickly trying different SSN

configurations.

http://creativecommons.org/licenses/by/4.0
mailto:romanukevadimv@gmail.com

Applied Computer Systems

___2020/25

63

One of the attempts to supplement the bank of toy datasets

was in article [10], which presented a toy dataset generator for

prototyping SSNs capable of segmenting real-world complex

objects. The objects were modelled by convex polygons. The

complexity of polygons was suggested to be regulated by the

number of edges in a polygon, the maximal number of polygons

in one image, the set of scale factors, and the set of probabilities

determining how many polygons in a current image are

generated. As a result of the attempt, a tool for prototyping

SSNs capable of segmenting real-world objects without strong

curvature (vehicles, buildings, playgrounds, people at distance,

etc.) was developed.

Nevertheless, there are many practical examples where

objects (or regions) have strong curvature. For instance, they

are landscape scenes whose segmentation is a basis of applying

computer vision to navigational, civil engineering, and defence

problems [1], [2], [7], [8]. One of the primary tasks is to see the

land line, riverbed, highway, etc. (Fig. 1). Such regions can

hardly be modelled by chains of tiny triangles and polygons (as

an approximation of their curvature), so a toy dataset generator

of curvilinear meandering regions is needed.

Fig. 1. Examples of regions with strong curvature to be segmented. Often such

objects can divide the image in two parts (upper and lower) like the coast

separates the sky from the seawater (in the last two images in the third row).

Another issue is segmentation of the empty image, in which

class “background” exists only [10], [11]. The empty image

segmentation is similar to overfitting, but it is not exactly that.

In the worst case, the curvilinear meandering region separates

the upper image part from the lower image part, so this may be

a challenge as the segmentation is harder for bigger image parts

due to a risk of segmenting class “background” [11].

It is worth noticing that the case with the complete separation

of the upper and lower image parts is not that easy as it may

seem. The matter is that the width of the curvilinear meandering

region varies. Besides, the colour of the region interior can

coincide with the outside colours. Thus, SIS can be fulfilled by

thresholding only in peculiar cases.

III. GOAL AND STEPS TO ACHIEVE IT

Issuing from the lack of theoretic approaches to SIS of

curvilinear meandering regions, the goal is to determine a better

way to segment them by the SSN. To achieve the goal, the

image size, a pattern of the regions and an algorithm of

generating datasets are to be substantiated. Then, a few SNN

configurations are to be tried in order to directly segment the

regions. On the other hand, a method of indirect segmentation

should be tried as well, in which the upper and lower image

parts are directly segmented, and then the region is segmented

by unifying the results. In the study, the case with the complete

separation of the upper and lower image parts will be

considered.

IV. IMAGE SIZE AND REGIONS TO BE SEGMENTED

Training neural networks on toy dataset images, there are

classical datasets like CIFAR-10, CIFAR-100, MNIST, NORB,

EEACL26, etc. [11]. Researchers tend to set the image size at

dimensions, which are 2 raised to some integer power [9]

ensuring faster training owing to consistency with the binary

system hardware, on which computational algorithms are

physically implemented. Thus, the best image size is either

32 32 or 64 64 . As SIS in real-world tasks deals with

images of higher resolution, it is appropriate to use the 64 64

size for the further study.

The region of interest is a curvilinear meandering stripe

whose width is not constant. The background is white. To

simulate severer conditions of SIS, the stripe is formed by the

upper and lower curves of the black colour. The lower curve

(border) is obviously not parallel to the upper one. Moreover,

the thickness of the curves will be just one pixel, and the interior

of the stripe is white. In fact, the region of interest is 100 %

transparent. This additionally must hamper the segmentation in

order to ensure good generalization.

V. ALGORITHM OF GENERATING DATASETS

The dataset is of N images and N respective images with

labelled regions [10], [11]. The image and its labelled version
are formed by using the three input arguments: positive integers

1k and 2k defining the number of key points (denoted by k)

along the horizontal axis, and a positive integer strw defining

the average width of the stripe. Integer

 ()()1 21k k k=   + (1)

is a number of extrema along the upper and lower borders of the
stripe, where ()K is a vector (or a set) of K pseudorandom

numbers drawn from the standard uniform distribution on
interval (0;1) and function ()x returns the integer part of

number x (e. g., see [10]). Therefore, integer (1) takes values

between 2k and 1 21k k− + .

