
Estimating Energy Reduction Amount in the Event of 
Demand Response Activation: Baseline Model 

Comparison for the Baltic States
Liga Sadovica1, Valentins Lavrinovics, 2, Antans - Saulus Sauhats3, Gatis Junghans 4, Karin Maria Lehtmets5

1 Riga Technical University, 12/1 Azenes str., Riga, Latvia, liga.sadovica@gmail.com;
2 Riga Business School, 11 Skolas str. Riga, Latvia, valentins.lavrinovics@ast.lv;
3 Riga Technical University, 12/1 Azenes str., Riga, Latvia, sauhatas@eef.rtu.lv;

4 Riga Technical University, 12/1 Azenes str., Riga, Latvia, gatis.junghans@ast.lv
5Elering, Kadaka tee 42, 12915 Tallinn, karin.lehtmets@elering.ee

Abstract — Demand response integration in energy markets can 
provide significant financial saving for grid operators and 
market participants and promote optimal resource allocation. 
An important step towards the integration is the introduction of 
methodology estimating energy transferred via demand 
response activation event. In essence, a consumption baseline 
model is a mathematical forecast of the energy consumption 
pattern that would have occurred in the absence of demand 
response event. These calculations are then used as the basis for 
the financial settlement among different market parties –
consumers, aggregators, system operators and balance 
responsible parties. Currently there is no universal consensus on 
the best consumption baseline model and approaches used, 
differ wildly even among countries with relatively high demand 
response commercial activity. The objective of this paper is to 
compare different consumption baseline methodologies in terms 
of accuracy and robustness while taking into account the unique 
challenges within the Baltic region. For the comparative analysis 
we use hourly consumption patterns of one year for 40 different 
types of consumers. The analysis suggest that from the 
consumption baseline models reviewed, UK model performs the 
best in terms of accuracy and robustness.

Index Terms — Demand response, balancing market, baseline 
calculations, system balancing, independent aggregation.

I. INTRODUCTION

Demand response service (DR) is a temporal change in 
consumer’s energy consumption due to a reaction to price 
signals or by other measures [1]. DR is associated with 
multiple benefits such as increased system flexibility, 
improved network congestion, cost-effective alternative to 
grid investments and improved energy efficiency [2], [3].

DR can be broadly divided in two groups: implicit DR 
and explicit DR. Implicit DR ("price based" DR) refers to
consumers choosing to be exposed to time-varying electricity 
prices and/ or time-varying network tariffs that reflect the real 
cost of electricity at the time of use and allows the consumer 
to react to that price depending on their own preferences.

Explicit DR refers to a program, where demand competes 
directly with supply in the wholesale, balancing and ancillary 
services’ markets directly or through the services of 
aggregators. This is achieved through the controlled changes 
in the load that are traded in the electricity markets, providing 
a comparable resource to generation, and receiving 
comparable prices [4], [5]. Currently, implicit DR in Latvia 
and Estonia is available to consumers via electricity supply 
contracts where retail price is linked to the spot price. Starting 
from late 2017, there is an ongoing DR aggregation pilot study 
in Estonia, however the explicit DR is not commercially active
there or anywhere else in the Baltics. [6]

For explicit DR to become commercially active, a market 
framework describing the financial settlement among the 
market parties (such as consumers, aggregators, system 
operators and balance responsible parties) needs to be 
developed. Estimate of DR delivered also known as the
electricity reduction amount (ERA) is a pivotal part of such a
framework. ERA is the difference between the actual 
consumption that occurred and the forecasted consumption 
that would have occurred in the absence of DR activation 
event. This forecast is called a baseline and a method for 
baseline estimation is called consumption baseline model 
(CBM) (Figure 1) [7].

