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Introduction

When using of algorithms of identification for the management of technical objects and their diagnosis, it is
necessary to process large amounts of information. It requires using faster computers; however, their
hardware possibilities are limited. Therefore, this problem better solved using software methods by
applying parallel processing of information. When doing so, it is difficult to coordinate the architecture of
the algorithms with the architecture of the computers working in the modes of parallel calculation. In
particular, it is true for the algorithms realizing the method of the least squares (MLS), used for smoothing
the noise. The transformation of the initial system of conditional equations into the system of normal
equations leads to the reduction of numerical stability of the algorithm. The application of the traditional
methods of regularization is inefficient.

To develop a parallel MLS algorithm, it is necessary to present it in the form of decomposition of fragments
that can be processed independently from each other. Thus, there is a problem of development of a special
formalized model for the transformation of the traditional algorithm into an algorithm, possessing such
decomposition.

In the article, the specified problems are solved on the basis of a new approach. In it, the new mathematical
apparatus of symbolical analytical calculations, based on the application of symbolical combinatory models
[5,6,7,8,9, 10, 11], is applied. To reduce the size of the proof, the necessary references to the earlier
published results are made.

Using such approach, the numerical algorithm can be mapped into a symbolical combinatory model (SC
model) that is equivalent to the used computing algorithm.

Using method of least squares in algorithms for the test mode of identification

The numerical stability of MLS algorithm depends on the character of the matrix of initial system of
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conditional equations. This dependence shows especially strongly if the matrix of the system of conditional
equations is a Toeplitz matrix. Such matrices arise in the problems of the test control of analog dynamic
objects and in the problems of auto-regression.

We shall consider an analog object, parameters of which are identified from the results of the measurements
of dynamic process during discrete moments of time

Y(kT) :z Ciq, ¢ ; g ,=exp(=a,T).
i=1
(1)

The system of the identification equations is formed as a system of difference equations on the basis of the
operator

a i. Z*(kJri)
D=2 T :D(2) = pZ*{F(p.2) W (p))}.

@)

In generally, it is found from the analog transfer function of the object W(p), taking into account the
operator of interpolation filter F(p, z). This operator designates the mathematical operation of smoothing of
mistakes of discrete approximation of the input signal [4, 6, 8, 9].

In the mode of the test control, the estimates of the factors of polynomial-denominator (2) can be found by
solving the system of conditional equations

Y(an)z,(n) :;(M . [v], = i Cq =,
im1

3)
For finding the solution, the system of normal equations is defined
B(HXH)E(”) — ; (n) : B(nxn) — Y(an) T'Y(an) ; ; (n): Y(an) T.; (n) ) (4)
The solution is found as
B =H-u"; H=B"
&)

Using the numerical methods for inverting the matrix B, there can be big errors. The application of the
traditional methods of regularization, connected to the introduction of auxiliary functional in the solution of
the problem to reduce the errors, appeared to be inefficient. The functional itself brings methodical errors
into the solution of the problem. A new method of regularization can be developed, if the calculation of A
will be made on the basis of its analytical expressions. However, solving this problem using the traditional
methods is impossible. It can be done by mapping the MLS algorithm into a symbolical combinatory model
(SC model). It can be developed on the basis of ordered numerical sequences R(m, n) [7, 8, 9, 10], formed
in the space of integers

R(m,n) = i [goKC(v) *ﬁ]* pArng(Z,); Z, = pPerm* [(pPart(v) * m]
v (6)
The operator @Arng(Z ) is intended for the accommodation of the elements of set Z, over the elements of
other set Z, itself can be formed with the help of the combinatory operators from the components of other

set. In this case, Z, is formed as a set of permutations of the elements [8, 10, 11]. In [6, 7, 8] it is proved,
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that the numerical sequence (1) is a generating sequence for the other numerical sequence

G(m,n) = (0.m—1)@® R(m,n) = pKC(m)*(I.n). -
This expression can be generated using the positional principle [7]. It represents the index form for mapping
the Kronecker product of m sets. The operator of its formation in the lexicographic form we shall designate
as

ollr(m)* (1.n):> R(m,n) .