All key points along the horizontal axis constitute a set

 ()() sorted 1, 63 2 , 64X k=   + (2)

whose 2k + elements are sorted in ascending order. Then the

respective points along the vertical axis constitute a set

 ()()up str 63 2 1Y w k= − +  + + (3)

of 2k + elements without sorting. Then the preliminary 64

Applied Computer Systems

___2020/25

64

upper border points are found by the cubic spline data

interpolation using the data values in (3) at the data sites in (2):

  ()up.border 3 sorted upspline , , 1, 64Y X Y= . (4)

The preliminary 64 lower border points are found similarly:

 () ()()low up str4 1 2 1Y Y w k= + −  + + (5)

and then

  ()low.border 3 sorted lowerspline , , 1, 64Y X Y= . (6)

Elements in sets (4) and (6) are corrected and re-scaled to fit

the 64 64 image frame. For this purpose, the range

low.border up.bordermax min

2

Y Y
r

−
= (7)

and the average value

low.border up.border

mean
2

Y Y
y

 +
=  

 
 

 (8)

are used. First,

(obs)

low.border low.borderY Y= ,
(obs)

low.border low.borderY Y y= − , (9)

(obs)

up.border up.borderY Y= ,
(obs)

up.border up.borderY Y y= − , (10)

whereupon a range corrector

 ()corr str 1 0.25r r w= +    (11)

is found, where  is a pseudorandom number drawn from the

standard normal distribution (with zero mean and unit

variance). Then the second correction follows:

(obs)

low.border low.borderY Y= ,
(obs)

low.border low.border corrY Y r= , (12)

(obs)

up.border up.borderY Y= ,
(obs)

up.border up.border corrY Y r= . (13)

Coefficient

 ()corr 64 2 0.25y = +  (14)

is used for the third, final, correction:

(obs)

low.border low.borderY Y= , ()(obs)

low.border low.border corrY Y y=  + , (15)

(obs)

up.border up.borderY Y= , ()(obs)

up.border up.border corrY Y y=  + , (16)

where function ()x rounds x to the nearest integer.

Once the stripe borders are calculated by (15) and (16) as

  
64

low.border low
1

i

i
Y y 

=
= and  

64

up.border up
1

i

i
Y y 

=
= , (17)

they are set at the white 64 64 background, in which points

  up, ii y 
 and  low, ii y 

 for every 1, 64i = (18)

are set black. Thus, the image with a transparent stripe is formed

with classes “stripe” and “background”. The respective labelled

image is the black 64 64 frame, at which the stripe is set: the

vertical space between points (18) is filled with white.

By the given N , 1k , 2k , and strw , datasets are generated by

repeating routine (1)–(18) N times. An example of the

generation for 1 2k = , 2 1k = , str 16w = (the stripe can have

two bends at the most) is shown in Fig. 2. An example of a

dataset with “more” curvilinear and narrower instances by

1 5k = , 2 1k = , str 8w = is presented in Fig. 3.

Fig. 2. Part of an artificial dataset of curvilinear meandering regions (grayscale image left and labels right), where the regions are very simple (the stripe can have

two bends at the most). The stripes completely separate the upper and lower image parts. Such regions seem quite easy to be segmented (without SSNs). The most

instances have pretty thick regions. However, some instances appear as toy dataset artefacts, where the region is either extremely thin (see the third image from the

right in the third row from the bottom) or too thick (see the sixth image from the left in the fourth row from the top).

Applied Computer Systems

___2020/25

65

Fig. 3. Part of an artificial dataset of curvilinear meandering regions, where the regions appear “more” curvilinear (the stripe can have one to five bends) yet
narrower than in Fig. 2. The seeming simplicity for SIS is ignored because the complete separation of the image by the region of interest cannot be known or

predicted in advance, and thus the 100 % transparency of the region may become a serious difficulty in fulfilling SIS. Such datasets will be used for the study.

