Impact of Different Epoxidation Approaches of Tall Oil Fatty Acids on Rigid Polyurethane Foam Thermal Insulation
Materials 2021
Arnis Āboliņš, Ralfs Pomilovskis, Edgars Vanags, Inese Mieriņa, Sloawomir Michalowski, Anda Fridrihsone, Miķelis Kirpļuks

A second-generation bio-based feedstock—tall oil fatty acids—was epoxidised via two pathways. Oxirane rings were introduced into the fatty acid carbon backbone using a heterogeneous epoxidation catalyst-ion exchange resin Amberlite IR-120 H or enzyme catalyst Candida antarcticalipase B under the trade name Novozym® 435. High functionality bio-polyols were synthesised from the obtained epoxidated tall oil fatty acids by oxirane ring-opening and subsequent esterification reactions with different polyfunctional alcohols: trimethylolpropane and triethanolamine. The syn-thesised epoxidised tall oil fatty acids (ETOFA) were studied by proton nuclear magnetic resonance. The chemical structure of obtained polyols was studied by Fourier-transform infrared spectroscopy and size exclusion chromatography. Average molecular weight and polydispersity of polyols were determined from size exclusion chromatography data. The obtained polyols were used to develop rigid polyurethane (PU) foam thermal insulation material with an approximate density of 40 kg/m3. Thermal conductivity, apparent density and compression strength of the rigid PU foams were de-termined. The rigid PU foams obtained from polyols synthesised using Novozym® 435 catalyst had superior properties in comparison to rigid PU foams obtained from polyols synthesised using Am-berlite IR-120 H. The developed rigid PU foams had an excellent thermal conductivity of 21.2–25.9 mW/(m·K).


Keywords
tall oil fatty acids; ion-exchange resin; lipase enzyme catalyst; high functionality polyols; rigid polyurethane foam
DOI
10.3390/ma14040894
Hyperlink
https://www.mdpi.com/1996-1944/14/4/894

Āboliņš, A., Pomilovskis, R., Vanags, E., Mieriņa, I., Michalowski, S., Fridrihsone, A., Kirpļuks, M. Impact of Different Epoxidation Approaches of Tall Oil Fatty Acids on Rigid Polyurethane Foam Thermal Insulation. Materials, 2021, Vol. 14, No. 4, Article number 894. ISSN 1996-1944. Available from: doi:10.3390/ma14040894

Publication language
English (en)
The Scientific Library of the Riga Technical University.
E-mail: uzzinas@rtu.lv; Phone: +371 28399196