
RIGA TECHNICAL UNIVERSITY
Faculty of Electronics and Telecommunications

Institute of Radio Electronics

Rihards Novickis
Doctoral Student of Study Programme ”Electronics”

IMPLEMENTATION OF STEREO-VISION
ALGORITHMS IN HETEROGENEOUS

EMBEDDED SYSTEMS

Summary of the Doctoral Thesis

Scientific supervisors
Lead researcher Dr. sc. ing
ARTŪRS ĀBOLTIŅŠ

Researcher Dr. sc. ing
ROLANDS ŠĀVELIS

RTU Press
Riga 2022

Novickis R. Implementation of stereo-vision algo-
rithms in heterogeneous embedded systems. Sum-
mary of the Doctoral Thesis. – Riga: RTU Press,
2022 – 44 p.

Published in accordance with the decision of the Pro-
motion Council ”Nr.206.11” in 22nd of December,
2022

https://doi.org/10.7250/9789934227455
ISBN 978-9934-22-745-5 (pdf)

2

DOCTORAL THESIS PROPOSED TO RIGA TECHNICAL UNIVERSITY FOR THE
PROMOTION TO THE SCIENTIFIC DEGREE OF DOCTOR OF SCIENCE

To be granted the scientific degree of Doctor of Science (Ph. D.), the present Doctoral Thesis
has been submitted for the defence at the open meeting of RTU Promotion Council on March
13:00, 2022 at the Faculty of Electronics and Telecommunications of Riga Technical University,
12 Azenes Street, Room 201.

OFFICIAL REVIEWERS

Associate Professor Dr. sc. ing. Dmitrijs Pikuļins
Riga Technical University, Latvia

Assistant Professor Dr. sc. ing. Paolo Meloni
University of Cagliari, Italy

Associate Professor Dr. sc. ing. Wassim Hamidouche
University of Rennes, France

DECLARATION OF ACADEMIC INTEGRITY

I hereby declare that the Doctoral Thesis submitted for the review to Riga Technical Univer-
sity for the promotion to the scientific degree of Doctor of Science (Pf. D) is my own. I confirm
that this Doctoral Thesis had not been submitted to any other university for the promotion to a
scientific degree.

Rihards Novickis . (signature)

Date: .

The Doctoral Thesis is written in English. It consists of an Introduction; 4 Chapters; Conclu-
sions; 76 figures; 7 tables; 10 appendices; the total number of pages is 122, including appendices.
The Bibliography contains 132 titles.

3

CONTENTS

ABBREVIATIONS . 5

GENERAL DESCRIPTION OF THE WORK 7

.1 TECHNOLOGICAL CONTEXT . 11
1.1 Processing Paradigms . 11
1.2 Heterogeneous System on Chip . 12
1.3 Linux Operating System . 13

.2 IMAGE PROCESSING ALGORITHMS 15
2.1 Image Formation and Correspondence Algorithms 15

2.1.1 General Projective Camera and Lens Distortions 15
2.1.2 Epipolar Geometry . 17
2.1.3 Stereo Correspondence . 18

2.2 AI-Based Algorithms . 19

.3 HETEROGENEOUS COMPUTING ARCHITECTURES. 21
3.1 Heterogeneous Computing Based on Direct Memory Access 21
3.2 Asynchronous Multi-Processing Subsystem 23
3.3 Approach to Management of Software Components. 24

.4 ADAPTATIONAND IMPLEMENTATIONOF IMAGEPROCESSINGALGORITHMS
26
4.1 An Approach of Feed-Forward Neural Network Throughput-Optimized Imple-

mentation in FPGA . 26
4.2 Heterogeneous System Architecture for Stereo Image Processing 28
4.3 Stereo Image Processing Pipeline . 30

4.3.1 Deinterleaving of the input stream . 30
4.3.2 Bayers pattern interpolation and RGB-to-Grayscale conversion 30
4.3.3 An approach to spatial image transformation 32
4.3.4 Feature extraction . 35
4.3.5 Correspondence calculations . 36

4.4 Demonstrator system . 36

.5 CONCLUSIONS . 38

BIBLIOGRAPHY . 40

4

ABBREVIATIONS

ADC Analog-to-Digital Converter
AI Artificial Intelligence
AMP Asynchronous Multi-Processing
ANN Artificial Neural Network
ASIC Application Specific Integrated Circuit
AXI Advanced eXtensible Interface
CFA Color Filter Array
CLA-FPU Control Law Accelerator Floating Point Unit
CMA Contiguous Memory Allocator
CMOS Complementary Metal-Oxide Semiconductor
CNN Convolutional Neuron Networks
CPU Central Processing Unit
DMA Direct Memory Access
DNN Deep Neural Network
DSP Digital Signal Processing
ELF Executable Linked Format
ERDF European Regional Development Fund
FFNN Feed Forward Neural Network
FIFO First-In-First-Out
FPGA Field Programmable Gate Array
HLS High-Level Synthesis
HPC High Performance Computing
HSoC Heterogeneous System on Chip
I/O Input/Output
IC Integrated Circuit
IoT Internet of Things
IP Intellectual Property
ISA Instruction Set Architecture
MM Memory-Mapped
MPU Micro Processing Unit
NN Neural Network
OCRAM On-Chip Random Access Memory
OS Operating System
PC Program Counter
PCIe Peripheral Component Interconnect Express
PWM Pulse Width Modulation
RT Real-Time
RTL Register Transfer Level
SCU Snoop Control Unit
SIP Silicon Intellectual Property
SIPO Serial-In-Parallel-Out

5

SoA State of Art
SoC System on Chip
SRAM Static Random Access Memory
ST Streaming
VHDL Very High Speed Integrated Circuit Hardware Description Lan-

guage
WTA Winner-Take-All

6

GENERAL DESCRIPTION OF THEWORK

The Urgency of Subject Matter

The Thesis addresses the relationship between computerized perception and increasingly
complex Heterogeneous System on Chip (HSoC) technologies, in particular: the on-chip hard-
ware and software co-architectures, implementation of stereo-vision and Artificial Intelligence
(AI) algorithms and associated real-time considerations.

The developed methods and algorithms closely relate to Moore’s law [1] that has become
something more than just a prediction as it guides the intimate relationship between innovation
and modern semiconductor companies. The public expects improved performance and innova-
tive features while investors anticipate the new technologies.

The contemporary System on Chip (SoC) technologies bare potential of solving the per-
ception challenge in a commercially feasible way, but this still requires solving challenges of
system design involving multiple computational paradigms and abstractions ranging from Reg-
ister Transfer Level (RTL) design to the level of Operating System (OS) and even extending
to an organization of multiple systems. Such aspects as algorithm partitioning across different
computational paradigms, reliable on-chip communications’ architecture and compliance with
real-time control system performance are still major challenges.

The Objective of the Thesis

The primary aim of this Thesis is to develop and improve computer vision development
techniques and methods for HSoC technology. The developed methods aspire to conceive
a new type of engineers and researchers who would excel at multiple aspects of HSoC design
and therefore would be capable of solving challenges utilizing multiple sets of complementary
technologies. Several tasks have been defined in order to reach the aim of this paper:

• identify methods for complementing RTL and software-based computing paradigms;
• design software architectures and tools for utilizing heterogeneous SoC technology;
• design heterogeneous approach to the implementation of image processing pipelines;
• implement and conduct experimental research on the developed tools and algorithms;
• draw conclusions about the results of this Thesis.

Thy Methodology of Research

The first tasks of the Thesis are accomplished by an analytical research. Analytic methods
are used to review the existing literature in the field of the correspondence matching and to
develop HSoC-based image processing pipeline. Further research and design utilizes engineer-

7

ing methods and implemented using Very High Speed Integrated Circuit Hardware Description
Language (VHDL), C and Python languages. The developed tools and RTL are experimentally
tested and validated. The tests measure efficiency, accuracy and real-time characteristics of the
developed tools and methods.

Scientific Novelty and Main Results

The Thesis results in novel methods and tools for HSoC-based architecture implementation
and deployement for real-time control applications and image processing pipelines. The devel-
oped tools and system architecture deployement software is available online.

Compage and icom. Modular software component management frameworks suitable for em-
bedded systems. These frameworks collaboratively simplify prototyping activities for systems
where Real-Time (RT) performance is essential. Compage is a software component manage-
ment framework that has a small footprint and provides means of configuring and replicating
software components, while icom ensures seamless switching between zero and deep copy com-
munication approaches and supports the standard PUSH-PULL, PUBLISH-SUBSCRIBE and
REQUEST-REPLY communication paradigms.

Asynchronous Multi-Processing (AMP) subsystem. A novel approach, where at least one of
the processor cores is dedicated to a RT application, while the rest of the system runs high-level
OS. The developed solution aspires to provide the best of the two worlds: real-time processing
capabilities provided by the AMP core and Field Programmable Gate Array (FPGA) and func-
tionality of the Linux software stack. The interface to the AMP subsystem is implemented as
a Linux driver, and it ensures (1) control of the AMP core; (2) loading baremetal Executable
Linked Format (ELF) applications for execution on the AMP core, including the configuration
of the virtual memory; (3) access to the diagnostics of the application’s execution; (4) on-the-fly
configuration of the application; and (5) communication with the AMP core in a form of stdin,
stdout, stderr streams.

Method for maximizing the throughput of Feed Forward Neural Network (FFNN) pro-
cessing pipeline. The developed novel approach enables the design of a throughput-optimized
processing pipeline for FFNNs. It reexamines the Neural Network (NN) implementation chal-
lenge and restates the description of FFNNs to adapt it for pipelining. The network is split into
elementary layers, where each layer is associated with an abstract resource. These resources can
be allocated to each of the layers and determine the delay characteristics of the whole pipeline.
The approach accommodates a tool, which converts topology into high-level code for High-
Level Synthesis (HLS) pipeline. The tool’s inputs are the topology of the network and target

8

latency for a single stage of the pipeline (elementary layer). The developed method is suitable
for virtual sensor implementation, especially when a high sample rate is required.

HSoC-based architecture for computer vision processing. A HSoC-based image process-
ing pipeline that combines Linux-based Micro Processing Unit (MPU) for system control and
FPGA for processing. The developed correspondence matching pipeline is fully implemented in
the programmable logic. It consists of deinterleaving, Bayers pattern interpolation, lens distor-
tion correction, rectification, feature extraction and correspondence matching. The processing
system is used mainly for accelerator control, image acquisition via Peripheral Component In-
terconnect Express (PCIe) bus and transfer of the resulting image to the demonstrator system.
One of the most formidable achievements is the design of a fully pipelined image transformation
circuit, which corrects lens distortions and performs perspective transformation of images. The
design has been accommodated with a novel approach for parallel access of N-dimensional data
in digital logic while conserving memory utilization.

Thesis Statements to Be Defended

1. The developed Asynchronous Multi-Processing subsystem solution enables exploiting func-
tionality of a modern operating system while supporting real-time processing with control-
loop latencies’ jitter not exceeding a standard deviation of 0.1 ms.