VI. STRUCTURE OF EXPERIMENTS

For the experimental study, datasets of 1000, 5000, and

25 000 instances are generated by
1 5k = ,

2 1k = ,
str 8w = (see

the example of the instances in Fig. 3). The best starting SSN

configuration is that with two ConvLs and single DeConvL (the

fully-connected layer before the softmax layer is not counted)

used in [10], [11], where the number of filters can be set at 64,

128, 192, 256. This configuration can be deepened by adding

ConvLs into the downsampling subnetwork and the respective

DeConvLs into the upsampling subnetwork. The option of

inserting a DropOut layer is also included. Eventually, methods

of direct and indirect segmentation will be tried on those

configurations.

VII. TRAINING, VALIDATION, AND TESTING

The SSN is trained on the dataset by the following training

parameters: the initial learning rate is 0.001, weight decay is

0.0005, mini-batch size is 8, learning rate drop factor is 0.975,

learning rate drop period
LRD 10g = , momentum is 0.9 (this is

90 % contribution of the parameter update of the previous

iteration to the current one). Thus, 85 % of the dataset instances

are used for training, and 15 % are used for validation. The SSN

is trained by a routine that allows avoiding the segmentation of

empty images [10], [11]:

1. Train for an epoch.
2. Set the current number of extra epochs to zero (

AE 0c =).

3. While the number of segmented pixels in the empty image
for class “stripe” is zero and

AE maxc c do:

3.1. Drop the learning rate after every new
LRDg epochs.

3.2. Train.
3.3. Increase

AEc by 1.

Once an SSN is successfully trained, it is tested. For testing

the trained SSN, a test dataset of 200 instances is formed. The

performance of the SSN is estimated by its accuracy calculated

along with the intersection-over-union (IoU) [11].

VIII. RESULTS OF DIRECT SIS

Raw experiments (by max 10c ) confirm that using a dataset

of a greater volume gives slightly higher accuracy. Therefore,

the dataset with 25000 instances is subsequently used (all the

more, this dataset is artificial and it can be generated as

voluminous as needed). Besides, the number of filters set at 128

(just twice as greater as the image size) appears to be better than

64 and not worse than 192 or 256. As the SSN performs slower

with increasing the number of filters, the amount in 128 filters

is approximately optimal here as for a shallow SSN architecture

(Fig. 4), as well as for a deeper one (Fig. 5).

Fig. 4. The SSN architecture (in MATLAB) with two ConvLs and a single

DeConvL. The DropOut layer following the DeConvL is optional.

 1 Image Input 64x64x1 images

 with 'zerocenter' normalization

 2 Convolution #1 128 3x3x1 convolutions

 with stride [1 1] and padding [1 1 1 1]

 3 ReLU #1 ReLU

 4 Max Pooling 2x2 max pooling with stride [2 2]

 and padding [0 0 0 0]

 5 Convolution #2 128 3x3x128 convolutions

 with stride [1 1] and padding [1 1 1 1]

 6 ReLU #2 ReLU

 7 Transposed Convolution 128 4x4x128 transposed convolutions

 with stride [2 2] and output cropping [1 1]

 8 Dropout 50% dropout

 9 Convolution #3 2 1x1x128 convolutions

 with stride [1 1] and padding [0 0 0 0]

10 Softmax softmax

11 Pixel Classification Layer Class weighted cross-entropy loss

 with classes 'spline_obj' and 'background'

Applied Computer Systems

___2020/25

66

Fig. 5. The SSN architecture (in MATLAB) with three ConvLs and two

DeConvLs. The DropOut layer following the last DeConvL is optional.

The SSN is trained on the dataset whose regions have

apparent curvilinearity and simultaneously are narrow with

respect to the image size (see Fig. 3). The accuracy of the SSN

performance is estimated by the five indicators: global accuracy

(the ratio of correctly classified pixels, regardless of class, to

the total number of pixels), mean accuracy (it regards

classes), mean IoU (the ratio of correctly classified pixels to the

total number of ground truth and predicted pixels), weighted

IoU (it weights by the number of pixels in each class), and mean

BF score (boundary/contour matching score between the

predicted and true segmentation) [7], [11].