(®)
Taking into account (7), this expression can be represented as
ATr(m)*(1.n)= pKC(m)*(I.n)- O0.m —1). o
Using (6), we find the expression for an element of the matrix of system of normal equations
B,=y rT' Y 1= @Sum(j €1.N) *{[Z Ciq, H'/j ) [Z Ciq, i j}
i=1 i=1
(10)
The specification with the use of the positional principle can be used as [1]
A0 =) 0715 (o0 ,@oz,.):,(u 9]®(Uj
i=1 i=1 i=l i=1 (an

The symbolical expression for the element of the matrix of system of normal equations according to MLS
should satisfy the formula of Kronecker product of sets

S(r,L)=> {0 0 kj*(pArang(O(r-i— k)j}Xo{o ij*goArang(O(L—i- k)}}.

(12)

SC model of matrix of system of normal equations

The elements of the matrix (4) are formed as scalar products of column vectors of the matrix (3). They
depend on the coordinates of the cell of matrix

[Y] L= [q * Arang(r)]r. Diag(E ™). [5* Arang(L)]; (r,L)e [Ims = (;XZ)]. 13)

The expression for the elements of the matrix of normal equations is

B,,=y,"y,= ¢Sum(j el.N)* {(Z Cyq, ’”j@ (Z Caq, " ]}
i=1 i=1

(14)

As the coordinate systems for the algebraic complements of matrix elements we use vectors consisting from

the components of the numerical sequences G(m,n) = (0.m —1) @ R(m,n). The algebraic complement is
formed from a sub-matrix determined by the coordinate system

Ims = G(m,n)xoG(m,n). (15)
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The components (16) are used as the arguments for the operators of addressing and sampling

h = C*pAdres(G(n,m),) h = C*pAdres(G(n,m),).

(16)
Using (12) we shall write down
B = pSum@iel.N)*[S(r+i,L)®S(r,L+i)], -
or in an expanded form
B(r,L)= @ Sum(i e ﬁ) *{ KU 0 kj* Arang(U(rJri)H X o
k=1 i=l
X o HU 0, J * Arang (U (L+ i)ﬂ }
k=1 k=1 (18)
We introduce in (18) the indices of rows 7 and columns L of the matrix
B(r,L)= ¢ Sum(ie ﬁ) * { HU 0 kj*Arang(r) ®o[(u 0 k]*Arang(i)}x o
k=1 | k=1
X o HU 0 k}*Arang(L)}@{(U 0 kJ*Arang(i) .
k=1 k=1
- (19)
We use the symbol of direct lexicographic product
B(r,L)= @Sum(ic1.N)*(A®oU)= A®opSum(i e 1.N)*U . o)
Here the second factor not dependent on the variable 7, is taken out of the summation:
A= (U 0, j * pArang (r)} X o HU 0 kj* pArang (L)} ;
A= =1 Q1)
U= [ U 0, ] * pArang (i)} X oKU 0, ] * pArang (i)} ;
k=1 k=1 (22)
B(r,L)= A®V; V = @Sum(icl.N)*U . )
The expression (22) we shall write down in the form of a structure
2 _
G2 = 0.0® |pKC) *Lnl* parng(2,); Z =2 Z =11,
v (24)
and then we have
[U]ij:(ci'cj)'(qi'qj)' (25)

Using (25), we can write down
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Q {HH qk]®(:l ckH*Amng(i,i)}x
{geJolg e mes] |

V = ¢ Sum(i em)*

(26)
For a steady object, the elements of the matrix (26) are
V],.= @ Sum(i e 1.N)*{[lo (g, q,)]* (Arang[pPart(2)* N} o
Using the obtained results, we get
B ., = ¢Sum* {KZ] X 51 )* Arang(r,L)J@ V}. 28)

SC model of algebraic complements of matrix of normal equations

Using the properties of the operator @pDpv(arg) [1, 10, 11], we shall find the result of its application to the
structure R(m,n) (6). As it is shown in [5], this result can be represented by a graph structure

oGr(r,L): §, "= @Dpv *[pKc(m))*§, |x pDpv * [pKc (m,) * G, |x -

X[¢Dpv *[(pKC(mk)*‘?k ]]9 Z m,;=n
= (29)

