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Abstract – Deconvolutional neural networks are a very accurate 

tool for semantic image segmentation. Segmenting curvilinear 

meandering regions is a typical task in computer vision applied to 

navigational, civil engineering, and defence problems. In the study, 

such regions of interest are modelled as meandering transparent 

stripes whose width is not constant. The stripe on the white 

background is formed by the upper and lower non-parallel black 

curves so that the upper and lower image parts are completely 

separated. An algorithm of generating datasets of such regions is 

developed. It is revealed that deeper networks segment the regions 

more accurately. However, the segmentation is harder when the 

regions become bigger. This is why an alternative method of the 

region segmentation consisting in segmenting the upper and lower 

image parts by subsequently unifying the results is not effective. If 

the region of interest becomes bigger, it must be squeezed in order 

to avoid segmenting the empty image. Once the squeezed region is 

segmented, the image is conversely rescaled to the original view. 

To control the accuracy, the mean BF score having the least value 

among the other accuracy indicators should be maximised first. 

 

Keywords – Curvilinear meandering region, deconvolutional 

layer, empty image segmentation, mean BF score, neural network, 

overfitting, semantic segmentation, toy dataset. 

I. INTRODUCTION 

In computer vision, semantic image segmentation (SIS) is a 

problem of labelling specific regions of an image or a series of 

video frames [1], [2]. This problem has been intensively studied 

since the 2010s. However, methods and tools for SIS have been 

developed by experiencing practical tasks rather than based on 

theoretic aspects and principles [1], [3], [4]. Thus, as of 2020, 

still no unified theory of SIS is built. 

Typical tasks solved by SIS arise in autopilot-induced 

driving, traffic engineering, surveillance systems, marine 

prospecting and defence, medicine, geological exploration, 

geothermal prospecting and other associated fields where the 

tasks are to spot and control definite objects or regions, or to 

retrieve useful information from the image or video [2], [4], [5]. 

The potential application of SIS will probably have an impact 

on civil engineering, metallurgy, highway engineering, rescue 

operations, and microbiology. 

The simplest method of SIS is the thresholding mostly 

suitable for grayscale images in order to label plain regions [1]. 

                                                           
* Corresponding author’s e-mail: romanukevadimv@gmail.com 

Colour images can also be thresholded, where a separate 

threshold for each of the RGB components of the image is 

designated, and then these three are combined with logical 

conjunction [1]. More complicated SIS is fulfilled with 

clustering methods [6], histogram-based methods [7], and 

methods based on solving partial differential equations [8]. The 

most promising approach to SIS is in developing neural 

networks whose performance is close to perfect if they are 

properly trained. However, one of the main open problems of 

SIS is the absence of a general routine to solve a specific task. 

Once the task is described, a heuristic process of choosing an 

approach and its parameters starts [1], [2], [7]. 

Commonly, a neural network for SIS named the semantic 

segmentation network (SSN) classifies every pixel in an image 

[5], [9], so the network processes huge amounts of data. The 

SSN architecture is based on an encoder/decoder structure [2], 

[9] consisting of three parts: a downsampling subnetwork, an 

upsampling subnetwork, and a pixel classification layer. A 

downsampling subnetwork is stacked of convolutional layers 

(ConvLs), ReLUs, and max pooling layers. An upsampling 

subnetwork is stacked of deconvolutional layers (DeConvLs) 

and ReLUs. The final layer starts with a set of 1-by-1 ConvLs 

(which is a fully-connected layer), whose number is equal to the 

number of classes, followed by the softmax and pixel 

classification layers which categorically label each image pixel 

[10]. Notwithstanding the relative simplicity of the SSN 

architecture, specification of its parameters and 

hyperparameters is not a trivial task. 