Obviously, SSNs by Fig. 4 are trained faster than those by

Fig. 5. An easier and faster way to SIS is studied first. Thus, an

SSN trained by Fig. 4 without DropOut has seemingly good

indicators of the performance (see Table I). Nevertheless,

visualization of the test dataset of 200 instances segmented by

this SSN (see Fig. 6) reveals that the segmentation is “dirty”.

Indeed, almost every instance is erroneously segmented on

outside of a region. Besides, some region interiors of a greater

size are not perfectly segmented and such gaps are easily seen

inside the regions. Contrary to the high global and mean

accuracies, this “dirty” segmentation is expressed in the

comparatively low mean IoU (the weighted IoU is not very high

as well) and mean BF score.

TABLE I

PERFORMANCE OF THE SSN TRAINED FOR 33 EPOCHS BY FIG. 4

WITHOUT DROPOUT

Global
accuracy

Mean
accuracy

Mean IoU
Weighted
IoU

Mean
BF score

0.97471 0.98197 0.86402 0.95544 0.82016

Fig. 6. The stack of 200 test images and the fused overlay image as a result of the direct SIS by the SSN trained for 33 epochs by Fig. 4 without a DropOut layer.

The training is stopped due to the empty image segmentation. The global and mean accuracies here are not low at all but the mean IoU and mean BF score are
really low (Table I). The weighted IoU is not low but the low mean IoU depreciates it anyway. The SSN “sees” thicker regions poorly leaving erroneously segmented

pixels on outside of the regions and not segmenting their interiors entirely. Therefore, this segmentation result is too “dirty” and cannot be accepted.

When a DropOut layer is turned on, the SSN with the single

DeConvL is trained a lit bit slower per epoch. The entire

training process in epochs is slightly longer (now, it is 36

epochs). The SSN has better indicators of the performance (see

Table II) but the mean BF score is still unsatisfactory. The

segmentation result visualized in Fig. 7 still has “dirty”

outcomes, although it is now clearer than that in Fig. 6.

TABLE II

PERFORMANCE OF THE SSN TRAINED FOR 36 EPOCHS BY FIG. 4

Global
accuracy

Mean
accuracy

Mean IoU
Weighted
IoU

Mean
BF score

0.98415 0.9828 0.90642 0.97076 0.85601

 1 Image Input 64x64x1 images

 with 'zerocenter' normalization

 2 Convolution #1 128 3x3x1 convolutions with stride [1 1]

 and padding [1 1 1 1]

 3 ReLU #1 ReLU

 4 Max Pooling #1 2x2 max pooling with stride [2 2]

 and padding [0 0 0 0]

 5 Convolution #2 128 3x3x128 convolutions with stride [1 1]

 and padding [1 1 1 1]

 6 ReLU #2 ReLU

 7 Max Pooling #2 2x2 max pooling with stride [2 2]

 and padding [0 0 0 0]

 8 Convolution #3 128 3x3x128 convolutions with stride [1 1]

 and padding [1 1 1 1]

 9 ReLU #3 ReLU

10 Transposed Convolution #1 128 4x4x128 transposed convolutions

 with stride [2 2] and output cropping [1 1]

11 Transposed Convolution #2 128 4x4x128 transposed convolutions

 with stride [2 2] and output cropping [1 1]

12 Dropout 50% dropout

13 Convolution #4 2 1x1x128 convolutions with stride [1 1]

 and padding [0 0 0 0]

14 Softmax softmax

15 Pixel Classification Layer Class weighted cross-entropy loss

 with classes 'spline_obj' and 'background'

Applied Computer Systems

___2020/25

67

Fig. 7. The segmentation result after turning the DropOut layer on (following the single DeConvL) by Fig. 4. The SSN trained for 36 epochs starts segmenting the

empty image and thus the training process is stopped. The global and mean accuracies here are a bit greater than those for the SSN without DropOut. Contrariwise,
the mean IoU and mean BF score are significantly improved (Table II). The weighted IoU is improved as well. However, the mean BF score is still unsatisfactory.

