Bose-Einstein Correlations of Charged Hadrons in Proton-Proton Collisions at √s = 13 TeV
Journal of High Energy Physics 2020
Viesturs Veckalns

Bose-Einstein correlations of charged hadrons are measured over a broad multiplicity range, from a few particles up to about 250 reconstructed charged hadrons in proton-proton collisions at s = 13 TeV. The results are based on data collected using the CMS detector at the LHC during runs with a special low-pileup configuration. Three analysis techniques with different degrees of dependence on simulations are used to remove the non-Bose-Einstein background from the correlation functions. All three methods give consistent results. The measured lengths of homogeneity are studied as functions of particle multiplicity as well as average pair transverse momentum and mass. The results are compared with data from both CMS and ATLAS at s = 7 TeV, as well as with theoretical predictions. [Figure not available: see fulltext.].


Keywords
Hadron-Hadron scattering (experiments)
DOI
10.1007/JHEP03(2020)014
Hyperlink
https://link.springer.com/article/10.1007%2FJHEP03%282020%29014

Veckalns, V., CERN international group of authors. Bose-Einstein Correlations of Charged Hadrons in Proton-Proton Collisions at √s = 13 TeV. Journal of High Energy Physics, 2020, Vol. 2020, No. 3, Article number 14. ISSN 1126-6708. e-ISSN 1029-8479. Available from: doi:10.1007/JHEP03(2020)014

Publication language
English (en)
The Scientific Library of the Riga Technical University.
E-mail: uzzinas@rtu.lv; Phone: +371 28399196