2. The developed throughput-optimized FFNN design method offers better performance when
compared to neiron-centric approaches (2–30 times) andmethods following RTL design flow
(>1000 times).

3. The HSoC technology is suitable for implementing image processing pipelines in a fully
pipelined manner achieving performance appropriate for modern real-time systems, whith a
control loop’s length less than 50 ms for <1.5 MP images.

Practical Value and Approbation

The developed Linux drivers and libraries, which are made available online under MIT li-
cense, provide means for implementing on-chip communication between FPGA and software
in HSoC devices. The designed frameworks for system architecture implementation – com-
page and icom – have been used to deploy AI perception pipeline onto an autonomous vehicle
and also utilized for implementing software control architecture of autonomous drones. Fur-
thermore, the developed image processing know-how and developed accelerators are currently
being commercialized under European Regional Development Fund (ERDF) project ”Silicon
IP Design House” No. KC-PINOCHET-2020/12.

The doctoral Thesis has been developed in connection with several projects implemented at

9

the Institute of Electronics and Computer Science, Latvia:
• National Research Programme ”Cyber-physical systems, ontologies and biophotonics for safe
& smart city and society” (SOPHIS). Project No.1. ”Development of technologies for cyber-
physical systems with applications in medicine and smart transport”.

• Horizon 2020 ECSEL project ”Integrated Components for Complexity Control in Affordable
Electrified Cars” (3Ccar), G.A. 662192;

• Horizon 2020 ECSEL project ”Intelligent Motion Control Platform for Smart Mechatronic
Systems” (I-MECH), G.A. 737453;

• Horizon 2020 ECSEL project ”Programmable Systems for Intelligence inAutomobiles” (PRYS-
TINE), G.A. 783190;

• Horizon 2020 ECSEL project ”Advanced packaging for photonics, optics and electronics for
low cost manufacturing in Europe” (APPLAUSE), G.A. 826588;

• Horizon 2020 ECSEL project ”Framework of Key Enabling Technologies for Safe and Au-
tonomous Drones” (COMP4DRONES), G.A. 826610.
The results of the Thesis have been described in several papers [2]–[8]. These results have

been promoted in the following international conferences:
• 2018 5th International Conference onControl, Decision and Information Technologies (CoDIT),
Thessaloniki, Greece;

• 2019 24th IEEE International Conference on Emerging Technologies and Factory, Zaragoza,
Spain;

• 2020 17th Biennial Baltic Electronics Conference (BEC), Tallinn, Estonia;
• 2020 23rd Euromicro Conference on Digital System Design (DSD), Kranj, Slovenia;
• 24th Euromicro Conference on Digital System Design (DSD), Palermo, Italy.

Structure of the Thesis

The Thesis comprises 121 pages, 76 figures, 7 tables, refers to 132 sources of literature and

has 10 appendixes. The Thesis consists of five main sections. Section 1 summarises digital

computing paradigms and principles, and Section 2 depicts image processing principles and

different stereo-vision methods and techniques. Section 3 describes the design of HSoC-based

system architectures and their real-time characteristics. Section 4 deals with the challenge of

adapting and implementing computer vision algorithms in HSoC-based technologies. Section 5

presents the conclusions of the Thesis.

10

1. TECHNOLOGICAL CONTEXT

1.1 Processing Paradigms

The computational characteristics and requirements of different applications have led to the

specialization of hardware and involves the trade-off between computational platform’s univer-

sality and performance, thus leading to a range of technologies: general-purpose processors,

domain-specific processors, application-specific processors, programmable logic and special-

ized integrated circuits.

Fig. 1.1. Comparison between implementation platforms.

Amicroprocessor’s functionality is fully characterized by the instruction set that it is capable

of executing, which is also called the Instruction Set Architecture (ISA). ISA has been defined

as a contract between software and hardware, which allows independent development of both.

Most often, it defines a set of instructions called assembly instructions, which are then provided

by the microarchitectures.

The processor instruction cycle encapsulates the intrinsic advantage of the sequential pro-

cessing paradigm. Most notably, the system is universal and can be used to implement almost

any kind of algorithm. This feature has led to a wide application of processors ranging from sim-

ple keyboard controllers to massiveHigh Performance Computing (HPC) servers. Nevertheless,

the intrinsic weaknesses of this processing paradigm are the memory access irregularities and

inter-instruction dependence, both of which can lead to pipeline stalls.

Another essential technology is the FPGAs, which have become one of the key mediums for

11

digital circuit implementation. FPGA is a prefabricated silicon device that can be electrically

programmed to become almost any kind of digital circuit or system [9]. Simplified FPGA struc-

ture is illustrated in Fig. 1.2, it consists of general logic, memory, Digital Signal Processing

(DSP) blocks, routing fabric and programmable Input/Output (I/O) blocks.

Fig. 1.2. Simplified FPGA structure.

FPGA development often involves balancing between performance and resource utilization.

Unlike processor systems where software directs the execution of an algorithm, in FPGAs, dif-

ferent physical parts of the chip can be dedicated to a specific task. One of themain performance-

increasing techniques for any digital computing system is pipelining, which is a special kind of

concurrency increasing the system’s performance by overlapping the processing of several tasks

[10].

The programmability and monetary considerations have led to numerous applications of the

FPGA technology: compensation for non-existing IntegratedCircuit (IC)s, prototyping/emulation

of Application Specific Integrated Circuits (ASICs), low-latency customized communication

and data routing, data preprocessing and analysis, HPC, Deep Neural Networks (DNNs) and

many others.

1.2 Heterogeneous System on Chip

Core enablers for reducing energy consumption and enabling personalized mobile comput-

ing are SoC and their extension HSoC technologies. An SoC integrates a range of Silicon Intel-

lectual Property (SIP) cores designed by different teams around the world.

12

Fig. 1.3. Levels of abstraction for an electronic computing system.

The simultaneous utilization of diverse computing paradigms presents the challenge of har-

monizing different design flows. Figure 1.3 represents a variety of abstraction levels that are

a part of any semiconductor-based application. The classical FPGA development flow is not

concerned with software. The degree of HSoC integration permits the development of more

customized hardware-software solutions. These solutions require multi-disciplinary expertise

concerning not only implementation but also the algorithm that impacts all stages of the devel-

opment and calls for the consideration of such factors as arithmetic precision of the accelerator,

locality and pipelining potential of the algorithm, choice for on-chip data movement, the robust-

ness of the kernel driver implementation, efficiency of kernel/user API, real-time characteristics

of the system, etc.

1.3 Linux Operating System

Linux is a very influential OS and is used by systems of varying scope, ranging from large-

scale servers to modern embedded systems [11]. Linux has considerably low requirements,

supports a wide range of customization, provides multi-threading and has a variety of available

open-source software which can speed up development. OS is responsible for the elementary use

and management of resources available to the system, i.e. processor execution time, memory,

storage elements, connected devices, network interfaces, etc.

One of the most critical considerations for HSoC-based designs is the concept of virtual

memory, which isolates applications, provides means for efficient inter-process communica-

13

MMU

Virtual Address
(Process 1)

Virtual Address
(Process 2)

Physical (System)
Address

Fig. 1.4. Simplified example of page-based virtual-physical address space mapping for two
processes. Pages illustrated in red denote kernelspace, while blue and green pages denote two

distinct applications.

tion, enables requesting more dynamic memory than there is available (via page-swapping) and

improves security in general [12]. Page-based memory virtualization ensures that physically

non-contiguous memory appears contiguous for software as shown in Fig. 1.4. Nevertheless,

other bus masters (apart from CPU) operate using physical address space. While some mas-

ters (such as PCIe) can reserve memory at startup, it still presents a challenge for HSoC-based

system development when both Central Processing Unit (CPU) and FPGA share access to the

same system memory.

A complete HSoC-based system design also implies kernel-level development because ker-

nelspace accounts for communication between software and designed hardware (accelerators)

and implements the interface for the userspace. To properly interface the custom hardware ac-

celerator with the actual application in the context of HSoC technology, one has to touch upon

the whole level of software abstractions: ranging from the development of the device driver to

the application.

14

2. IMAGE PROCESSING ALGORITHMS

2.1 Image Formation and Correspondence Algorithms

2.1.1 General Projective Camera and Lens Distortions

In principle [13], a camera is a mapping between the 3D world and a 2D image. Modelling

of all cameras is based on a notion of a general projective camera, which can be conveyed as a

matrix P which maps world points Q to the image points q.

Let’s consider plane at Z = f, which is called image plane or focal plane. The pinhole

camera model determines that a point in space Q = (X,Y,Z)T is mapped to the point on the

image plane where a line from Q to the centre of the projection meets the image plane, as shown

in Fig. 2.1.

camera
center

C

Y
X

y

x

image
plane

principle
axis

Q

Zp
q

Q
Y

C
Z

fY/Z

f p

Fig. 2.1. Pinhole camera geometry (image plane is mirrored towards the scene).

If the world and image points are represented in homogeneous coordinates and also consid-

ering transformation of the origin point, the point projection can be expressed in terms of matrix

multiplication as: x
y
ω

 =

f 0 px 0
0 f py 0
0 0 1 0



X
Y
Z
1

 . (2.1)

Often the matrix is rewritten by denoting matrix K, which is called the camera calibration ma-

trix, thus the description of the projection reduces to its concise form:

q = K[I|O]Q. (2.2)

Further, image processingmodels assume that cameras obey a linear projectionmodel where

a straight line in the world results in a straight line in the image [14]. Unfortunately, lenses,

which focus light onto the camera pixel matrix, have noticeable lens distortions that manifest as

a visible curvature in the projection of straight lines, illustrated in Fig. 2.2.

15

Fig. 2.2. An example of lens distortion effect on the calibration image for bumblebee stereo
camera.

Unless these distortions are corrected, it is impossible to create highly accurate photo-realistic

reconstructions [14]. The radial (lens) distortions can be modelled as:

(
xd

yd

)
= L(r̃)

(
x̃
ỹ

)
, (2.3)

where

• (x̃, ỹ) – the ideal image position (which obeys linear projection);

• (xd, yd) – the actual image position, after radial distortion;

• r̃ – the radial distance
√

x̃2 + ỹ2 from the centre for radial distortion;

• L(̃r) – a distortion factor, which is a function of the radius r̃ only.

In pixel coordinates the correction can be rewritten as follows:

x̃ = xc + (x− xc)L(r̃)
ỹ = yc + (y − yc)L(r̃)

, (2.4)

where x, y are the ”required” coordinates of the corrected image, and x̃, ỹ are the coordinates in

the distorted (input) image.

The distortion factor is an arbitrary function defined for positive values and at the center of

the distortion L(0) is 1. Distortion factor can be given by a Taylor expansion

L(r) = 1 + k1r + k2r
2 + k3r

3 + ..., (2.5)

where the coefficients for radial correction k1, k2, k3, ... are considered a part of the interior

calibration of the camera [13].