Although the SSN “sees” thicker regions better than the SSN without DropOut, the gaps inside their interiors did not disappear. The erroneously segmented pixels

on outside of the regions are still clearly seen. Therefore, SIS by the shallow SSN architecture (Fig. 4) is still “dirty” and cannot be accepted.

As the segmentation results by the shallow SSN architecture

(Fig. 4), whether DropOut is used or not, are far from perfect,

the deeper SSN in Fig. 5 should be tried. Obviously, the SSN

with an additional ConvL (and the respective second DeConvL)

is trained slower per epoch. In this case, the entire training

process lasts far longer (it is 150 epochs achieving the maximal

number of extra epochs). However, the performance of the SSN

trained by Fig. 5 without DropOut has almost perfect indicators

(see Table III). Moreover, even training just for a third of this

number of epochs gives indicators, which are very close to

those in Table III. This is possible owing to the successful

training at the very first epoch (see Fig. 8).

TABLE III

PERFORMANCE OF THE SSN TRAINED FOR 150 EPOCHS BY FIG. 5
WITHOUT DROPOUT

Global
accuracy

Mean
accuracy

Mean IoU
Weighted
IoU

Mean
BF score

0.99948 0.99961 0.99644 0.99896 0.99225

Fig. 8. The accuracy of the SSN (Fig. 5) without the DropOut layer trained

during the first epoch, after which the validation accuracy achieves 98.11 %.

The test instance segmented worst by the deeper SSN without

DropOut is shown in Fig. 9. Even here, it is very hard to notice

any bad of SIS. It is worth noting that the region still has a

varying width, although it is hardly noticeable. Obviously, such

a segmentation result entirely visualized in Fig. 10 is quite

acceptable.

Fig. 9. The test instance (the test image versus truth and segmented images)
segmented worst by the deeper SSN (Fig. 5) without DropOut trained for 150

epochs (whose performance indicators are presented in Table III). Visually, the

erroneously segmented pixels (or non-segmented interior pixels) are hardly
noticed. The region is too narrow, though (appearing roughly just as a one-pixel

line rather than a region or stripe having some interior space).

As the deeper SSN without DropOut segments with a few

flaws, it is reasonable to turn on the DropOut layer and see

whether the performance could be perfected. Unexpectedly, the

SSN by Fig. 5 performs slightly poorer (Table IV). Therefore,

deeper SSNs without DropOut are the best for direct SIS by

considering curvilinear meandering stripes.

TABLE IV

PERFORMANCE OF THE SSN TRAINED FOR 150 EPOCHS BY FIG. 5

Global
accuracy

Mean
accuracy

Mean IoU
Weighted
IoU

Mean
BF score

0.99868 0.99924 0.99108 0.99739 0.98373

Applied Computer Systems

___2020/25

68

Fig. 10. The stack of 200 almost perfectly segmented test images and the fused overlay image as visualization of the performance of the SSN trained for 150 epochs

by Fig. 5 without DropOut. Along with the test instance in Fig. 9, a few lacks can be seen (e. g., see the 7-th image with the thick stripe in the upper row).

IX. RESULTS OF INDIRECT SIS

The method of indirect SIS is attractive as segmenting

bigger-sized parts of the image (above and below the region of

interest) seems to be easier than segmenting those stripes.

However, it is revealed that both the upper and lower image

parts cannot be directly segmented by the shallow SSN (Fig. 4),

whereas using the deeper SSN twice is senseless. Indeed, the

SSN trained for one epoch (see Table V) starts

segmenting the empty image, so it is not trained further

(Fig. 11). Results of SIS without DropOut are even worse.

TABLE V

PERFORMANCE OF THE SSN TRAINED FOR ONE EPOCH BY FIG. 4
FOR THE UPPER PART RESULTED IN BADLY SEGMENTING THE EMPTY IMAGE

Global
accuracy

Mean
accuracy

Mean IoU
Weighted
IoU

Mean
BF score

0.92328 0.92685 0.85748 0.85741 0.64578

Fig. 11. SIS of the upper part. The upper border is not properly “seen”. As the empty image is segmented, a straight stripe is erroneously labelled at the bottom.