II. MOTIVATION 

Effective SIS requires optimally configured SSNs. Optimal 

SSN configuration should not be based on rules of thumb, 

which do not always fit real-world problems. It should be rather 

based on a theoretically sound prototyping using toy datasets 

[2]. The goal of the prototyping is to quickly build an SSN 

capable of segmenting successfully real-world images by using 

artificially created images containing generalized objects or 

regions of interest [3], [5], [8]. At this stage, SSNs are trained 

and tested on a toy dataset whose volume is unlimited and 

image size is small that allows quickly trying different SSN 

configurations. 

http://creativecommons.org/licenses/by/4.0
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One of the attempts to supplement the bank of toy datasets 

was in article [10], which presented a toy dataset generator for 

prototyping SSNs capable of segmenting real-world complex 

objects. The objects were modelled by convex polygons. The 

complexity of polygons was suggested to be regulated by the 

number of edges in a polygon, the maximal number of polygons 

in one image, the set of scale factors, and the set of probabilities 

determining how many polygons in a current image are 

generated. As a result of the attempt, a tool for prototyping 

SSNs capable of segmenting real-world objects without strong 

curvature (vehicles, buildings, playgrounds, people at distance, 

etc.) was developed. 

Nevertheless, there are many practical examples where 

objects (or regions) have strong curvature. For instance, they 

are landscape scenes whose segmentation is a basis of applying 

computer vision to navigational, civil engineering, and defence 

problems [1], [2], [7], [8]. One of the primary tasks is to see the 

land line, riverbed, highway, etc. (Fig. 1). Such regions can 

hardly be modelled by chains of tiny triangles and polygons (as 

an approximation of their curvature), so a toy dataset generator 

of curvilinear meandering regions is needed. 
 

 

Fig. 1. Examples of regions with strong curvature to be segmented. Often such 

objects can divide the image in two parts (upper and lower) like the coast 

separates the sky from the seawater (in the last two images in the third row). 

 

Another issue is segmentation of the empty image, in which 

class “background” exists only [10], [11]. The empty image 

segmentation is similar to overfitting, but it is not exactly that. 

In the worst case, the curvilinear meandering region separates 

the upper image part from the lower image part, so this may be 

a challenge as the segmentation is harder for bigger image parts 

due to a risk of segmenting class “background” [11]. 

It is worth noticing that the case with the complete separation 

of the upper and lower image parts is not that easy as it may 

seem. The matter is that the width of the curvilinear meandering 

region varies. Besides, the colour of the region interior can 

coincide with the outside colours. Thus, SIS can be fulfilled by 

thresholding only in peculiar cases. 

III. GOAL AND STEPS TO ACHIEVE IT 

Issuing from the lack of theoretic approaches to SIS of 

curvilinear meandering regions, the goal is to determine a better 

way to segment them by the SSN. To achieve the goal, the 

image size, a pattern of the regions and an algorithm of 

generating datasets are to be substantiated. Then, a few SNN 

configurations are to be tried in order to directly segment the 

regions. On the other hand, a method of indirect segmentation 

should be tried as well, in which the upper and lower image 

parts are directly segmented, and then the region is segmented 

by unifying the results. In the study, the case with the complete 

separation of the upper and lower image parts will be 

considered. 

IV. IMAGE SIZE AND REGIONS TO BE SEGMENTED 

Training neural networks on toy dataset images, there are 

classical datasets like CIFAR-10, CIFAR-100, MNIST, NORB, 

EEACL26, etc. [11]. Researchers tend to set the image size at 

dimensions, which are 2 raised to some integer power [9] 

ensuring faster training owing to consistency with the binary 

system hardware, on which computational algorithms are 

physically implemented. Thus, the best image size is either 

32 32  or 64 64 . As SIS in real-world tasks deals with 

images of higher resolution, it is appropriate to use the 64 64  

size for the further study. 

The region of interest is a curvilinear meandering stripe 

whose width is not constant. The background is white. To 

simulate severer conditions of SIS, the stripe is formed by the 

upper and lower curves of the black colour. The lower curve 

(border) is obviously not parallel to the upper one. Moreover, 

the thickness of the curves will be just one pixel, and the interior 

of the stripe is white. In fact, the region of interest is 100 % 

transparent. This additionally must hamper the segmentation in 

order to ensure good generalization. 