16

2.1.2 Epipolar Geometry

An important part of any use case involving 3D reconstruction from images involves epipolar

geometry that relates two views based only on the cameras’ internal parameters and relative pose.

This relationship is encapsulated by a fundamental matrix F. F is a 3× 3matrix, and it has such

property that if the point in 3D space X projects as x in the first view and as x′ in the second

view, then the following relationship is satisfied:

x′Fx = 0. (2.6)

The epipolar geometry between two views essentially describes the geometry of intersection

of the image planes with the pencil of planes having the baseline as an axis [13]. The epipolar

geometry is motivated by the search for correspondences across the views that lay on a plane in

3D space and corresponds to the lines in the images, called epipolar lines.

Let’s consider Fig. 2.3. The image points x, x′, space point X , and camera centres are

coplanar. Denoting the this plane as π, the rays back-projected from the x and x′ intersect at X

are coplanar, lying in π.

(a) Camera baseline intersecting the image planes
at the epipoles.

(b) Family of planes obtained by rotating the
epipolar plane around the baseline.

Fig. 2.3. Epipolar geometry [13].

When the x is known, the epipolar geometry constrains x′ to the plane π, thus localizing the

possible correspondences. Fig. 2.3(b) shows the rotation of the π plane, thus resulting in the

rotation of the cross-sections and epipolar lines as well.

These epipolar lines can be ”straightened” by applying image rectification. Rectification is a

process of resampling pairs of stereo images to produce a pair of matched epipolar projections,

where epipolar lines run parallel with the x-axis; thus, the matching procedure can be performed

17

Fig. 2.4. An example of stereo image correspondences and their respective epipolar lines [13].

for consequent disparities between the images in the x-direction only, essentially omitting y

disparities.

2.1.3 Stereo Correspondence

Stereo correspondence has been and still continues to be one of the most heavily investigated

topics in computer science. The term disparitywas first introduced in the human vision literature

[15] to describe the difference in location of corresponding features seen by the left and right

eyes.

There are two broad classes of stereo algorithms local and global. In the local (window-

based) algorithms the disparity computation at a given point depends only on intensity values

within a finite window, while the global ones make an explicit smoothness assumptions and then

solve an optimization problem. In between of these classes there are certain iterative algorithms

that do not explicitly state a global minimization function.

Szeliski [13] points out the subset of the following four algorithmic ”building blocks” from

which a large set of algorithms can be constructed [16]: 1) matching cost computation, 2) cost

aggregation, 3) disparity computation, 4) disparity refinment.

The solution of the correspondence problem necessitates establishing a metric to compare

individual pixels of the stereo image pair. The metrics are based on either grayscale values of

the pixels or post-processed features while varying in their ability to expose pixel uniqueness,

receptiveness to camera gain or bias, and their computational complexity. Such costs as census

transform, are not only insensitive to the camera gain and bias differences but are good candi-

dates for implementation in digital logic. The drawback of such algorithms is their heightened

18

sensitivity to noise.

Aggregation is done by summing all matching costs over square windows with a constant

disparity. In local methods, the emphasis is on the matching cost computation and cost aggre-

gation steps. Computing the final disparities is trivial: simply the disparity is associates pixel

with the minimum aggregation cost value, i.e. essentially performing a local Winner-Take-All

(WTA). The weakness of such methods is that the uniqueness of matches is only enforced for

one image, i.e. the reference image, while points in the other image might match multiple points

[14].

2.2 AI-Based Algorithms

An NNs is a system that is designed to model how the brain performs a particular task or

function of interest [17]. A network can be split into fundamental information-processing units

– neurons, which form the basis for designing artificial neural networks. The block diagram in

Fig. 2.5 shows neuron’s mathematical model. Neuron’s inputs xi are multiplied by coefficients

wki, referred to as weights and summed up together with a bias bk. This sum is passed to an

activation function φ, which is used to normalize neuron’s output, k and i designate a specific

neuron and its input.

Fig. 2.5. Structure of a single neuron.

A type of frequently used neural network is constructed by arranging neurons in layers,

where all neurons in every layer are connected to each neuron in the adjacent forward layer, i.e.

fully connected feed-forward network. This type of network is illustrated in Fig. 2.6.

Ever since the early formalization of NNs [18], a significant effort has beenmade and various

paradigms used to adopt different NN structures for digital circuit implementation. For example,

19

Fig. 2.6. General structure of a feed forward neural network.

Convolutional Neuron Networkss (CNNs) are widely used for image recognition and classifica-

tion, although classification itself is carried out by a fully connected FFNN. Different kinds of

paradigms ranging from co-processor systems [19] to OpenCL-based solutions [20]–[24] have

been used to find the optimal trade-off between resource use, latency, and throughput.

The intrinsic programmable logic’s parallel nature suggests its suitability for the implemen-

tation of FFNNs. Although different architectural approaches and design choices have been in-

vestigated, FFNN implementations face a major challenge of limited hardware resources. Fur-

thermore, expansion of the NN topologies [25] and saturation of the manufacturing process

improvement [26] suggest the persistence of the resource challenge.

20

3. HETEROGENEOUS COMPUTING ARCHITECTURES

3.1 Heterogeneous Computing Based on Direct Memory Access

HSoC technology entices implementation of algorithms where every subtask executes on the

most appropriate processing technology, i.e. processor is better suited for out-of-context tasks,

such as decision making and control, and FPGAs excel at high-throughput number crunching

and relatively local algorithms, for example, per-pixel operations, convolution and feature ex-

traction.

System Memory Device Memory

CPU

Unified Virtual /
Physical Memory

Cache Hierarchy (ACP)
MMU

FPGA

System Interconnect
DDR Controller

DDR Controller (FPGA)

Fig. 3.1. Memory model and possibilities of modern HSoCs, where FPGA has access to
separate memory, the shared system memory, internal interconnection logic and cached

processor memory.

Many modern HSoC devices provide a unique choice for memory coordination, as shown

in Fig. 3.1. FPGA may 1) implement its own DDR controller and utilize large amounts of

isolated memory; 2) have direct access to the processing system’s DDR controller enabling per-

formant yet non-cached data transfer; 3) have access to the system’s interconnect, also enabling

the utilization of processing system’sOn-Chip Random Access Memory (OCRAM); and 4) even

access the cache-coherency ports that ensurememory access coherency on a hardware level. The

aforementioned aspects provide a unique opportunity for the system designer while simultane-

ously creating a challenge for abstracting and controlling the accelerators from the userspace

application.

To address the fundamental issue of HSoC on-chip communications, a Direct Memory Ac-

cess (DMA)-based high-bandwidth communications architecture was developed for establishing

the means of communicating between FPGA and software in an embedded Linux environment.

The developed solution targets the Linux memory fragmentation issue and adopts the Linux ker-

21

nel’s Contiguous Memory Allocator (CMA) feature. Furthermore, the data paths were bench-

marked for Cyclone V SoC device, as this data was still lacking in the scientific literature [27]–

[29]. The developed modules and libraries have been made available to the public under MIT

license1.

An important aspect of the particular system’s structure is the Level-3 (L3) interconnect,

which is a central switch that routes data between memory, FPGA fabric, processor and periph-

erals [30]. The considerations of DMA control, memory virtualization and memory fragmenta-

tion constituted the development of the modular FPGAMaster-based architecture shown in Fig.

3.2.

Fig. 3.2. Conceptual design of FPGA Master-based architecture.

Finally, the throughput measurement procedure utilized the VEEK-MT-C5SoC development

board for all FPGAmaster communication bridges by adjusting the interface bus width, transac-

tion size and FPGA clocking frequency. Table 3.1 shows the maximum (saturated) throughput

for each of the data path configurations and Fig. 3.3 shows the nature of throughput measure-

ments at the widest configurable bus widths and varying FPGA clock frequencies. The power

consumption was estimated in different setup where tests were run continuously for 300 sec-

onds, and the power was estimated using the onboard power monitor with a total unadjusted

error of ±1.0%, but no distinguishable results were found. Power consumption in the idle state

was 8.11W, but for any of the data path scenarios, it was always 8.18Wwithin the measurement

error range.
1http://git.edi.lv/rihards.novickis/FPSoC_Linux_drivers

22

http://git.edi.lv/rihards.novickis/FPSoC_Linux_drivers

Table 3.1. Throughput of simultaneous read/write transactions for all communication
interface configurations

Data path Bus width Maximum
throughput

Saturation
frequency

FPGA-L3-SDRAM
32 bits 5.05 Gbps 120 MHz
64 bits 10.10 Gbps 120 MHz
128 bits 10.52 Gbps 65 MHz

FPGA-L3-ACP-SDRAM
32 bits 6.90 Gbps -
64 bits 8.64 Gbps 120 MHz
128 bits 11.26 Gbps 90 MHz

FPGA-SDRAM

32 bits 7.52 Gbps -
64 bits 14.64 Gbps -
128 bits 17.68 Gbps 80 MHz
256 bits 20.08 Gbps 45 MHz

8 10 12 14 16 18 20 22 24 26
0

5

10

15

20

25

log2(size), log2(Bytes)

S
p

e
e
d

,
G

b
/s

FPGA−SDRAM_256b

125 MHz

115 MHz

105 MHz

95 MHz

85 MHz

75 MHz

65 MHz

55 MHz

45 MHz

35 MHz

25 MHz

(a) FPGA-SDRAM interface at 256
bit bus configuration.

8 10 12 14 16 18 20 22 24 26
0

2

4

6

8

10

12

log2(size), log2(Bytes)

S
p

e
e
d

,
G

b
/s

FPGA−L3−SDRAM_128b

125 MHz

115 MHz

105 MHz

95 MHz

85 MHz

75 MHz

65 MHz

55 MHz

45 MHz

35 MHz

25 MHz

(b) FPGA-L3-SDRAM interface at
128 bit bus configuration.

8 10 12 14 16 18 20 22 24 26
0

2

4

6

8

10

12

log2(size), log2(Bytes)

S
p

e
e
d

,
G

b
/s

FPGA−L3−ACP−SDRAM_128b

125 MHz

115 MHz

105 MHz

95 MHz

85 MHz

75 MHz

65 MHz

55 MHz

45 MHz

35 MHz

25 MHz

(c) FPGA-L3-ACP-SDRAM
interface at 128 bit bus

configuration.
Fig. 3.3. Throughput measurements for different FPGA master communication paths.

In summary, the examined technology (Intel Cyclone V SoC) can sustain on-chip commu-

nications bandwidth of 20.08 Gbps, which is suitable for real-time image co-processing. Figure

3.3(c) shows a curious result where communication bandwidth hits a peak and then drops to sat-

uration. This characteristic is explained by the data requests ”asking” for data that still resides

in the cache, which is 512 KB for the Intel Cyclone V SoC.

3.2 Asynchronous Multi-Processing Subsystem

A considerable contribution of this Thesis is the novel employment of heterogeneous archi-

tectures for real-time control loop systems by using an approach based on the AMP subsystem.