Applied Computer Systems

___2020/25

69

SIS of the lower image part gives similar poor results. Using

SSNs with the number of filters set at 96 (i.e., between 64 and

128) or less does not help. Consequently, results of indirect SIS

are quite unacceptable, and this method cannot be used for

segmenting curvilinear meandering regions.

X. DISCUSSION

Why is the segmentation of upper and lower image parts so

unsuccessful? After all, it might be expected to be far easier than

“seeing” narrower stripes. The reason behind this perplexity

exists in that segmenting bigger objects (with respect to the image

size) is prone to overfitting. This was shown in [10] and [11] by

examples of big convex polygons. The effect of the empty image

segmentation is a key feature of such overfitting.

The subsequent question is what to do when stripes themselves

are big, which can be easily generated by greater values of strw

in routine (1)–(18). In fact, an example of such bigger-sized

regions of interest is in Fig. 2. SSNs are very hard to train on the

datasets like that in Fig. 2, where the upper and lower image parts

in some instances are even smaller than the region of interest

(except for a few really thin stripes resembling those in Fig. 3).

The solution is simple: the images with too big stripes are scaled

vertically in order to artificially squeeze them to the view of much

thinner stripes. Then deeper SSNs trained in the abovementioned

manner are expected to perform SIS accurately, without

segmenting the empty image. Once the squeezed region is

segmented, the image is conversely rescaled to the original view.

If the stripes are so big that the upper and lower image parts

appear themselves as really thin stripes, then they indeed can be

segmented. In this case, the regions of interest cannot be named

curvilinear meandering stripes. Quite the contrary, the upper and

lower parts are rather stripes. Therefore, indirect SIS is not only

possible here, but is just required. Then, admittedly, two SSNs

(for both parts) are to be trained. Nevertheless, the solution with

squeezing, segmenting, and rescaling is undoubtedly possible

also for this case because it requires training of only one SSN.

XI. CONCLUSION

The study is a prototype model for SIS of curvilinear

meandering regions. Based on the experiments carried out, it is

better to fulfil SIS of smaller (or thinner, narrower) curvilinear

meandering regions by the means of SSNs. If the region of

interest becomes bigger, it is recommended to squeeze it in order

to avoid segmenting the empty image.

The method of indirect SIS is not excluded. If the upper and

lower image parts are sufficiently thin (or narrow), this method is

applicable. However, indirect SIS will be practically reasonable

only if the two SSNs used for segmenting the upper and lower

image parts are shallower (and thus they are trained faster) than

the SSN used for direct SIS. Otherwise, the method of indirect

SIS with respect to curvilinear meandering regions is

inapplicable.

Along with the described results and recommendations, the

study is a contribution to the field of the theory of SIS. The

developed toy dataset generator of curvilinear meandering

regions can be used for prototyping deep SSNs before solving

real-world tasks of segmenting land lines, riverbeds, highways,

mountain chains, etc. (requiring only augmentation of training

data, whereas augmentation for the toy datasets is needless).

Another important inference (as part of the contribution) is that

the mean BF score is the key accuracy indicator. The mean BF

score has the least value among the other accuracy indicators, and

this value should be maximized first.

REFERENCES

[1] H.-J. He, C. Zheng, and D.-W. Sun, “Image Segmentation Techniques,”

in: Computer Vision Technology for Food Quality Evaluation, 2nd
edition, Sun D.-W. (ed.). Academic Press, San Diego, 2016,

pp. 45–63. https://doi.org/10.1016/B978-0-12-802232-0.00002-5

[2] Ç. Kaymak and A. Uçar, “A Brief Survey and an Application of Semantic
Image Segmentation for Autonomous Driving,” in: Handbook of Deep

Learning Applications. Smart Innovation, Systems and Technologies,

Balas V., Roy S., Sharma D., Samui P. (eds). Springer, Cham, 2019,
pp. 161–198. https://doi.org/10.1007/978-3-030-11479-4_9