V. ALGORITHM OF GENERATING DATASETS 

The dataset is of N  images and N  respective images with 

labelled regions [10], [11]. The image and its labelled version 
are formed by using the three input arguments: positive integers 

1k  and 2k  defining the number of key points (denoted by k ) 

along the horizontal axis, and a positive integer strw  defining 

the average width of the stripe. Integer 

 ( )( )1 21k k k=   +  (1) 

is a number of extrema along the upper and lower borders of the 
stripe, where ( )K  is a vector (or a set) of K  pseudorandom 

numbers drawn from the standard uniform distribution on 
interval (0;1)  and function ( )x  returns the integer part of 

number x  (e. g., see [10]). Therefore, integer (1) takes values 

between 2k  and 1 21k k− + . 

All key points along the horizontal axis constitute a set 

 ( )( ) sorted 1, 63 2 , 64X k=   +  (2) 

whose 2k +  elements are sorted in ascending order. Then the 

respective points along the vertical axis constitute a set 

 ( )( )up str 63 2 1Y w k= − +  + +  (3) 

of 2k +  elements without sorting. Then the preliminary 64 
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upper border points are found by the cubic spline data 

interpolation using the data values in (3) at the data sites in (2): 

  ( )up.border 3 sorted upspline , , 1, 64Y X Y= . (4) 

The preliminary 64 lower border points are found similarly: 

 ( ) ( )( )low up str4 1 2 1Y Y w k= + −  + +  (5) 

and then 

  ( )low.border 3 sorted lowerspline , , 1, 64Y X Y= . (6) 

Elements in sets (4) and (6) are corrected and re-scaled to fit 

the 64 64  image frame. For this purpose, the range 

 
low.border up.bordermax min

2

Y Y
r

−
=  (7) 

and the average value 

 
low.border up.border

mean
2

Y Y
y

 +
=  

 
 

 (8) 

are used. First, 

 
(obs)

low.border low.borderY Y= ,  
(obs)

low.border low.borderY Y y= − , (9) 

 
(obs)

up.border up.borderY Y= ,  
(obs)

up.border up.borderY Y y= − , (10) 

whereupon a range corrector 

 ( )corr str 1 0.25r r w= +     (11) 

is found, where   is a pseudorandom number drawn from the 

standard normal distribution (with zero mean and unit 

variance). Then the second correction follows: 

 
(obs)

low.border low.borderY Y= ,  
(obs)

low.border low.border corrY Y r= , (12) 

 
(obs)

up.border up.borderY Y= ,  
(obs)

up.border up.border corrY Y r= . (13) 

Coefficient 

 ( )corr 64 2 0.25y = +   (14) 

is used for the third, final, correction: 

 
(obs)

low.border low.borderY Y= ,  ( )(obs)

low.border low.border corrY Y y=  + , (15) 

 
(obs)

up.border up.borderY Y= ,  ( )(obs)

up.border up.border corrY Y y=  + , (16) 

where function ( )x  rounds x  to the nearest integer. 

Once the stripe borders are calculated by (15) and (16) as 

  
64

low.border low
1

i

i
Y y 

=
=   and   

64

up.border up
1

i

i
Y y 

=
= , (17) 

they are set at the white 64 64  background, in which points 

  up, ii y 
  and   low, ii y 

  for every  1, 64i =  (18) 

are set black. Thus, the image with a transparent stripe is formed 

with classes “stripe” and “background”. The respective labelled 

image is the black 64 64  frame, at which the stripe is set: the 

vertical space between points (18) is filled with white. 

By the given N , 1k , 2k , and strw , datasets are generated by 

repeating routine (1)–(18) N  times. An example of the 

generation for 1 2k = , 2 1k = , str 16w =  (the stripe can have 

two bends at the most) is shown in Fig. 2. An example of a 

dataset with “more” curvilinear and narrower instances by 

1 5k = , 2 1k = , str 8w =  is presented in Fig. 3. 

 

 

Fig. 2. Part of an artificial dataset of curvilinear meandering regions (grayscale image left and labels right), where the regions are very simple (the stripe can have 

two bends at the most). The stripes completely separate the upper and lower image parts. Such regions seem quite easy to be segmented (without SSNs). The most 

instances have pretty thick regions. However, some instances appear as toy dataset artefacts, where the region is either extremely thin (see the third image from the 

right in the third row from the bottom) or too thick (see the sixth image from the left in the fourth row from the top). 
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Fig. 3. Part of an artificial dataset of curvilinear meandering regions, where the regions appear “more” curvilinear (the stripe can have one to five bends) yet 
narrower than in Fig. 2. The seeming simplicity for SIS is ignored because the complete separation of the image by the region of interest cannot be known or 

predicted in advance, and thus the 100 % transparency of the region may become a serious difficulty in fulfilling SIS. Such datasets will be used for the study. 