Figure 1. Descriptions of models reviewed
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As of now there is no universal consensus on the best 
performing CBM and even in countries where the DR 
commercial activity is relatively high (e.g. UK, France, 
Belgium, USA) the choice of the model tends to be rather 
fluid, and CBMs are regularly updated to reflect the reduced 
costs of data collection and processing as well as improved 
understanding of the underlying processes [2], [4], [5], [7]-
[12]. Regional CBM compatibility studies have been 
performed in USA [7], [10], UK [13], Australia [14] and EU 
in general [4], [5] among others. When considering a CBM 
proposal for the Baltic region, we need to take into account the 
additional challenges regarding the data resolution. 
Traditionally, DR events for a single metering point can be 
shorter than 15 minutes. Currently the imbalance settlement 
period in the Baltics is 1 hour and the metering data that can 
be used for the financial settlement are collected at the same 
time resolution [6]. The mismatch between the length of a DR 
event and the time resolution of available metering data 
further complicates development of acceptable CBM [11]. The 
main contribution of this paper is testing CBMs' accuracy and 
skewness on a lower resolution metering data (using the 
hourly data that are typically used in Baltics instead of more 
popular 5-minute or 15-minute resolution usually used in the 
previous research). Such tests are important because the 
change in data resolution can have an impact on the relative 
performance of CBMs. 

The rest of the paper is organized as followed – overview 
of CBMs tested, CBM comparison analysis and Conclusions 
and further results.

II. OVERVIEW OF CBM

A. Characteristics of CBM

A CBM is used to forecast the consumption in the absence
of DR activation event. A well-designed CBM enables grid 
operators and utilities to measure performance of DR 
resources and correctly attribute imbalance caused. Such CBM 
benefits all stakeholders by aligning the incentives, actions 
and interests of consumers, aggregators, utilities and grid 
operators, however, not all CBMs can be considered well-
designed [11]. A CBM that systematically over-estimates the 
forecasted consumption will over-value the contribution of the 
participating DR resource and result in overestimation of 
positive imbalance for the balance responsible party of the 
said resource. Conversely, a CBM that systematically 
underestimates forecasted load will under-value the 
contribution of the participating DR resource and result in 
overestimation of negative imbalance for the balance 
responsible party [11].

Based on the literature review, CBMs are characterized by 
the following parameters: accuracy (low average expected 
error); robustness (absence of systematic error in either 
direction and lack of obvious data manipulation exploitation 
possibilities for opportunistic market participants) and 
transparency (market parties can apply the CBM and get the 
same results as the grid operator) [7], [14]. It is important to 
note that at times these characteristics are at odds with each 
other – a very accurate models based on advanced data 
processing methodologies tend to be fairly complex and non-
transparent, while very simplistic models tend to be fairly 
vulnerable to data manipulation [2], [11]. Accordingly, the 
choice CBM is ultimately dependent on the relative 

importance attributed to accuracy, robustness and simplicity.
This implied necessity for tradeoffs when designing a CBM 
for a particular market, at least partly explains the exotic 
variety of CBMs already in place.

All CBMs can be broadly divided in two categories – day-
matching forecast and regression forecast [12]. In the Baltics 
the concept of explicit DR is still fairly novel and the new 
market participants (such as independent aggregators) still 
faces limited enthusiasm from the incumbent market 
participants. Based on the market maturity and the Baltics 
market participants' views presented in public consultation 
summary, it is obvious that a CBM relying on advanced 
statistic and data processing tools would currently not be 
feasible [2], [7], [14], [15]. Similar approach can be observed 
in the EU, where, as of now, only France balancing market has 
employed long-term statistics-based model, while all other EU 
states, where CBM is present, has opted for day-matching 
CBMs [4], [5], [11]. Furthermore, our position on regression 
based models were further cemented by EnerNOC (2009) that 
stated that regression models have been rejected in the USA 
due to the lack of support from the market participants. 
Accordingly, regression based models are not reviewed in this 
paper on the basis of not fulfilling the minimum requirements 
of simplicity parameter [11].

The day-matching CBMs can be further divided in two 
sub-categories – models using only data from before the DR 
activation event and models using data from both before and 
after the DR activation event. In the EU CBMs using only ex-
ante metering data seem to enjoy higher popularity [4], [5],
which might be linked to the ex-ante/ex-post CBMs being 
more vulnerable to data manipulation exploits.

B. Baseline methodology forecast models

We tested four day-matching CBMs – three of those only
use metering data from before DR activation event and one 
uses data from both before and after activation. Description of 
the CBMs tested is presented in Table 1.

1. EnerNOC CBM has been used and tested in North
America (USA) and is one of the earlier baseline
models tested in markets. EnerNOC original variation
operates with time resolution of 1 hour. [11]

2. UK model is adopted from the paper by Imperial
College London (2014) and for a time was used in the
UK. The model originally operates with higher time
resolution and the model has been adjusted to the use
of hourly metering data [13].

