Probing Contact Electrification: A Cohesively Sticky Problem
ACS Applied Materials and Interfaces 2021
Peter C. Sherrell, Andris Šutka, Nick Shepelin, Linards Lapčinskis, Osvalds Verners, Līva Ģērmane, Martin Timusk, Renzo A. Fenati, Kaspars Mālnieks, Amanda V. Ellis

Contact electrification and the triboelectric effect are complex processes for mechanical-to-electrical energy conversion, particularly for highly deformable polymers. While generating relatively low power density, contact electrification can occur at the contact-separation interface between nearly any two polymer surfaces. This ubiquitousness of surfaces enables contact electrification to be an important phenomenon to understand energy conversion and harvesting applications. The mechanism of charge generation between polymeric materials remains ambiguous, with electron transfer, material (also known as mass) transfer, and adsorbed chemical species transfer (including induced ionization of water and other molecules) all being proposed as the primary source of the measured charge. Often, all sources of charge, except electron transfer, are dismissed in the case of triboelectric energy harvesters, leading to the generation of the “triboelectric series”, governed by the ability of a polymer to lose, or accept, an electron. Here, this sole focus on electron transfer is challenged through rigorous experiments, measuring charge density in polymer-polymer (196 polymer combinations), polymer-glass (14 polymers), and polymer-liquid metal (14 polymers) systems. Through the investigation of these interfaces, clear evidence of material transfer via heterolytic bond cleavage is provided. Based on these results, a generalized model considering the cohesive energy density of polymers as the critical parameter for polymer contact electrification is discussed. This discussion clearly shows that material transfer must be accounted for when discussing the source of charge generated by polymeric mechanical energy harvesters. Thus, a correlated physical property to understand the triboelectric series is provided.


Keywords
cohesive energy | contact electrification | energy harvesting | interfaces | polymer | triboelectric
DOI
10.1021/acsami.1c13100
Hyperlink
https://pubs.acs.org/doi/abs/10.1021/acsami.1c13100

Sherrell, P., Šutka, A., Shepelin, N., Lapčinskis, L., Verners, O., Ģērmane, L., Timusk, M., Fenati, R., Mālnieks, K., Ellis, A. Probing Contact Electrification: A Cohesively Sticky Problem. ACS Applied Materials and Interfaces, 2021, Vol. 13, No. 37, pp.44935-44947. ISSN 1944-8244. Available from: doi:10.1021/acsami.1c13100

Publication language
English (en)
The Scientific Library of the Riga Technical University.
E-mail: uzzinas@rtu.lv; Phone: +371 28399196