VI. STRUCTURE OF EXPERIMENTS 

For the experimental study, datasets of 1000, 5000, and 

25 000 instances are generated by 
1 5k = , 

2 1k = , 
str 8w =  (see 

the example of the instances in Fig. 3). The best starting SSN 

configuration is that with two ConvLs and single DeConvL (the 

fully-connected layer before the softmax layer is not counted) 

used in [10], [11], where the number of filters can be set at 64, 

128, 192, 256. This configuration can be deepened by adding 

ConvLs into the downsampling subnetwork and the respective 

DeConvLs into the upsampling subnetwork. The option of 

inserting a DropOut layer is also included. Eventually, methods 

of direct and indirect segmentation will be tried on those 

configurations. 

VII. TRAINING, VALIDATION, AND TESTING 

The SSN is trained on the dataset by the following training 

parameters: the initial learning rate is 0.001, weight decay is 

0.0005, mini-batch size is 8, learning rate drop factor is 0.975, 

learning rate drop period 
LRD 10g = , momentum is 0.9 (this is 

90 % contribution of the parameter update of the previous 

iteration to the current one). Thus, 85 % of the dataset instances 

are used for training, and 15 % are used for validation. The SSN 

is trained by a routine that allows avoiding the segmentation of 

empty images [10], [11]: 

1. Train for an epoch. 
2. Set the current number of extra epochs to zero (

AE 0c = ). 

3. While the number of segmented pixels in the empty image 
for class “stripe” is zero and 

AE maxc c  do: 

3.1. Drop the learning rate after every new 
LRDg  epochs. 

3.2. Train. 
3.3. Increase 

AEc  by 1. 

Once an SSN is successfully trained, it is tested. For testing 

the trained SSN, a test dataset of 200 instances is formed. The 

performance of the SSN is estimated by its accuracy calculated 

along with the intersection-over-union (IoU) [11]. 

VIII. RESULTS OF DIRECT SIS 

Raw experiments (by max 10c  ) confirm that using a dataset 

of a greater volume gives slightly higher accuracy. Therefore, 

the dataset with 25000 instances is subsequently used (all the 

more, this dataset is artificial and it can be generated as 

voluminous as needed). Besides, the number of filters set at 128 

(just twice as greater as the image size) appears to be better than 

64 and not worse than 192 or 256. As the SSN performs slower 

with increasing the number of filters, the amount in 128 filters 

is approximately optimal here as for a shallow SSN architecture 

(Fig. 4), as well as for a deeper one (Fig. 5). 

 

 

Fig. 4. The SSN architecture (in MATLAB) with two ConvLs and a single 

DeConvL. The DropOut layer following the DeConvL is optional. 

 1 Image Input              64x64x1 images  

                            with 'zerocenter' normalization 

 2 Convolution #1           128 3x3x1 convolutions  

                            with stride [1  1] and padding [1  1  1  1] 

 3 ReLU #1                  ReLU 

 4 Max Pooling              2x2 max pooling with stride [2  2]  

                            and padding [0  0  0  0] 

 5 Convolution #2           128 3x3x128 convolutions  

                            with stride [1  1] and padding [1  1  1  1] 

 6 ReLU #2                  ReLU 

 7 Transposed Convolution   128 4x4x128 transposed convolutions  

                            with stride [2  2] and output cropping [1  1] 

 8 Dropout                  50% dropout 

 9 Convolution #3           2 1x1x128 convolutions  

                            with stride [1  1] and padding [0  0  0  0] 

10 Softmax                  softmax 

11 Pixel Classification Layer   Class weighted cross-entropy loss  

                                with classes 'spline_obj' and 'background' 
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Fig. 5. The SSN architecture (in MATLAB) with three ConvLs and two 

DeConvLs. The DropOut layer following the last DeConvL is optional.  
 