3. Average CBM is the only model in our test that uses
both before and after DR activation event data. The
model broadly follows concepts present in the CBM
employed in Ireland [4], [5].

4. Daily profile CBM is loosely based on the
methodology present in Belgium [4], [5]. Similarly, to
the Daily profile, the Belgium model does not fully
use day-matching approach since only the data from
the same day is employed in the CBM. Furthermore,
Belgium uses 15 min time resolution.

Based on the paper presented by DNV KEMA (2013) to 
the basic CBM calculation type, the separate calculation can 
be applied to align the baseline with the observed conditions 



of the event day – baseline adjustment method. CBM 
adjustment method can improve the performance of the model 
significantly. The factors used for adjustment rules may be 
based on, but are not limited to: temperature, humidity, 
calendar data, sunrise/sunset time and/or; event day operating 
conditions (most widely used factor). There are two main type 
of baseline adjustments methods:

1. Additive, which adds a fixed amount to the
provisional baseline load in each hour, such that the
adjusted baseline will equal the observed load at a
time shortly before the start of the event period.

2. Scalar, which multiplies the provisional baseline load
at each hour by a fixed amount or scalar, such that the
adjusted baseline will equal the observed load on
average during a window of time shortly before the
start of the event period [12].

In our analysis, additive adjustment is used in EnerNOC
CBM, UK CBM and Average CBM, while scalar is used 
in Daily profile CBM (see table I).

TABLE I. TABLE TYPE STYLES

CBM Short description

EnerNOC

Baseline is equal to the average consumption of 5 corresponding hours with highest consumption within 10 last non-event days. 
Baseline is adjusted upwards by the average difference between last two hours’ actual consumption and their baseline.

(1)

UK

Baseline is equal to the average consumption of 5 corresponding hours within 5 days with highest daily consumption (out of 10 last 
non-event days). Baseline is adjusted upwards and downwards by the difference between last two hours’ actual consumption and their 
baseline.

(2)

Average
Baseline is equal to the average of consumption one hour before and one hour after the DR event.

(3)

Daily profile

Baseline is equal to the consumption within preceding hour multiplied by the fraction of increase/decrease of consumption in the 
corresponding hours a day before the event.

(4)
baseline at hour t;

highest corresponding hourly consumption within 10 last non-event days;
highest corresponding hourly consumption in a day with highest daily consumption within 10 last non-event days.

III. CBM COMPARISON ANALYSIS

A. Data description

We used hourly metering data that represents annual
consumption of 40 randomly selected medium to large 
electricity end-users from the Baltic region. The set of 
consumers included different consumption patterns with the 
hourly average consumption varying from 50 kWh to 3 MWh. 
In our analysis, we mainly focus on the medium and large 
consumers due to two reasons: such consumers usually are 
characterized with higher consumption pattern volatility, such 
consumers have higher DR potential.

To ensure that the sample is heterogeneous and represents 
different consumption patterns, correlation analysis was 
performed for all pattern pairs. The results of the correlation 
analysis indicated a well diverse sample and indicated that no 
pattern type is over-represented.

The total number of hours used in the analysis is 8760. 
Since each model requires different number of days or hours
before the event, the number of hours with forecasted baseline 
differs among the models tested.

B. Analysis

Based on the literature review all CBMs analyzed fulfil the
simplicity parameter. Accordingly, the objective of the 
analysis was to quantify each model's accuracy and 
robustness. 

For robustness comparison, we calculated netted mean 
forecast errors (NMFE) and for the accuracy measurement we 
used absolute mean forecast error (AMFE). If NMFE is equal 
(close) to zero it is expected that in long term inaccuracy will 
not have impact on total amounts of energy transferred – in 
other words, NMFE measure the extent to which the model is 
systematically skewed in either direction. AMFE measures the 
expected deviation in a single instance. As a benchmark for 
the AMFE we use results from the study covering different 
CBMs in USA where the model accuracy for models with 
adjustments ranged from 10-14% [12]. 

The baseline error was calculated as follows:

, where (5)

– Baseline error (kWh),

– Baseline or forecasted energy consumption (kWh),
– actual consumption (kWh).