While FPGA technology is a well-suited medium for real-time control due to its determinism,

acceleration of such computational tasks where the processing involves leaping across memory

can be problematic or even unsuitable.

Simplified examples of different embedded control loop configurations is shown in Fig. 3.4.

By acknowledging the requirements of latency, reliability, supporting local feedback loops and

23

application-level customization, a concept of modular signal processing unit for motion control

applications based on HSoC technology was conceived [31]. The developed AMP subsystem is

a part of this modular processing unit.

ADC

PWMs

CLA
FPU

CPU

(a) Running parallel control
loops.

ADC

PWMs

CLA
FPU

CPU

(b) Preprocessing input data.

ADC

PWMs

CLA
FPU

CPU

(c) Co-processing with the main
CPU.

Fig. 3.4. Texas instrument embedded control loop’s configuration examples using their
Control Law Accelerator Floating Point Unit (CLA-FPU) [32]. The Analog-to-Digital

Converter (ADC) measures feedback signals and triggers control-loops execution, the Pulse
Width Modulation (PWM) represents the outputs of the system.

The developed overall AMP solution aspires to provide the best of the two worlds: real-time

processing capabilities provided by the AMP core and FPGA and functionality of the Linux

software stack. Figure 3.5 illustrates the overall concept of the developed AMP subsystem; in

this dual-core processing system, CPU0 executes the operating system (Linux) while the CPU1

(AMP subsystem) cooperates with FPGA and collaboratively executes RT tasks.

Fig. 3.5. Real-time application subsystem.

3.3 Approach to Management of Software Components

A novel component-based software architecture concept has been conceived, which already

has been successfully applied for autonomous vehicles and drone systems. While develop-

ing a complex and evolving system, it may be necessary to have an architecture that facili-

24

tates effortless software component management and provides convenient means for their inter-

communication. This approach resembles a “blackboard” pattern from the software develop-

ment theory [33].

Component 0 Component 1 Component 2 Component 3

compage compage compage compage
System 0 System 1

icom
(inproc)

icom
(inproc)

icom
(deep copy)

Fig. 3.6. An approach to the management of software components.

Figure 3.6 represents the principle of the developed system’s component management and

inter-communication solution. The developed approach utilizes two modular frameworks:

• compage (component management framework) ensures component management within a sin-

gle system, including the initialization and execution of the components in separate threads

or processes. The framework also provides the means of generating and applying component

configuration using .ini files. The developed framework is made available to the public2.

• icom (component communication framework) ensures coherent communication between dif-

ferent software components by providing various underlying communication mechanisms,

thus enabling zero-data copy whenever possible. Essentially, if software components execute

on a single system, they can share data references and avoid data duplication, e.g. utilizing

the double buffer technique [34]. The developed framework is made available to the public3.

2https://gitlab.com/rihards.novickis/compage
3https://gitlab.com/rihards.novickis/icom

25

https://gitlab.com/rihards.novickis/compage
https://gitlab.com/rihards.novickis/icom

4. ADAPTATION AND IMPLEMENTATION OF IMAGE PROCESSING
ALGORITHMS

4.1 An Approach of Feed-Forward Neural Network Throughput-Optimized
Implementation in FPGA

A novel approach for FFNN implementation has been proposed that revises the implemen-

tation challenge viewing it in terms of elementary structures and utilizing pipelining paradigm.

The FFNN is split into elementary layers, where each layer can be characterized by its resource,

e.g. adder, multiplier, activation function. These layers reserve different numbers of resources

to achieve even distribution of latencies and attain an optimally pipelined implementation, where

every layer’s latency is less or equal to the time necessary for the network to accept new input.

An accompanying tool, developed for the solution, converts the given network’s topology into

C++ code that further feeds into anHLS tool. The generated code already incorporates necessary

directives to ensure the envisioned solution with the requested pipelining iteration interval.

Although neuron is an intuitive abstraction, it subdivides architecture as shown in Fig. 4.1(a).

This approach omits resource sharing between parallel neurons. Therefore a different abstrac-

tion is proposed, which is shown in Fig. 4.1(b). In this approach, neural network structure

is separated into elementary layers, where each layer is characterized by a specific resource –

adder, multiplier or activation function.

(a) Non-optimized delay model for a single layer. (b) Optimized delay model with resource sharing
for a single layer.

Fig. 4.1. Different delay models: (a) delays are analyzed in terms of a neurons in layers; (b)
joint delay analysis for ”primitive” multiplication, addition and activation layers.

By considering the main bottlenecks, e.g. limited bandwidth or resource availability, it is

possible to optimize the network by allocating an appropriate amount of resources for every

26

layer. Another important consideration for theArtificial Neural Network (ANN) implementation

is the choice of data type, as floating-point data types contribute high precision and range but are

costly to implement and pipeline. Furthermore, recent studies [35], [36] show that fixed-point

data types can be used with a relatively small precision loss, especially if the ANN training

procedure is aware of the fixed-point data type.

A tool has been developed to automate FFNN implementation that takes the FFNN topology

as an input and generates C++ code for the Xilinx HLS. One of the main parameters of the

tool, steering the process of the code generation, is the maximum delay acceptable for pipeline’s

stages, which is given in clock cycles. The parameter ensures allocating ”just enough” resources

to comply with the given constraint.

The developed tool is open-source and made available on-line4. Generated FFNN Intel-

lectual Property (IP) cores are tested using two hardware interfaces: Memory-Mapped (MM)

interface for latency estimation and Streaming (ST) interface for latency and throughput es-

timation. MM interface implies active control from the side of MPU, but ST interface is set

up by utilizing LogiCORE DMA IP cores [37] and Advanced eXtensible Interface (AXI) high

performance interface [38].

Table 4.1. Small topology implementation resource utilization and benchmark result
comparison table with [39], [40], [41], [42] (LUT-Look-up-Table, FF-Flip Flop, DSP-Digital

Signal Processor core, BRAM-Block Random Access Memory).

Topology Interface LUTs FFs DSPs BRAM
Target

Initiation
Interval

Theoretical
Initiation
Interval

Theoretical
Latency

Latency Throughput
(Samples/s)

Original Achieved Original Achieved

[39]
2-2-1

Memory-
mapped

246
(0.46%)

118
(0.11%)

6
(2.73%)

3
(2.14%) 1 2 6 34 ns

555 ns
σ = 3.4 ns 29,412,000 1,803,200

Streaming 205
(0.39%)

135
(0.13%)

6
(2.73%)

3
(2.14%) 1 2 9 2.68 μs

σ = 37.5 ns 49,272,000

[40]
2-4-1

Memory-
mapped

980
(1.84%)

800
(0.75%)

48
(21.82%)

9
(6.43%) 1 2 10 44 ns

586 ns
σ = 3.4 ns 2,272,700 1,705,600

Streaming 983
(1.85%)

946
(2.92%)

48
(21.82%)

9
(6.43%) 1 2 12 2.69 μs

σ = 44 ns 49,231,000

[41]
4-8-3-3

Memory-
mapped

1304
(2.45%)

912
(0.86%)

0
(0.0%)

3.5
(2.5%) 1 4 12 1.16 μs

620 ns
σ = 8.7 ns 862,070 1,612,400

Streaming 1356
(2.55%)

1028
(0.97%)

0
(0.0%)

3.5
(2.5%) 1 4 19 2.78 μs

σ = 91 ns 24,796,000

[42]
1-5-1

Memory-
mapped

257
(0.5%)

78
(0.1%)

0
(0.0%)

1.5
(1.1%) 1 3 5 683 ns

578 ns
σ = 9.5 ns 1,463,100 1,730,100

Streaming 257
(0.5%)

81
(0.1%)

0
(0.0%)

1.5
(1.1%) 1 3 7 2.68 μs

σ = 35 ns 33,005,000

4http://git.edi.lv/rihards.novickis/generation_tool_hls_c_fully_connected_feed_forward_
neural_network

27

http://git.edi.lv/rihards.novickis/generation_tool_hls_c_fully_connected_feed_forward_neural_network
http://git.edi.lv/rihards.novickis/generation_tool_hls_c_fully_connected_feed_forward_neural_network

Table 4.2. Implementation resource use and benchmark result comparison table with [43]
(Theoretical II = 100, Theoretical Latency = 987). (LUT-Look-up-Table, FF-Flip Flop,

DSP-Digital Signal Processor core, BRAM-Block Random Access Memory)

Implementation LUTs FFs DSPs BRAM Latency Throughput
(Samples/s)

[43]A 2232
(4.2%)

1210
(1.1%)

2
(0.9%) - 33.1 ms 30.2

[43]B 3306
(6.2%)

1326
(1.3%)

4
(1.8%) - 24.7 ms 40.5

[43]C 41,297
(77.6%)

33,395
(31.4%)

33
(15.0%) - 5.7 ms 175.4

[43]D 51,028
(95.9%)

35,655
(33.5%)

65
(29.5%) - 3.5 ms 285.7

Impl.
Memory-Mapped

30,197
(56.8%)

55,231
(51.9%)

122
(55.5%)

6
(4.3%)

10.4 μs
σ = 0.011 96,435

Impl.
Streaming

31,246
(58.7%)

56,067
(52.7%)

122
(55.5%)

6
(4.3%)

12.5 μs
σ = 0.027 997,852

All tests were performed on the Xilinx Zynq ZC702 SoC evaluation board using a bare metal

stack with FPGA logic clocked at 100MHz frequency. Timing measurements are made by using

the Cortex-A9 Snoop Control Unit (SCU) timer. The performed tests and detailed comparison

with other solutions are provided in Tables 4.1 and 4.2.

Results in Table 4.1 illustrate that ST-based implementation throughput approaches the the-

oretical initiation interval and can be characterized with about 2.7 µs latency.

Although the topology presented in [43] implements the hyperbolic tangent function using

Xilinx LOGICore IPs, the solution outperforms any of the versions presented in the paper, mark-

ing solution’s suitability for a floating-point implementation. The reason for such an impressive

performance difference is the distinct design goals. In [43], the author prioritizes on-the-fly

reconfiguration of the network, while presented solution targets maximum throughput of the

network.

The developed solution also has been applied for virtual sensor use-case, and some con-

figurations achieved an impressive performance of two mega-samples per second, which even

overcomes the results in the original article [3].

4.2 Heterogeneous System Architecture for Stereo Image Processing

A HSoC-based point-correspondence computational system has been developed – a chal-

lenge involving a range of design abstractions, i.e. digital circuit design, on-chip communica-

28

tions, Linux driver and system development and system architecture. The partitioned functional

architecture of the designed solution is shown in Fig. 4.2.

The processor (software) side of the HSoC ensures the overall control of the system and es-

tablishes communication with the off-board hardware (stereo camera through PCIe and demon-

strator system through Ethernet) by utilizing the available software stack.