The graph has the form of a branching tree, and it is adapted to the formation of computing algorithms with
parallel architecture. The properties of the operator @Dpv(arg)are found from the analysis of such graphs:

@Dvp(arg) * (0 ® o P) = @Sum * [0 * pArang (¢ Gr(P))]; (30)

(Z’DVP(;) *Q W= Q "M* (pArang(q) Gr(arg)* l_") arg = Uv . z V,=n;
i=lk i=Lk 31
@eDvp(r) * O = @Sum * [Q (m% {Arang[gp Gr(arg) * ,7]}]

* [(oPerm * Q] =% (oArang((o Gr(arg)* 7_") (32)

Using these properties, we have

@Dpv(arg) * G(m,n) = @Dpv(arg) * HgoPerm * ((pKC(m) * Gl‘ =

= @Perm* [qupv(arg) * (quC(m) * E)} (33)

(oDvp{((oPerm *?(”))XZ(”) }* g =g Arang[(quvp *" )@ . (34)
We use the relation based on the property of operators conjugation

(pPerm* g )* Arang(L) = § * Arang(gPerm*L). (35)
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On the systems of accommodation of degrees we shall generate the components

@ = lpDp )4 |5 4 prangoPern* ) o
g = [(onv(L_j) *5 o ]3 5 "% pArang (pPerm * L_j) : 37
The vectors consisting of these components are
a= 5 "% pArang (pPerm * Ur_l) ; (38)
iel.n—-1
B, m T
P = q "* pArang(pPerm* LLL PE
jel.n—1 (3 9)
Here the character of permutations is taken into the account. For S(7, L) (12) we shall get
oDpv(arg) * S(rx o L) = lpDpv(r) *q ™ 7 |- |pDpv(r x o L) * Diag(C ™ |
ooy g ] (40

We get the result of application of the operator @Dpv(arg) to the sub-matrix in the symbolical form as

pDpv(ims < oims ,)*S(rxoL) = [pDpv(r)*q ™ 7 |

. [@Dpv(l_" X oZ) * Diag(a () )] [(onv(Z) *5 () ] @1

The result of application of the operator ¢)Dpv(l_",Z) has a positional character relative to a fixed
component of the indices of columns. It allows to determine the algebraic complements for the elements of
the matrix B = (Y "-Y). The vector of values of algebraic complements for the elements of the matrix

B =(Y"-Y) is positionally attached to a component of the discrete poles

@eDpv(r,L)*§ = {@Sum * [(} * goArang((o Prm* ;)]} [(} * (oArang(Z)]. (42)
Minimization of algorithm complexity using method of decomposition

We use the method of decomposition of coordinate components into regular fragments of [2]:

oPart()*n =) (i.n-1) (ng{L"J (i.n—l)}*[G(i,n)@G(n—i,n)]

i=0 i=0 (43)
r = pPart(L.s)*7" = | ) z @ (L.k,).
i€l § (44)
To each of the regular fragments the following operator is applied:
PFg(ims)*G = ollr, - *\pllr*(q, * Arang(z)))- FG(G ). s

Therefore we have
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@Dpv * [q * Arang (pPrm* ;)]:> oSum * {[go Fg*G(v,, n)]®

®lpFg*Gn-v,,n)|®g,}. (46)

Thus, the following condition is observed:

G(v,,n),oG(n—v,,n) =n. (47)

Here,

pFg*G(k,m)= [ (4.9 ).

i,jel.k (48)

The decomposition of the coordinate components is mapped into decomposition of the graph structure on
the basis of which the operator pDvp(arg) s realized:

oGr(k, .k, )*G = pDvp(rxo L) * Gk, .m)|®

® [(oDvp(; X oZ) *G(k,, n)]. ki +k,=n (49)

From here we get

0Gr((ky K, )*T "= |pFe(k) * Gk, m|® pFe ) * Gl m @ vk 50)

Here J(kz) = G(k,,n)* Arang(k,) is a multiplier, the degree of which is determined by the parameters
of decomposition. The results of application of the operator @Dpv(arg)to every component of

@Perm* g, € G(n—1,m) can be expressed as Kronecker lexicographic product

oGr((k, k)2 = {pFe(k,)* Gl ,m)|® [pFe ) * Gl m) |® (e, ) o

<Pt * Gl m|@ Pt * Gll m @ v ()} .