Sample error at a trading interval (t) is calculated as 
follows:

, where (6)

- baseline error at a trading interval t,
I – number of consumption patterns in the testing sample,
i – consumption pattern.

Accordingly, if the baseline error is above 0 the baseline is 
overestimated while if the baseline error is below 0, the 
baseline is underestimated.

NMFE is calculated as follows:

, where (7)

NMFE – netted mean forecast error for all trading periods 
within the sample,

t – trading interval,
T – all trading intervals in the sample.

AMFE is calculated as follows

, where (8)

AMFE – absolute mean forecast error for all trading 
periods within the sample.

To estimate the statistical significance of the average 
accuracy differences observed for both MNFE and AMFE, we 

run F test for the difference in two variances for all CBM pairs 
at significance level of 99%. The results indicate that all 
CBMs' variances are significantly different from each other. 
We continue with t-test for differences in error means of 
CBMs. The results are presented in the next section.

C. Results

The descriptive statistics of NMFE and AMFE is
presented in table II and table III.

TABLE II. NMFE DESCRIPTIVE STATISTICS

EnerNOC 
CBM

UK 
CBM

Average 
CBM

Daily prof. 
CBM

SD 33.21% 7.54% 3.52% 6.64%
Variance 1103%2 57%2 12%2 44%2

Max 727% 66% 182% 389%
Mean 36.6% 0.7% 1.1% 1.1%
Min 1% -43% -23% -100%
Sample 8312 5797 8759 8686

TABLE III. AMFE DESCRIPTIVE STATISTICS

EnerNOC 
CBM

UK 
CBM

Average 
CBM

Daily prof. 
CBM

SD 33.15% 6.24% 3.27% 6.49%
Variance 1099%2 39%2 11%2 42%2

Mean 37.8% 9.5% 4.8% 7.1%
Sample 8312 5797 8759 8686

The density distribution for forecast errors of the CBMs 
tested is presented in Figure 2. 

Figure 2. Density distribution for forecast errors of the CBMs tested 



The results of the t-test for the mean difference for the 
model pairs for NMFE and AMFE values are presented in the 
table IV and table V accordingly.

TABLE IV. NMFE T-TEST RESULTS

t-value for differences of error means

UK CBM Average 
CBM

Daily prof. 
CBM

EnerNOC CBM 95.280*** 97.068*** 95.691***
UK CBM 3.969*** 3.677***
Average CBM 0.366

Note: Significance: ***:1% level; **: 5% level; *:10% level.

The results for the t-test for NMFE indicate that there is no 
significant difference between NMFE of Average CBM and 
Daily profile CBM. All other differences are statistically 
significant at a significance level 1%.

TABLE V. AMFE T-TEST RESULTS

t-value for differences of error means

UK CBM Average 
CBM

Daily prof. 
CBM

EnerNOC CBM 72.895*** 90.306*** 83.059***
UK CBM -52.781*** -22.906***
Average CBM -28.738***

Note: Significance: ***:1% level; **: 5% level; *:10% level.

The results for the t-test for AMFE indicate that the CBMs 
present significantly different AMFE at the 1% significance 
level.

UK CBM shows the lowest NMFE (0.7%). The results 
indicate that if this model were applied there would be no 
substantial long-term inaccuracy of ERA in either direction. 
The EnerNOC CBM shows the poorest results, which is 
associated with overestimation of ERA for more than one third 
of the total energy volume.

Analysis of AMFE indicates that all models expect for 
EnerNOC CBM perform better than the benchmark value of 
10-14% and as such is considered to fulfill the minimum 
accuracy condition.

IV. CONCLUSIONS AND FURTHER RESEARCH

DR is associated with multiple benefits such as increased 
system flexibility, improved network congestion, cost-effective 
alternative to grid investments and improved energy efficiency. 
These benefits can only be taken advantage of if the DR 
service delivered can be measured in an accurate and 
transparent way. In this paper, we attempted to identify the 
most promising CBM for the Baltic States based on the criteria 
of simplicity, accuracy and robustness. From the four potential 
CBMs analyzed the best performing CBM in terms of accuracy 
and robustness is UK model. The model could be further 
studied and improved by testing different baseline adjustment 
methods. Furthermore, CBMs could be tested for systematic 
biases in specific points of the consumption pattern such as 
peak/off-peak and ramp up/ ramp down periods.
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