The SSN is trained on the dataset whose regions have 

apparent curvilinearity and simultaneously are narrow with 

respect to the image size (see Fig. 3). The accuracy of the SSN 

performance is estimated by the five indicators: global accuracy 

(the ratio of correctly classified pixels, regardless of class, to 

the total number of pixels), mean accuracy (it regards  
 

classes), mean IoU (the ratio of correctly classified pixels to the 

total number of ground truth and predicted pixels), weighted 

IoU (it weights by the number of pixels in each class), and mean 

BF score (boundary/contour matching score between the 

predicted and true segmentation) [7], [11]. 

Obviously, SSNs by Fig. 4 are trained faster than those by 

Fig. 5. An easier and faster way to SIS is studied first. Thus, an 

SSN trained by Fig. 4 without DropOut has seemingly good 

indicators of the performance (see Table I). Nevertheless, 

visualization of the test dataset of 200 instances segmented by 

this SSN (see Fig. 6) reveals that the segmentation is “dirty”. 

Indeed, almost every instance is erroneously segmented on 

outside of a region. Besides, some region interiors of a greater 

size are not perfectly segmented and such gaps are easily seen 

inside the regions. Contrary to the high global and mean 

accuracies, this “dirty” segmentation is expressed in the 

comparatively low mean IoU (the weighted IoU is not very high 

as well) and mean BF score. 
 

TABLE I 

PERFORMANCE OF THE SSN TRAINED FOR 33 EPOCHS BY FIG. 4  

WITHOUT DROPOUT 

Global 
accuracy 

Mean 
accuracy 

Mean IoU 
Weighted 
IoU 

Mean  
BF score 

0.97471 0.98197 0.86402 0.95544 0.82016 
 

 

Fig. 6. The stack of 200 test images and the fused overlay image as a result of the direct SIS by the SSN trained for 33 epochs by Fig. 4 without a DropOut layer. 

The training is stopped due to the empty image segmentation. The global and mean accuracies here are not low at all but the mean IoU and mean BF score are 
really low (Table I). The weighted IoU is not low but the low mean IoU depreciates it anyway. The SSN “sees” thicker regions poorly leaving erroneously segmented 

pixels on outside of the regions and not segmenting their interiors entirely. Therefore, this segmentation result is too “dirty” and cannot be accepted.  

 

When a DropOut layer is turned on, the SSN with the single 

DeConvL is trained a lit bit slower per epoch. The entire 

training process in epochs is slightly longer (now, it is 36 

epochs). The SSN has better indicators of the performance (see 

Table II) but the mean BF score is still unsatisfactory. The 

segmentation result visualized in Fig. 7 still has “dirty” 

outcomes, although it is now clearer than that in Fig. 6. 
 

TABLE II 

PERFORMANCE OF THE SSN TRAINED FOR 36 EPOCHS BY FIG. 4 

Global 
accuracy 

Mean 
accuracy 

Mean IoU 
Weighted 
IoU 

Mean  
BF score 

0.98415 0.9828 0.90642 0.97076 0.85601 
 

 1 Image Input                 64x64x1 images  

                               with 'zerocenter' normalization 

 2 Convolution #1              128 3x3x1 convolutions with stride [1  1]  

                               and padding [1  1  1  1] 

 3 ReLU #1                     ReLU 

 4 Max Pooling #1              2x2 max pooling with stride [2  2]  

                               and padding [0  0  0  0] 

 5 Convolution #2              128 3x3x128 convolutions with stride [1  1]  

                               and padding [1  1  1  1] 

 6 ReLU #2                     ReLU 

 7 Max Pooling #2              2x2 max pooling with stride [2  2]  

                               and padding [0  0  0  0] 

 8 Convolution #3              128 3x3x128 convolutions with stride [1  1]  

                               and padding [1  1  1  1] 

 9 ReLU #3                     ReLU 

10 Transposed Convolution #1   128 4x4x128 transposed convolutions  

                               with stride [2  2] and output cropping [1  1] 

11 Transposed Convolution #2   128 4x4x128 transposed convolutions  

                               with stride [2  2] and output cropping [1  1] 

12 Dropout                     50% dropout 

13 Convolution #4              2 1x1x128 convolutions with stride [1  1]  

                               and padding [0  0  0  0] 

14 Softmax                     softmax 

15 Pixel Classification Layer   Class weighted cross-entropy loss  

                                with classes 'spline_obj' and 'background' 
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Fig. 7. The segmentation result after turning the DropOut layer on (following the single DeConvL) by Fig. 4. The SSN trained for 36 epochs starts segmenting the 

empty image and thus the training process is stopped. The global and mean accuracies here are a bit greater than those for the SSN without DropOut. Contrariwise, 
the mean IoU and mean BF score are significantly improved (Table II). The weighted IoU is improved as well. However, the mean BF score is still unsatisfactory. 