Using the obtained results, the SC the model for the inverse matrix of dynamic process can be written down
in the following form:

(¥ 7-¥) "= gDpv{(Gmm)x o Glmm)[* Y = |[pDpv* O(G(n,m)) |
. [@Dpv{(G(n, m) xoG(n, m)}* A ] [(onv *O(G(n,m) )] (52)

Conclusions

In the derived analytical expressions for the inverse matrix of the system of normal equations, the factors
influencing the numerical stability of the MLS algorithm are isolated. In particular, the weight matrix that
corresponding to the MLS in which the influence of the amount of processed information is displayed, is
isolated. These expressions are derived as a decomposition consisting of separate fragments that can be
processed independently from each other. The forms of such decomposition can be varied by changing the
parameters of the symbolical combinatory model. It allows to flexibly reconstruct the parallel architecture
of the MLS algorithm with software methods, coordinating it with the parallel architecture of the computer
working in the parallel mode of calculation.

The system of conditional equations to which Y. Merkuryev has given a new name: "Metamodel" in his
doctoral thesis, should be transformed into a system of normal equations on the basis of strict mathematical
relations. An unaware reader can have a deceptive impression, that the term "Metamodel" designates some
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new direction in information technologies. Actually, it is only a designation of the initial description which
in itself is not valid. Therefore, on its basis only, any methods of imitation modeling, about which Y.
Merkuryev speaks, cannot be constructed [14].

In the new form of the algorithm, the features of the dynamic character of identified object are reflected.
The numerical stability of the algorithm depends on the values of distances of poles of the object’s discrete
operator. They should be distinct enough from the background of working noise and it imposes certain
restrictions on the choice of the sampling rate of signals 7. Therefore, the method of “the nearest
neighbours,” which is submitted as a new achievement in the field of information technologies by its
authors Y. Merkuryev, L. Rastrigin, and G. Vulfs, is mathematically incorrect [12, 13, 15]. Actually it is
offered to solve the problem of identification and imitation modelling in the area of degenerate systems of
equations where reliable results cannot be received.

The results, found for the MLS algorithms using SC models, allow to make the computing process
observable and to correct its stability.
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G. Burov. Symbolical Combinatory Model of Parallel Algorithm of Identification That Uses Method of Least
Squares

The problem of development of parallel algorithms for the method of the least squares (MLS), used in the
identification of analog dynamic objects, is considered. With the help of symbolical combinatory models, the
analytical expression of the inverse matrix of the system of normal equations is found. It has allowed to apply non-
conventional methods of regularization and to reveal the factors that influence the numerical stability of the MLS
algorithm. The reduction of the distances between the discrete poles of the object can lead to degeneration of the
algorithm. The increase in the linear dependence between the vectors of the matrix of initial system of equations leads
to the same results. The developed theoretical model of the method of least squares (MLS) shows, that the
improvement in solving the problem of approximation is achieved due to the reduction of the stability of computing
algorithm. In the inverse matrix of the system of normal equations, as a matrix factor, there arises a matrix
constructed from fragments of the products of mutual distances between discrete poles with absolute value less than
one. The determinant of this matrix depends on the number of equations in the system of conditional equations. It
decreases in a nonlinear way with the increase in the number of the determined parameters and the amount of
processed information. The use of symbolical combinatory models allows, to some extent, to overcome the
computation difficulties.