Deinter-
leave

Bayer's
Pattern

Interpolation

Barrel Distortion
Correction and
Rectification

Feature
Extraction

Disparity
Calculation

Bayer's
Pattern

Interpolation

Barrel Distortion
Correction and
Rectification

Feature
Extraction

Disparity
Calculation

Left-Right
Consistency

Check

DMA
Read Master

DMA
Write Master

Acquisition Processing Transfer

PCIe
Controller

Ethernet
Controller

Stereo Camera Demonstrator

Software

FPGA Logic

DDR Memory

Fig. 4.2. Functional architecture of the developed HSoC stereo-vision solution partitioned
across processing paradigms and components.

The designed inter-communication mechanism utilizes shared coherent memory, as it en-

ables other bus masters apart from the processor to perform memory transfer operations; nev-

ertheless, there is a challenge of software component synchronization. The challenge has been

solved by utilizing a double buffering technique [34].

The developed system utilizes the double buffering technique two times – in between Ac-

quisition-Processing and Processing-Transfer components. Two memory regions are shared

and handled to ensure parallel component execution; for example, while the Acquisition thread

writes input image into one of the buffers, the Processing thread uses the other buffer for con-

figuring DMA transactions and transferring data through the accelerator. The same mechanism

provides communication between the Processing and Transfer components; therefore, SoC si-

multaneously performs image acquisition, image processing and output image transfer resulting

29

in a high-level pipeline.

4.3 Stereo Image Processing Pipeline

4.3.1 Deinterleaving of the input stream

The first procedure implemented in the stereo-vision pipeline is the deinterleaving algorithm

that splits the input image stream from the Bumblebee camera into multiple output streams. Fig-

ure 4.3 illustrates such input stream. Note that the used variant of the camera system incorporates

three cameras.

Cam 0
Pixel 0

Cam 1
Pixel 0

Cam 2
Pixel 0

Cam 0
Pixel 1

Cam 1
Pixel 1

Cam 2
Pixel 1

Cam 0
Pixel 2

Cam 1
Pixel 2

Cam 2
Pixel 2

Input Stream

Cam 0
Pixel 0

Cam 0
Pixel 1

Cam 0
Pixel 2

Cam 1
Pixel 0

Cam 1
Pixel 1

Cam 1
Pixel 2

Cam 2
Pixel 0

Cam 2
Pixel 1

Cam 2
Pixel 2

Cam 0
Pixel 3

Cam 0
Pixel 3

Cam 0
Pixel 3

Camera 0
Stream

Camera 1
Stream

Camera 2
Stream

Fig. 4.3. Interleaved input stream of the bumblebee camera.

The challenge is solved in the digital logic by using an of-the-shelf stream adapter and con-

verting input stream width to 24 bits, i.e. resulting in 3 parallel pixels each expressed using a

single byte. Notably, directly interfacing cameras would require additional First-In-First-Out

(FIFO) buffers, as image sensors stream data assuming an always-ready data sink.

4.3.2 Bayers pattern interpolation and RGB-to-Grayscale conversion

Modern cameras employ Color Filter Array (CFA), where different-colour filters reside on

alternating sensor pixels. The most commonly used pattern in modern cameras is the Bayer

pattern [44]. The process of interpolating the missing colour values to acquire valid RGB values

for all pixels is known as demosaicing.

Although many demosaicing methods have been developed [45], the designed pipeline uti-

lizes simple reconstruction based on linear and bilinear interpolation algorithms. Figure 4.4

illustrates different patterns to be considered by the demosaicing algorithm.

On closer examination, it becomes evident that at any particular clock cycle, two colour

30

(a) Red value is
known, green and
blue values are
inferred from the
adjacent pixels.

(b) Blue value is
known, red and
green values are
inferred from the
adjacent pixels.

(c) Green value is known, red and blue values
are inferred from the adjacent pixels.

Fig. 4.4. Bayer pattern variants considered for demosaicing algorithm.

values have to be inferred simultaneously. Further, the applied interpolation algorithm examines

a region of 3× 3 by using a sliding window approach, and at any particular clock cycle, either

4 (two and two) or 8 (four and four) values contribute to the reconstruction process. Fig. 4.5

represents the high-level structure of the designed circuit.

G R G

B G B

G R G

Output from
Sliding Window

3 X 3
State (Pattern)

Machine
and Pixel

Multiplexing

State Delay

Pipelined
Adder

Pipelined
Adder

Data Delay

Channel
Demultiplexer

R

G

B

Fig. 4.5. High-level structure of the designed demosaicing circuit.

The input to the demosaic logic is provided by the sliding window block, which can be con-

veniently implemented in the digital logic [46]. The fully-pipelined demosaic block produces

sets of data corresponding to Fig. 4.4. Further, the proposed structure consists of a state gener-

ator, where each state corresponds to the patterns in Fig. 4.4. The block arranges these inputs

for the pipelined adders, while the centre pixel is simply delayed because its value requires no

reconstruction. The generated state is also delayed and fed into the demultiplexing block for

output rearrangement.

The demosaic block also includes optional RGB-to-Grayscale conversion functionality, as

grayscale images reduce the number of operations triple-fold while not having major precision

drawbacks, e.g. edge detection rate may be reduced by less than 10% [47], [48]. Therefore, a

hardware-friendly lightness colourspace conversion method has been selected [49].

31

4.3.3 An approach to spatial image transformation

An essential part of any image pre-processing is the algorithms for pixel transformation

or mapping, i.e. lens distortion correction, image rectification, digital zoom. Executing such

tasks in digital logic is associated with higher complexity due to the semi-global nature of the

memory access patterns. Notably, the storage of the entire image in the OCRAMmemory of the

programmable logic is either impossible (FPGA chips often have on-chip memory less than 1

MB) or expensive (a single dual-port Static Random Access Memory (SRAM) cell in the on-chip

memory requires eight Complementary Metal-Oxide Semiconductor (CMOS) transistors, which

results in a large area).

Figure 4.6 illustrates the functional architecture of the spatial transformation accelerator that

consists of input and output coordinate counters, dual-port memory matrix, write and read mas-

ters, output buffering logic, control logic and external inverse transformation calculation logic.

Output
Coordinate

Counter

AXIS

Inverse
Transformation
Computation

Xin,Yin

X
o
u
t,Y

o
u
t

Xin',Yin'

Logic
Control

Xin,Yin

Xin',Yin' Control Signals

Generic Spatial Transformation

Memory
Write-Read

Masters

Write Port

Read Port

Dual Port
Memory Matrix

Read
Data Recon-

struction

Output
FIFO

Buffer

AXIS

Input
Coordinate

Counter

Fig. 4.6. Approach to fully pipelined image transformation in digital logic.

Any spatial image transformation can be expressed as a mapping of input pixels to output:

xout, yout = f(xin, yin), (4.1)

where xin, yin and xout, yout denote the input/output image coordinates, and f is some arbitrary

function, often expressed as a matrix in the case of linear transformations. In such cases, in-

crementing input coordinates may result in ”hopping” for output coordinates. The proposed

solution necessitates the opposite: computing the inverse transformation and essentially retriev-

ing the next input coordinate pair for the consecutive output coordinates, i.e.:

xin, yin = f−1(xout, yout). (4.2)

32

The solution adopts a unique technique for signal reconstruction that enablesN -point recon-

struction while preserving memory resources. This technique is also generalized to any number

of dimensions. The tedious task of generating addresses for the individual memories in theDual

Port Memory Matrix is performed by theMemory Write-Read Masters.

One of the principal requirements for carrying out a fully pipelined spatial transformation

with interpolation is a memory buffering scheme that would permit interpolation logic to have

simultaneous access to adjacent pixels. The conventional approaches can be optimised consid-

ering that pixel data for interpolation is adjacent. Figure 4.7 illustrates a more efficient solution,

where memories are reduced in size and only contain data for the respective (odd / pair) columns

and rows.

Memory
(size = N/4)

WP

RP0
RP1
RP2
RP3Memory

(size = N/4)

Memory
(size = N/4)

Memory
(size = N/4)

Demux
Logic

Pseido
Mux
Logic

To Recon-
struction

4 adjacent
pixel data

Fig. 4.7. Optimized data access scheme for 4-point reconstruction with 4× reduction in
memory size.

Considering that the memory matrix consists of M rows and N columns, the last log2(M)

row signal bits and log2(N) column signal bits control the demultiplexing logic for the write

pointer’s write request signal as illustrated in Fig. 4.8. Naturally, all write ports of the memory

matrix share the write data and address signals.

x0x1x2x3x4x5x6x7

y0y1y2y3y4y5y6y7

log2(N)

log2(M)
00
01
10
11

00 01 10 11

Write Request

Column

Row
Towards
Memory
Matrix

Fig. 4.8. An example of write request demultiplexing logic when using 4× 4 memory matrix.

Data retrieval is more challenging because there is a need of generating varied addresses for

each of the memories’ read ports. The Thesis formalized this process and extended it to any

33

number of dimensions. Figure 4.9 illustrates how the combination of vertical and horizontal

retrieval mechanisms generate required addresses for all memories.

Sample Index
Memory Address
Memory ID

i
m00

a
i+1
m01

a
i+2
m02

a
i+3
m03

a

i+w
m10

a i+w+1
m11

a i+w+2
m12

a i+w+3
m13

a

i+2w
m20

a
i+2w+1

m21
a

i+2w+2
m22

a
i+2w+3

m23
a

i+3w
m30

a
i+3w+1

m31
a

i+3w+2
m32

a
i+3w+3

m33
a

i-1
m03
a-1

i+w-1
m13
a-1

i+2w-1
m23
a-1

i+3w-1
m33
a-1

i-w
m30

a-w/4
i-w+1
m31

a-w/4
i-w+2
m32

a-w/4
i-w+3
m33

a-w/4
i-w-1
m33

a-w/4-1

i+w+4
m10
a+1

i+2w+4
m20
a+1

i+3w+4
m30
a+1

i+4w+1
m01

a+w/4
i+4w+2

m02
a+w/4

i+4w+3
m03

a+w/4
i+4w+4

m00
a+w/4+1

 0 0 0 -1

a a a-1
a a a-1

a-w/4 a-w/4 a-w/4-1

a
a

a-w/4

a a a-1a

Ro
w

Of
fse

t V
ect

or 0
0
0
-1

1 0 0 0

a a a
a a a
a a a

a+1
a+1
a+1

a+w/4 a+w/4 a+w/4a+w/4+11
0
0
0

Column Offset Vector

Column Offset Vector

Ro
w

Of
fse

t V
ect

or

Requests

Fig. 4.9. Address generation for 4x4 memory matrix.

Finally, the approach extends to any number of dimensions. For N dimensions memory

addresses would be expressed as an N -dimensional matrix A ∈ EN , where each element is

computed by:

Ai1i2···iN =
N∑

n=1

CnSnvoin , (4.3)

where Sn denotes shift matrix, vo is offset vector, and Cn is offset’s constant determined by the

data resolution of the particular dimension.

Further, the developed mathematical model can be mapped into particular digital circuits.

Figure 4.10 illustrates the overall data retrieval concept and the organizational structure of the

necessary components.