Although the SSN “sees” thicker regions better than the SSN without DropOut, the gaps inside their interiors did not disappear. The erroneously segmented pixels 

on outside of the regions are still clearly seen. Therefore, SIS by the shallow SSN architecture (Fig. 4) is still “dirty” and cannot be accepted. 

As the segmentation results by the shallow SSN architecture 

(Fig. 4), whether DropOut is used or not, are far from perfect, 

the deeper SSN in Fig. 5 should be tried. Obviously, the SSN 

with an additional ConvL (and the respective second DeConvL) 

is trained slower per epoch. In this case, the entire training 

process lasts far longer (it is 150 epochs achieving the maximal 

number of extra epochs). However, the performance of the SSN 

trained by Fig. 5 without DropOut has almost perfect indicators 

(see Table III). Moreover, even training just for a third of this 

number of epochs gives indicators, which are very close to 

those in Table III. This is possible owing to the successful 

training at the very first epoch (see Fig. 8). 
 

TABLE III 

PERFORMANCE OF THE SSN TRAINED FOR 150 EPOCHS BY FIG. 5  
WITHOUT DROPOUT 

Global 
accuracy 

Mean 
accuracy 

Mean IoU 
Weighted 
IoU 

Mean  
BF score 

0.99948 0.99961 0.99644 0.99896 0.99225 

 

 

Fig. 8. The accuracy of the SSN (Fig. 5) without the DropOut layer trained 

during the first epoch, after which the validation accuracy achieves 98.11 %. 

The test instance segmented worst by the deeper SSN without 

DropOut is shown in Fig. 9. Even here, it is very hard to notice 

any bad of SIS. It is worth noting that the region still has a 

varying width, although it is hardly noticeable. Obviously, such 

a segmentation result entirely visualized in Fig. 10 is quite 

acceptable. 
 

 

Fig. 9. The test instance (the test image versus truth and segmented images) 
segmented worst by the deeper SSN (Fig. 5) without DropOut trained for 150 

epochs (whose performance indicators are presented in Table III). Visually, the 

erroneously segmented pixels (or non-segmented interior pixels) are hardly 
noticed. The region is too narrow, though (appearing roughly just as a one-pixel 

line rather than a region or stripe having some interior space). 

 

As the deeper SSN without DropOut segments with a few 

flaws, it is reasonable to turn on the DropOut layer and see 

whether the performance could be perfected. Unexpectedly, the 

SSN by Fig. 5 performs slightly poorer (Table IV). Therefore, 

deeper SSNs without DropOut are the best for direct SIS by 

considering curvilinear meandering stripes. 

 
TABLE IV 

PERFORMANCE OF THE SSN TRAINED FOR 150 EPOCHS BY FIG. 5 

Global 
accuracy 

Mean 
accuracy 

Mean IoU 
Weighted 
IoU 

Mean  
BF score 

0.99868 0.99924 0.99108 0.99739 0.98373 
 



Applied Computer Systems 

_________________________________________________________________________________________________2020/25 

 

 

 

68 

 

 

Fig. 10. The stack of 200 almost perfectly segmented test images and the fused overlay image as visualization of the performance of the SSN trained for 150 epochs 

by Fig. 5 without DropOut. Along with the test instance in Fig. 9, a few lacks can be seen (e. g., see the 7-th image with the thick stripe in the upper row). 

 

IX. RESULTS OF INDIRECT SIS 

The method of indirect SIS is attractive as segmenting 

bigger-sized parts of the image (above and below the region of 

interest) seems to be easier than segmenting those stripes. 