[3] G. Neuhold, T. Ollmann, S. R. Bulò, and P. Kontschieder, “The Mapillary

Vistas dataset for semantic understanding of street scenes,” 2017 IEEE
International Conference on Computer Vision, Venice, 2017, pp. 5000–

5009. https://doi.org/10.1109/ICCV.2017.534

[4] J. Rogowska, “Overview and Fundamentals of Medical Image
Segmentation,” in: Handbook of Medical Image Processing and Analysis,

2nd edition, Bankman I. N. (ed.). Academic Press, San Diego, 2009,

pp. 73–90. https://doi.org/10.1016/B978-012373904-9.50013-1
[5] H. Liu, J. Xu, Y. Wu, Q. Guo, B. Ibragimov, and L. Xing, “Learning

deconvolutional deep neural network for high resolution medical image

reconstruction,” Information Sciences, vol. 468, pp. 142–154, 2018.

https://doi.org/10.1016/j.ins.2018.08.022

[6] Larsson C. Clustering, in: 5G Networks, Larsson C. (ed.). Academic Press,

San Diego, 2018, pp. 123–141.
https://doi.org/10.1016/B978-0-12-812707-0.00011-5

[7] Shapiro L. G., Stockman G. C. Computer Vision. Prentice-Hall, New

Jersey, 2001.
[8] Sethian J. A. A fast marching level set method for monotonically

advancing fronts. Proceedings of the National Academy of Sciences,

93(4): 1591–1595, 1996. http://dx.doi.org/10.1073/pnas.93.4.1591
[9] V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A deep

convolutional encoder-decoder architecture for image segmentation,”

IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 39, iss. 12, pp. 2481–2495, 2017.

https://doi.org/10.1109/TPAMI.2016.2644615

[10] V. V. Romanuke, “Generator of a toy dataset of multi-polygon
monochrome images for rapidly testing and prototyping semantic image

segmentation networks,” Electrical, Control and Communication

Engineering, vol. 15, no. 2, pp. 1–8, 2019. https://doi.org/10.2478/ecce-
2019-0008

[11] V. V. Romanuke, “An infinitely scalable dataset of single-polygon

grayscale images as a fast test platform for semantic image segmentation,”
KPI Science News, no. 1, pp. 24 –34, 2019. https://doi.org/10.20535/kpi-

sn.2019.1.157259

Vadim V. Romanuke was born in 1979. He graduated from the Technological

University of Podillya in 2001. The higher education was received in 2001. In

2006, he received the Degree of Candidate of Technical Sciences in
Mathematical Modelling and Computational Methods. The degree of Doctor of

Technical Sciences in Mathematical Modelling and Computational Methods
was received in 2014. In 2016, Vadim Romanuke received the academic status

of Full Professor.

He is a Professor of the Faculty of Mechanical and Electrical Engineering at the
Polish Naval Academy. His current research interests concern semantic image

segmentation, decision making, game theory, statistical approximation, and

control engineering based on statistical correspondence.
Address for correspondence: 69 Śmidowicza Street, Gdynia, Poland, 81-127.

E-mail: romanukevadimv@gmail.com

ORCID iD: https://orcid.org/0000-0003-3543-3087

http://dx.doi.org/10.1016/B978-0-12-802232-0.00002-5
https://doi.org/10.1007/978-3-030-11479-4_9
https://doi.org/10.1109/ICCV.2017.534
http://dx.doi.org/10.1016/B978-012373904-9.50013-1
https://doi.org/10.1016/j.ins.2018.08.022
https://doi.org/10.1016/B978-0-12-812707-0.00011-5
http://dx.doi.org/10.1073/pnas.93.4.1591
https://doi.org/10.2478/ecce-2019-0008
https://doi.org/10.2478/ecce-2019-0008
https://doi.org/10.20535/kpi-sn.2019.1.157259
https://doi.org/10.20535/kpi-sn.2019.1.157259
mailto:romanukevadimv@gmail.com
https://orcid.org/0000-0003-3543-3087