Offset
Vector
Dim-1

Offset
Vector
Dim-2

Offset
Vector
Dim-N

Read Access
Generation

Circuitry

Memory Matrix

Demultiplexing
Logic

Const 1

Offset
Vector 1

Const 2

Offset
Vector 2

Const N

Offset
Vector N

Read
Request
Vector(s)

Read
Data

Ordered
Data Towards

Recon-
struction

Offset Vector
Delay

Offset
Vector(s)

Offset
Vector(s)

Simultaneous Writing
of Input Data

Fig. 4.10. General address vector computing concept for N -dimensions.

34

One of the most complex parts of the model is the read address generation that has to be

implemented separately for each number of dimensions; nonetheless, patterns exist assisting

such designs. An example of Read Access Generation logic for two dimensions is shown in

Fig. 4.11. The concept presents an approach consisting of three parts: computing all possible

combinations for offset constants, computing all possible combinations for a memory address,

multiplexing possible memory addresses to the actual memories.

address

-const x
-const y -const y const x

-const y

-const x 0 const x

-const x
 const y const y const x

const y

-const x
-const y

+a
-const y

+a
 const x
-const y

+a
-const x

+a a const x
+a

-const x
 const y

+a
const y

+a
const x
const y

+a

-const y

const y

0

-const x const x0

Adder
Cascade

0
1 0

1

0
1 0

1

0
1 0

1

0
1 0

1

OX(0)(0)='0'
OX(0)(1)='0'

OY(0)(1)='0'
OY(0)(0)='0'

OffsetX(0..3)(1..0) => OX
OffsetY(0..3)(1..0) => OY

0
1 0

1

OY(1)(1)='0'
OY(1)(0)='0'

0
1 0

1

OY(2)(1)='0'
OY(2)(0)='0'

0
1 0

1

OY(3)(1)='0'
OY(3)(0)='0'

0
th

 C
o
lu

m
n
 A

d
d
re

ss
e
s

Analogous Mux Logic
for 1st, 2nd, 3rd

Column Addresses

Fig. 4.11. Conceptual design of the read access circuitry.

Finally, all possible memory addresses are available, and they are routed accordingly for the

memories.

4.3.4 Feature extraction

Further, it is necessary to extract features used for the correspondence matching. Figure

4.12 illustrates the feature extractor as implemented by the demonstrator system. The feature

extractor provides four types of features: 1) pixel’s intensity; 2) values of horizontal Sobel filter

for adjacent left right pixels; 3) vertical Sobel filter at the pixel; and 4) a census transform using

5x5 pixel region. For experimentation, the RTL has been developed using generics allowing

for different feature configurations. Each feature also incorporates variable delay blocks, whose

generation depends on the latency of the respective extraction block. The extraction itself is

done in a fully pipelined manner using the sliding window approach. Finally, a vector from all

the features is formed that further feeds into the correspondence matching components.

35

Intensity

Horizontal
Sobel 3x3

Vertical
Sobel 3x3

Census
Transform 5x5

Delay

Delay

Delay

Delay

Vector Formation

I
H
H
V
C
C

C
C

Feature
Vector

Fig. 4.12. High-level composition of the implemented feature extractor.

4.3.5 Correspondence calculations

Correspondence matching is the most resource consuming part of the whole stereo-image

processing pipeline, because a fully pipelined implementation requires that all correspondence

descriptor matching is accomplished in parallel. Figure 4.13 illustrates the overall concept for

simultaneous left-to-right and right-to-left correspondence matching using 128 points. The ex-

tracted feature descriptors are buffered using Serial-In-Parallel-Out (SIPO) buffers and linked

through Feature Comparator blocks. The comparison results are further fed into Correspon-

dence Search Circuits that identify a correspondence with the least amount of ”energy” (opposite

of confidence).

127 126 125 124 1 0

127 126 125 124 1 0

Feature
Extractor

Right Image Descriptors

Left Image Descriptors

Feature
Extractor

Feature Comparison

Feature Comparison

Correspondence
Search Circuit

Correspondence
Search Circuit

Energy

Corresp.

Energy

Corresp.

Disparity
Enhancement

/
Left-Right

Consistency
Check

Fig. 4.13. Composition of correspondence calculation and matching logic.

4.4 Demonstrator system

The demonstrator system has been developed according to the previously derived system ar-

chitecture. Figure 4.14 illustrates deployed demonstrator that is composed of Bumblebee BBX3

stereo-vision camera, Terasic’s VEEK-MT Cyclone V heterogeneous SoC development kit and

36

OpenGL-based host demonstrator. The developed technology targets high computational per-

formance while having low-power consumption (< 10W) and overall costs. The SoC software

application ensures image acquisition via PCIe, control of the FPGA accelerator pipeline and

dispatching processed images to Program Counter (PC) -based demonstrator via Ethernet. All

disparity-related computations are carried out on FPGA logic (schematic described in VHDL),

including an interpolation of Bayer filter mosaic, correction for barrel distortions, rectification,

feature extraction and disparity calculation.

Veek-MT Cyclone V
Development Kit

Bumblebee
Stereo Camera

Firewire
Interface

PCIe Firewire
Adaptor Card

Ethernet
Interface to PC

OpenGL-Based
Visualization

(by PC)

Fig. 4.14. A demonstration of the stereo-vision demonstrator in action.

During the development of this Thesis, Intel has disclosed an ASIC-based solutions, which

has rapidly concured applications in field of robotics. Nonetheless, considering the sparsity of

the computed disparity map, the developed technology already can be used for depth sensing

applications in power-critical systems such as mobile drones (obstacle avoidance) and some

Internet of Things (IoT) use-cases.

37

5. CONCLUSIONS

The Thesis addresses the relationship between computerized perception and increasingly
complex HSoC technologies, in particular, the on-chip hardware and software co-architectures,
implementation of stereo-vision and AI algorithms and associated real-time considerations. The
primary aim of the Thesis is to develop and improve computer vision development techniques
and methods for HSoC technology. In order to achieve the set aim, five tasks were defined.
1. Identify methods for complementing RTL and software-based computing paradigms.
This task was accomplished in Section 1 and Subsection 3.1. The literature review acknowl-
edged the State of Art (SoA) in different computing paradigms that were further used to analyze
their tradeoffs. Further, this knowledge facilitated the development of architecture based on
control by the MPU and offloading computing tasks to the FPGA. Both computing paradigms
utilize memory-centric communication mechanisms for maximizing the overall throughput of
the system.
2. Design heterogeneous architectures and tools for utilizing heterogeneous SoC technol-
ogy. This task was accomplished in Section 3 by developing an FPGA-master based architec-
ture for SoCs running Linux with the accompanying drivers and libraries for coherent contigu-
ous memory management and DMA engine control. Further, an Asymmetric Multiprocessing
(AMP) subsystem has been developed that enables real-time processing in Linux-based systems
by offloading the critical applications to a fully dedicated bare-metal processing core. The de-
veloped solution unites the broad availability of open-source software with real-time control
using a Linux driver interface. The driver ensures the setup of the bare-metal application and its
configuration, AMP core’s control, and it provides means for aggregating real-time performance
characterization using sysfs interface. Finally, software-based system architecture implementa-
tion tools – compage and icom – have been developed. The tools enable the implementation of
blackboard programming patterns for constrained Linux systems by giving the user means of
configuring, replicating and interconnecting different software components, i.e. threads.
3. Design heterogeneous approach to the implementation of image processing pipelines.
This task was accomplished in Subsections 3.1 and 4.2 by establishing a heterogeneous architec-
ture for image processing pipelines using stereo-vision use-case as an example. The developed
architecture utilizes software for image acquisition into coherent memory from a Bumblebee
camera through PCIe, oversees the processing pipeline implemented in the FPGA and handoffs
the produced results to the demonstrator system via Ethernet interface. In the developed system,
essentially, all components – software and hardware – execute simultaneously, thus achieving
software + hardware parallelism.
4. Implement and conduct experimental research on the developed tools and algorithms.
This task was accomplished in Section 4. First, an ANN-based solution was implemented in the

38

FPGA hardware probing the possibility of a fully pipelined design. The developed approach is
accompanied by a software tool for converting FFNN topologies into SIP cores with a stream-
ing or memory-mapped interface. The achieved results not only outperform other solutions
described in the literature but also show the applicability of the developed method for virtual
sensor implementation, i.e. using the electric vehicle torque vectoring use-case as an example.

Further, a range of fully-pipelined accelerators have been designed for the implementation
in digital logic, including deinterleaving of the combined input image streams, demosaicing of
Bayer’s RGB pattern, spatially transforming images to perform lens distortion correction and
rectification, extracting features and computing the correspondence matching challenge. One
of the main contributions is the generalization of the circuit for enabling fully-pipelined access
to adjacent data samples for reconstruction in a memory-conserving way. While the developed
solution is utilized for image processing, i.e. two dimensions, the generalized model enables the
construction of a circuit for any number of dimensions, therefore enabling reconstruction, for
example, of volumetric data. Finally, the developed accelerators were utilized for the develop-
ment of the stereo-vision demonstrator.
5. Draw conclusions about the results of the Thesis. The main conclusion regarding the
stereo-vision algorithm implementation using heterogeneous SoCs is that the unique blend of
software and hardware ensures the feasibility of implementing such image processing pipelines.
Furthermore, the technology achieves that in an energy-efficient way and provides extendability.
The developed approach to image processing in heterogeneous SoC technology can (and is)
applicable to other applications, e.g. processing of large (>50MP) images.

The value of the achieved results is further highlighted by several ongoing and finalized inter-
national research projects. For example, the software architecture implementation frameworks
are being used for the development of AI-based perception system for vehicles (PRYSTINE,
G.A. 783190, AI4CSM, G.A. 101007326) and control software for the control of autonomous
drones (COMP4DRONES, G.A. 826610), while the developed image processing pipeline is
reused in the design of infrared image preprocessing algorithms (APPLAUSE, G.A. 826588).

Further, the outcomes of the Thesis serve as a basis for an ongoing commercialization activ-
ity (SilHouse, No. KC-PI-2020/12), where a framework is being developed that joins a range
of accelerators and provides a convenient software-based framework for their application to the
industry.

39

BIBLIOGRAPHY

[1] Moore, G. E. Cramming more components onto integrated circuits, reprinted from elec-
tronics, volume 38, number 8, april 19, 1965, pp.114 ff. IEEE Solid-State Circuits Society
Newsletter. - 2006. - Vol.11 - Nr.3. - 33–35 p. 2006.

[2] Novickis, R. and Greitāns, M. FPGA Master based on chip communications architecture
for Cyclone V SoC running Linux// 2018 5th International Conference on Control, De-
cision and Information Technologies (CoDIT). ISSN: 2576-3555 - Apr. 2018. - 403–408
p. DOI: 10.1109/CoDIT.2018.8394842.