G. Burovs. Simbolisks kombinatoriskais modelis paralelam identifikacijas algoritmam, kas izmanto mazako
kvadratu metodi

Raksta apskatita paralelu algoritmu izstrade mazako kvadratu metodei (MKM), ko izmanto analogo dinamisko objektu
identifikdacijai. Izmantojot simboliskos kombinatoriskos modelus iegiita analitiska izteiksme inversajai normalo
vienadojumu matricai. Tas Jauj izmantot netradicionalas regularizacijas metodes un noteikt faktorus, kas ietekmé
MKM algoritma skaitlisko stabilitati. Attalumu starp objekta diskrétajiem poliem samazinasands var novest pie
algoritma degeneracijas. Pie tdada pat rezultata noved lineards atkaribas starp sakotnéjas matricas vektoriem
palielinasanas. legiitais MKM teorétiskais modelis parada, ka aproksimdcijas uzdevuma risindjuma uzlabosana notiek
samazinot skaitloSanas algoritma skaitlisko stabilitati. Normalo vienddojumu sistémas inversds matricas sastava
ietilpst matricas reizindatdjs, kas veidots no diskréto polu savstarpéjo attalumu reizinajumu fragmentiem, kas péc
absoliitas vértibas ir mazaki par vienu. Sis matricas determinants ir atkarigs no vienddojumu skaita nosacito
vienadojumu sistéma. Palielinoties nosakamo parametru skaitam un apstradajamas informdcijas daudzumam, tas
samazinds nelineara veida. Simbolisko kombinatorisko modelu izmantoSana lauj zinama méra parvaret radusas
izskaitloSanas problemas.

I'. Bypos. CuMBoOJIbHasi KOMOMHATOPHAsI MO/Je/Ib NAPALIeIbHOI0 ATTOPUTMA HICHTH(PHKALINH C
HCIOJb30BAHHEM METOa HANMEHBIIINX KBAPATOB

Paccmompena 3a0aua nonyuenuss napaniienbHuIX aicopummos Oisi memooa Haumenvuwiux xeaopamos (MHK),
npuMeHsemMvlx 018  UOeHmuuKkayuu aHano208vlx  OuHamuueckux obvekmos. C  nOMOWDBIO  CUMBOTLHLIX
KOMOUHAMOPHBIX MOOejell NOJYYeHO (DOopMYIbHOe BblpadceHue 00pamHoOU Mampuybl CUCHEeMbl HOPMATbHBIX
ypasHeHuu. Smo no360.1UN0 NPUMEHUMb HeMPAOUYUOHHBLE MeMOObl Pe2YIAPU3AYUL U BbIABUMb PAKMOPSI, IUAIOUUE
HA GbIUUCIUMETbHYIO yemouyugocms ancopumma MHK. Yuenvuenue paccmosnuti medxcoy OUCKpemHbIMU NOIOCAMU
obvexma Mmodcem npugecmu K 8uipodcoeHuto aneopumma. K smomy owce npusooum yeenuyenue JUHEUHOU
3a6UCUMOCU MedHCOY BEKMOPAMU MAMPUYbl UCXOOHOU cucmembl ypasuenutl. Tlonyuennas meopemuueckas Mooensb
MHK noxasvieaem, umo yayuuienue peuieHus  3a0aqu annpoKcumMayuy O0O0CMueaemcsi 3d cyem YMeHbUeHUs
VCMOUYUBOCTNU BLIYUCIUMENLHO20 aA0pUmMa. B obpamuylo mampuyy cucmemvl HOPMATbHBIX YPAGHEHUL BXOOUM
MAMPUUHBIL  MHOJICUMENb, NOCMPOEHHBINE U3  (DPACMEHMO8 NPOU3BEOEHUN  G3AUMHBIX PACCMOSHULL  MeHCOY
OUCKPEMHBIMU ROIOCAMU, KOMOpble NO AOCOMOMHOU BeudUHe MeHbule eOUHUYbL. JJemepMuHanm 5moi Mampuiybl
3a6UCUmM OM YUCIA YPAGHEHUT, BX00AUUX 8 CUCEMY YCA08HbIX ypasHenul. On yMeHbuaemcs no HeauHelHoMY 3aKOHY
C y8enuueHuemM 4YUCIA ONpeoesieMblX napamempos u obvema obdpabameisaemol ungopmayuy. Hcnonvzosanue
CUMBONIbHLIX  KOMOUHAMOPHBIX MOOejell N0360/iem 68 OonpedeleHHOl CcmeneHu npeoodonems B03HUKAoujue
sbluUCIUMENbHbLE MPYOHOCHIU.
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