However, it is revealed that both the upper and lower image 

parts cannot be directly segmented by the shallow SSN (Fig. 4), 

whereas using the deeper SSN twice is senseless. Indeed, the 

SSN trained for one epoch (see Table V) starts  
 

segmenting the empty image, so it is not trained further 

(Fig. 11). Results of SIS without DropOut are even worse. 
 

TABLE V 

PERFORMANCE OF THE SSN TRAINED FOR ONE EPOCH BY FIG. 4  
FOR THE UPPER PART RESULTED IN BADLY SEGMENTING THE EMPTY IMAGE 

Global 
accuracy 

Mean 
accuracy 

Mean IoU 
Weighted 
IoU 

Mean  
BF score 

0.92328 0.92685 0.85748 0.85741 0.64578 
 

 

Fig. 11. SIS of the upper part. The upper border is not properly “seen”. As the empty image is segmented, a straight stripe is erroneously labelled at the bottom. 
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SIS of the lower image part gives similar poor results. Using 

SSNs with the number of filters set at 96 (i.e., between 64 and 

128) or less does not help. Consequently, results of indirect SIS 

are quite unacceptable, and this method cannot be used for 

segmenting curvilinear meandering regions. 

X. DISCUSSION 

Why is the segmentation of upper and lower image parts so 

unsuccessful? After all, it might be expected to be far easier than 

“seeing” narrower stripes. The reason behind this perplexity 

exists in that segmenting bigger objects (with respect to the image 

size) is prone to overfitting. This was shown in [10] and [11] by 

examples of big convex polygons. The effect of the empty image 

segmentation is a key feature of such overfitting. 

The subsequent question is what to do when stripes themselves 

are big, which can be easily generated by greater values of strw  

in routine (1)–(18). In fact, an example of such bigger-sized 

regions of interest is in Fig. 2. SSNs are very hard to train on the 

datasets like that in Fig. 2, where the upper and lower image parts 

in some instances are even smaller than the region of interest 

(except for a few really thin stripes resembling those in Fig. 3). 

The solution is simple: the images with too big stripes are scaled 

vertically in order to artificially squeeze them to the view of much 

thinner stripes. Then deeper SSNs trained in the abovementioned 

manner are expected to perform SIS accurately, without 

segmenting the empty image. Once the squeezed region is 

segmented, the image is conversely rescaled to the original view. 

If the stripes are so big that the upper and lower image parts 

appear themselves as really thin stripes, then they indeed can be 

segmented. In this case, the regions of interest cannot be named 

curvilinear meandering stripes. Quite the contrary, the upper and 

lower parts are rather stripes. Therefore, indirect SIS is not only 

possible here, but is just required. Then, admittedly, two SSNs 

(for both parts) are to be trained. Nevertheless, the solution with 

squeezing, segmenting, and rescaling is undoubtedly possible 

also for this case because it requires training of only one SSN. 

XI. CONCLUSION 

The study is a prototype model for SIS of curvilinear 

meandering regions. Based on the experiments carried out, it is 

better to fulfil SIS of smaller (or thinner, narrower) curvilinear 

meandering regions by the means of SSNs. If the region of 

interest becomes bigger, it is recommended to squeeze it in order 

to avoid segmenting the empty image. 

The method of indirect SIS is not excluded. If the upper and 

lower image parts are sufficiently thin (or narrow), this method is 

applicable. However, indirect SIS will be practically reasonable 

only if the two SSNs used for segmenting the upper and lower 

image parts are shallower (and thus they are trained faster) than 

the SSN used for direct SIS. Otherwise, the method of indirect 

SIS with respect to curvilinear meandering regions is 

inapplicable. 

Along with the described results and recommendations, the 

study is a contribution to the field of the theory of SIS. The 

developed toy dataset generator of curvilinear meandering 

regions can be used for prototyping deep SSNs before solving 

real-world tasks of segmenting land lines, riverbeds, highways, 

mountain chains, etc. (requiring only augmentation of training 

data, whereas augmentation for the toy datasets is needless). 

Another important inference (as part of the contribution) is that 

the mean BF score is the key accuracy indicator. The mean BF 

score has the least value among the other accuracy indicators, and 

this value should be maximized first. 
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