[3] Dendaluce Jahnke, M., Cosco, F., Novickis, R., Pérez Rastelli, J., and Gomez-Garay, V.
Efficient Neural Network Implementations on Parallel Embedded Platforms Applied to
Real-Time Torque-Vectoring Optimization Using Predictions for Multi-Motor Electric
Vehicles en Electronics. - Feb. 2019. - Vol.8 - Nr.2. - 250 p. Feb. 2019. ISSN: 2079-
9292. DOI: 10.3390/electronics8020250. / URL - http://www.mdpi .com/2079-
9292/8/2/250 (visited on 07/25/2020).

[4] Setka, V., Jezek, O., and Novickis, R. Modular Signal Processing Unit for Motion Control
Applications Based on System-on-Chip with FPGA en// 2019 24th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA). - Zaragoza, Spain:
IEEE, Sep. 2019. - 857–863 p. ISBN: 978-1-72810-303-7. DOI: 10.1109/ETFA.2019.
8869121. / URL - https : / / ieeexplore . ieee . org / document / 8869121/ (visited on
07/25/2020).

[5] Novickis, R., Justs, D. J., Ozols, K., and Greitāns, M. An approach of feed-forward neu-
ral network throughput-optimized implementation in fpga Electronics. - 2020. - Vol.9 -
Nr.12. - 2193 p. 2020. DOI: 10.3390/electronics9122193. / URL - https://www.mdpi.
com/2079-9292/9/12/2193.

[6] Novickis, R., Levinskis, A., Kadikis, R., Fescenko, V., and Ozols, K. Functional archi-
tecture for autonomous driving and its implementation 2020 17th Biennial Baltic Elec-
tronics Conference (BEC). - 2020. 2020. DOI: 10.1109/bec49624.2020.9276943. / URL
- https://ieeexplore.ieee.org/abstract/document/9276943.

[7] Druml, N., Debaillie, B., Anghel, A., Ristea, N.-C., Fuchs, J., Dubey, A., Reisland, T.,
Hartstem, M., Rack, V., Ryabokon, A., and al., et Programmable systems for intelligence
in automobiles (prystine).2222em technical progress after year 2 2020 23rd Euromicro
Conference on Digital System Design (DSD). - 2020. 2020. DOI: 10.1109/dsd51259.
2020.00065. / URL - https://ieeexplore.ieee.org/document/9217654.

[8] Druml, N., Ryabokon, A., Schorn, R., Koszescha, J., Ozols, K., Levinskis, A., Novickis,
R., Nigussie, E., Isoaho, J., Solmaz, S., Stettinger, G., Diaz, S., Marcano, M., Villagra, J.,
Medina, J., Schwarz, M., Artuñedo, A., Comi, M., Beekelaar, R., Özçelik, O., Taşdelen,
E. A., Gürbüz, Y., Saijets, J., Kyynäräinen, J., Morits, D., Debaillie, B., Rykunov, M.,
Escamilla, J., Vanne, J., Korhonen, T., Holma, K., Matzhold, E.-M., Novara, C., Tango,
F., Burgio, P., Calafiore, G., Karimshoushtari, M., Boulay, E., Dhaens, M., Praet, K.,
Zwijnenberg, H., Palm, H., Ortega, D. A., Kalali, E., Pensala, T., Kyytinen, A., Larsen,
M., Veledar, O., Macher, G., Lafer, M., Giraudi, L., Reckenzaun, J., Hammer, D., Mohan,
N., Schmid, J., Höß, A., Ophir, S., Dubey, A., Fuchs, J., Lübke, M., Anghel, A., Ristea,
N.-C., Törngren, M., Musralina, A., Harter, M., Jose, J. M., and Dimitrakopoulos, G.

40

https://doi.org/10.1109/CoDIT.2018.8394842
https://doi.org/10.3390/electronics8020250
http://www.mdpi.com/2079-9292/8/2/250
http://www.mdpi.com/2079-9292/8/2/250
https://doi.org/10.1109/ETFA.2019.8869121
https://doi.org/10.1109/ETFA.2019.8869121
https://ieeexplore.ieee.org/document/8869121/
https://doi.org/10.3390/electronics9122193
https://www.mdpi.com/2079-9292/9/12/2193
https://www.mdpi.com/2079-9292/9/12/2193
https://doi.org/10.1109/bec49624.2020.9276943
https://ieeexplore.ieee.org/abstract/document/9276943
https://doi.org/10.1109/dsd51259.2020.00065
https://doi.org/10.1109/dsd51259.2020.00065
https://ieeexplore.ieee.org/document/9217654

Programmable systems for intelligence in automobiles (prystine): Final results after year
3// 2021 24th Euromicro Conference on Digital System Design (DSD). - 2021. - 268–277
p. DOI: 10.1109/DSD53832.2021.00049.

[9] Kuon, I., Tessier, R., and Rose, J. FPGA Architecture: Survey and Challenges en Foun-
dations and Trends® in Electronic Design Automation. - 2007. - Vol.2 - Nr.2. - 135–
253 p. 2007. ISSN: 1551-3939, 1551-3947. DOI: 10.1561/1000000005. / URL - http:
//www.nowpublishers.com/article/Details/EDA-005 (visited on 08/26/2017).

[10] Chu, P. P. RTL hardware design usingVHDL. -. JohnWiley&Sons, 2006. ISBN: 9780471720928.
DOI: 10.1002/0471786411.

[11] Insight Technologies “State of Linux in the public cloud for enterprises” Red Hat Solution
overview 2018. / URL - https://www.redhat.com/cms/managed- files/cl- state-
of - linux- in- public - cloud- for- enterprises - f11154kc- 201802- en_0.pdf (visited on
08/10/2020).

[12] Corbet, J., Rubini, A., and Kroah-Hartman, G. Linux Device Drivers. Third -. O’Reilly,
Dec. 2010.

[13] Szeliski, R. Multiple view geometry in computer vision. en -. 2004. OCLC: 171123855
ISBN: 978-0-511-18711-7 978-0-511-18618-9 978-0-511-18895-4 978-0-511-18535-9
978-0-511-18451-2 978-0-511-81168-5 978-1-280-45812-5. / URL - http://dx.doi .
org/10.1017/CBO9780511811685 (visited on 03/12/2019).

[14] ——,Computer Vision: Algorithms andApplications en 2011. - 979 p. 2011. ISSN: 1868-
0941.

[15] Marr, D. Vision: A Computational Investigation into the Human Representation and Pro-
cessing of Visual Information. en - Nr.2. -. W. H. Freeman and Company, 1982. ISBN:
0-7167-1567.

[16] Scharstein, D., Szeliski, R., and Zabih, R. A taxonomy and evaluation of dense two-frame
stereo correspondence algorithms// Proceedings IEEE Workshop on Stereo and Multi-
Baseline Vision (SMBV 2001). - Dec. 2001. - 131–140 p. DOI: 10.1109/SMBV.2001.
988771.

[17] Haykin, S. Neural Networks: A Comprehensive Foundation. 2nd -. Upper Saddle River,
NJ, USA: Prentice Hall PTR, 1998. ISBN: 978-0-13-273350-2.

[18] Fine, T. L. Feedforward Neural Network Methodology. 1st -. Cornell University, Ithaca,
NY, USA: Springer-Verlag New York, 1999. ISBN: 978-0-387-98745-3.

[19] Chakradhar, S., Sankaradas,M., Jakkula, V., and Cadambi, S. A dynamically configurable
coprocessor for convolutional neural networks// ACM SIGARCH Computer Architecture
News. - Vol.38 - ACM, 2010. - 247–257 p. / URL - http://dl.acm.org/citation.cfm?
id=1815993 (visited on 09/06/2017).

[20] Suda, N., Chandra, V., Dasika, G., Mohanty, A., Ma, Y., Vrudhula, S., Seo, J.-s., and Cao,
Y. Throughput-Optimized OpenCL-based FPGA Accelerator for Large-Scale Convolu-
tional Neural Networks en// Proceedings of the 2016 ACM/SIGDA International Sympo-
sium on Field-Programmable Gate. - ACM Press, 2016. - 16–25 p. ISBN: 978-1-4503-
3856-1. DOI: 10.1145/2847263.2847276. / URL - http://dl.acm.org/citation.cfm?
doid=2847263.2847276 (visited on 09/06/2017).

41

https://doi.org/10.1109/DSD53832.2021.00049
https://doi.org/10.1561/1000000005
http://www.nowpublishers.com/article/Details/EDA-005
http://www.nowpublishers.com/article/Details/EDA-005
https://doi.org/10.1002/0471786411
https://www.redhat.com/cms/managed-files/cl-state-of-linux-in-public-cloud-for-enterprises-f11154kc-201802-en_0.pdf
https://www.redhat.com/cms/managed-files/cl-state-of-linux-in-public-cloud-for-enterprises-f11154kc-201802-en_0.pdf
http://dx.doi.org/10.1017/CBO9780511811685
http://dx.doi.org/10.1017/CBO9780511811685
https://doi.org/10.1109/SMBV.2001.988771
https://doi.org/10.1109/SMBV.2001.988771
http://dl.acm.org/citation.cfm?id=1815993
http://dl.acm.org/citation.cfm?id=1815993
https://doi.org/10.1145/2847263.2847276
http://dl.acm.org/citation.cfm?doid=2847263.2847276
http://dl.acm.org/citation.cfm?doid=2847263.2847276

[21] Zhang, C., Li, P., Sun, G., Guan, Y., Xiao, B., and Cong, J. Optimizing fpga-based
accelerator design for deep convolutional neural networks// Proceedings of the 2015
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. - ACM,
2015. - 161–170 p. / URL - http://dl.acm.org/citation.cfm?id=2689060 (visited on
09/06/2017).

[22] Foumani, S. N. A. An fpga accelerated method for training feed-forward neural networks
using alternating direction method of multipliers and lsmr. Master’s thesis Imperial Col-
lege London, Department of Computing 2020.

[23] Blott, M., Preußer, T. B., Fraser, N. J., Gambardella, G., O’brien, K., Umuroglu, Y.,
Leeser, M. E., and A., V. K. FINN-R: An End-to-End Deep-Learning Framework for
Fast Exploration of Quantized Neural Networks ACM Transactions on Reconfigurable
Technology and Systems. - 2018. 2018. DOI: 10.1145/3242897.

[24] Guan, Y., Liang, H., Xu, N., Wang, W., Shi, S., Chen, X., Sun, G., Zhang, W., and Cong,
J. FP-DNN: An Automated Framework for Mapping Deep Neural Networks onto FPGAs
with RTL-HLS Hybrid Templates// 2017 IEEE 25th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM). ISSN: 978-1-5386-4038-8
- 2017. DOI: 10.1109/FCCM.2017.25.

[25] Khan, A., Sohail, A., Zahoora, U., and Qureshi, A. S. A survey of the recent architectures
of deep convolutional neural networks en Artif Intell Rev. - 2020. - Vol.53 - Nr.8. - 5455–
5516 p. 2020. ISSN: 1573-7462. DOI: 10.1007/s10462-020-09825-6. / URL - https:
//doi.org/10.1007/s10462-020-09825-6 (visited on 10/31/2020).

[26] Shalf, J. and Leland, R. Computing beyond Moore’s Law Computer. - 2015. - Vol.48 -
14–23 p. 2015. DOI: 10.1109/MC.2015.374.

[27] Sadri, M., Weis, C., Wehn, N., and Benini, L. Energy and Performance Exploration of
Accelerator Coherency Port Using Xilinx ZYNQ// FPGAworld ’13 Proceedings of the
10th FPGAworld Conference. - 2013.

[28] Molanes, R. F., Salgado, F., Fariña, J., and Rodríguez-Andina, J. J. Characterization of
FPGA-master ARM communication delays in Cyclone V devices// 41st Annual Confer-
ence of the IEEE Industrial Electronics Society. - 2015. - 4229–4234 p.

[29] Vogel, P., Marongiu, A., and Benini, L. An Evaluation of Memory Sharing Performance
for Heterogeneous Embedded SoCs with Many-Core Accelerators// COSMIC ’15 Pro-
ceedings of the 2015 International Workshop on Code Optimisation for Multi and Many
Cores. - 2015.

[30] Altera corp. Cyclone V Hard Processor System Technical Reference Manual - Oct. 2016.
[31] Šetka, V., Ježek, O., and Novickis, R. Modular signal processing unit for motion control

applications based on system-on-chip with fpga// 2019 24th IEEE International Confer-
ence on Emerging Technologies and Factory Automation (ETFA). - 2019. - 857–863 p.
DOI: 10.1109/ETFA.2019.8869121.

[32] Sangmin Chon “What it takes to do efficient and cost-effective real-time control with a
single microcontroller the c2000™advantage” Texas Instruments White paper 2011. /
URL - https://www.ti.com/lit/wp/spry157/spry157.pdf?ts=1637148859226\&ref_
url=https\%253A\%252F\%252Fwww.google.com\%252F (visited on 11/17/2021).

42

http://dl.acm.org/citation.cfm?id=2689060
https://doi.org/10.1145/3242897
https://doi.org/10.1109/FCCM.2017.25
https://doi.org/10.1007/s10462-020-09825-6
https://doi.org/10.1007/s10462-020-09825-6
https://doi.org/10.1007/s10462-020-09825-6
https://doi.org/10.1109/MC.2015.374
https://doi.org/10.1109/ETFA.2019.8869121
https://www.ti.com/lit/wp/spry157/spry157.pdf?ts=1637148859226\&ref_url=https\%253A\%252F\%252Fwww.google.com\%252F
https://www.ti.com/lit/wp/spry157/spry157.pdf?ts=1637148859226\&ref_url=https\%253A\%252F\%252Fwww.google.com\%252F

[33] F. Buschmann, K. Henney, and D. C. Schmidt Pattern-Oriented Software Architecture
Volume 4: A Pattern Language for Distributed Computing. -. Chichester: Wiley, 2007. -
Vol.Volume 4.

[34] NVIDIA Corporation NVIDIA GPU Programming Guide en 2005. - 80 p. 2005.
[35] Fu, Y., Wu, E., Sirasao, A., Attia, S., Khan, K., and Wittig, R. Deep Learning with INT8

Optimization on Xilinx Devices en 2017. - 11 p. 2017.
[36] Dettmers, T. 8-Bit Approximations for Parallelism inDeep Learning en arXiv:1511.04561

[cs]. - Nov. 2015. Nov. 2015. arXiv: 1511.04561. / URL - http://arxiv.org/abs/1511.
04561 (visited on 10/23/2018).

[37] AXI DMA v7.1, LogiCORE IP Product Guide Apr. 2018. - 95 p. Apr. 2018. / URL -
https://www.xilinx.com/support/documentation/ip_documentation/axi_dma/
v7_1/pg021_axi_dma.pdf.

[38] Zynq-7000 All Programmable SoC Technical Reference Manual (UG585) en 2016. -
1863 p. 2016.

[39] Hariprasath, S. and Prabakar, T. N. FPGA implementation of multilayer feed forward
neural network architecture using VHDL// Computing, Communication and Applications
(ICCCA), 2012 International Conference on. - IEEE, 2012. - 1–6 p. / URL - http://
ieeexplore.ieee.org/abstract/document/6179225/ (visited on 09/06/2017).

[40] Youssef, A.,Mohammed,K., andNasar, A.AReconfigurable, Generic and Programmable
Feed Forward Neural Network Implementation in FPGA// 2012 UKSim 14th Interna-
tional Conference on Computer Modelling and Simulation. - IEEE, 2012. - 9–13 p. ISBN:
978-1-4673-1366-7 978-0-7695-4682-7. DOI: 10.1109/UKSim.2012.12. / URL - http:
//ieeexplore.ieee.org/document/6205543/ (visited on 09/06/2017).

[41] Yuan Jing, Youssefi, B., Mirhassani, M., and Muscedere, R. An efficient FPGA imple-
mentation of Optical Character Recognition for License Plate Recognition en// 2017 IEEE
30th Canadian Conference on Electrical and Computer Engineering (CCECE). - IEEE,
2017. - 1–4 p. ISBN: 978-1-5090-5538-8. DOI: 10.1109/CCECE.2017.7946734. / URL
- http://ieeexplore.ieee.org/document/7946734/ (visited on 04/17/2018).

[42] Oliveira, J. G. M., Moreno, R. L., Oliveira Dutra, O. de, and Pimenta, T. C. Implementa-
tion of a reconfigurable neural network in FPGA en// 2017 International Caribbean Con-
ference on Devices, Circuits and Systems (ICCDCS). - Cozumel, Mexico: IEEE, 2017. -
41–44 p. ISBN: 978-1-5386-1962-9. DOI: 10.1109/ICCDCS.2017.7959699. / URL -
http://ieeexplore.ieee.org/document/7959699/ (visited on 09/08/2018).

[43] Hajduk, Z. Reconfigurable FPGA implementation of neural networks en Neurocomput-
ing. - 2018. - Vol.308 - 227–234 p. 2018. ISSN: 09252312. DOI: 10.1016/j.neucom.2018.
04.077. / URL - https://linkinghub.elsevier.com/retrieve/pii/S0925231218305393
(visited on 09/08/2018).

[44] Bayer, B. E. Color imaging array. U.S. Patent - Nr.US3971065A. 1976.
[45] Li, X., Gunturk, B., and Zhang, L. Image demosaicing: A systematic survey en Pearlman,

W. A., Woods, J. W., and Lu, L., Eds. - San Jose, CA, Jan. 2008. - 68221J p. DOI: 10.
1117/12.766768. / URL - http://proceedings .spiedigitallibrary.org/proceeding.
aspx?doi=10.1117/12.766768 (visited on 08/09/2020).

43

http://arxiv.org/abs/1511.04561
http://arxiv.org/abs/1511.04561
https://www.xilinx.com/support/documentation/ip_documentation/axi_dma/v7_1/pg021_axi_dma.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_dma/v7_1/pg021_axi_dma.pdf
http://ieeexplore.ieee.org/abstract/document/6179225/
http://ieeexplore.ieee.org/abstract/document/6179225/
https://doi.org/10.1109/UKSim.2012.12
http://ieeexplore.ieee.org/document/6205543/
http://ieeexplore.ieee.org/document/6205543/
https://doi.org/10.1109/CCECE.2017.7946734
http://ieeexplore.ieee.org/document/7946734/
https://doi.org/10.1109/ICCDCS.2017.7959699
http://ieeexplore.ieee.org/document/7959699/
https://doi.org/10.1016/j.neucom.2018.04.077
https://doi.org/10.1016/j.neucom.2018.04.077
https://linkinghub.elsevier.com/retrieve/pii/S0925231218305393
https://doi.org/10.1117/12.766768
https://doi.org/10.1117/12.766768
http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.766768
http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.766768

[46] Yu, H. and Leeser, M. Automatic sliding window operation optimization for fpga-based//
2006 14th Annual IEEE Symposium on Field-Programmable Custom Computing Ma-
chines. - 2006. - 76–88 p. DOI: 10.1109/FCCM.2006.29.

[47] Hagara, M., Stojanović, R., Bagala, T., Kubinec, P., and Ondráček, O. Grayscale im-
age formats for edge detection and for its fpga implementationMicroprocessors and Mi-
crosystems. - 2020. - Vol.75 - 103056 p. 2020. ISSN: 0141-9331. DOI: https://doi.org/
10.1016/j.micpro.2020.103056. / URL - https://www.sciencedirect.com/science/
article/pii/S0141933119305034.

[48] Huntsberger, T. and Descalzi, M. Color edge detection Pattern Recognition Letters. -
1985. - Vol.3 - Nr.3. - 205–209 p. 1985. ISSN: 0167-8655. DOI: https://doi.org/10.
1016/0167- 8655(85)90054- 6. / URL - https://www.sciencedirect.com/science/
article/pii/0167865585900546.

[49] Cook, J. D. (- 2009.). Three algorithms for converting to grayscale / URL - https :
//www.johndcook.com/blog/2009/08/24/algorithms-convert-color-grayscale/.

44

https://doi.org/10.1109/FCCM.2006.29
https://doi.org/https://doi.org/10.1016/j.micpro.2020.103056
https://doi.org/https://doi.org/10.1016/j.micpro.2020.103056
https://www.sciencedirect.com/science/article/pii/S0141933119305034
https://www.sciencedirect.com/science/article/pii/S0141933119305034
https://doi.org/https://doi.org/10.1016/0167-8655(85)90054-6
https://doi.org/https://doi.org/10.1016/0167-8655(85)90054-6
https://www.sciencedirect.com/science/article/pii/0167865585900546
https://www.sciencedirect.com/science/article/pii/0167865585900546
https://www.johndcook.com/blog/2009/08/24/algorithms-convert-color-grayscale/
https://www.johndcook.com/blog/2009/08/24/algorithms-convert-color-grayscale/

	ABBREVIATIONS
	GENERAL DESCRIPTION OF THE WORK
	TECHNOLOGICAL CONTEXT
	Processing Paradigms
	Heterogeneous System on Chip
	Linux Operating System

	IMAGE PROCESSING ALGORITHMS
	Image Formation and Correspondence Algorithms
	General Projective Camera and Lens Distortions
	Epipolar Geometry
	Stereo Correspondence

	AI-Based Algorithms

	HETEROGENEOUS COMPUTING ARCHITECTURES
	Heterogeneous Computing Based on Direct Memory Access
	Asynchronous Multi-Processing Subsystem
	Approach to Management of Software Components

	ADAPTATION AND IMPLEMENTATION OF IMAGE PROCESSING ALGORITHMS
	An Approach of Feed-Forward Neural Network Throughput-Optimized Implementation in FPGA
	Heterogeneous System Architecture for Stereo Image Processing
	Stereo Image Processing Pipeline
	Deinterleaving of the input stream
	Bayers pattern interpolation and RGB-to-Grayscale conversion
	An approach to spatial image transformation
	Feature extraction
	Correspondence calculations

	Demonstrator system

	CONCLUSIONS
	BIBLIOGRAPHY

