
RIGA TECHNICAL UNIVERSITY
Faculty of Electronics and Telecommunications

Institute of Radio Electronics

Rihards Novickis
Student of the Doctoral study program ”Electronics”

Implementation of stereo-vision algorithms in
heterogeneous embedded systems

Doctoral thesis

Academic supervisors
Dr.sc.Ing., senior researcher

Artūrs Āboltiņš

Dr.sc.Ing., researcher
Rolands Šāvelis

Riga, 2022

A DOCTORAL THESIS SUBMITTED TO RIGA TECHNICAL UNIVERSITY IN
FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF

SCIENCE IN ENGINEERING

The public defense of the doctoral thesis for promotion to the doctor’s degree in engineering
will take place on 11th of March, 2022, at 13:00 in Riga Technical University, 12 Azenes Street,
Riga.

OFFICIAL REVIEWERS

Dr.sc.ing., Assistant Professor Paolo Meloni, University of Cagliari

Dr.sc.ing., Associate Professor Wassim Hamidouche, University of Rennes

CONFIRMATION

I confirm that this doctoral thesis, submitted for a degree in engineering at the Riga Technical
University, is my own work. The doctoral thesis has not been submitted for a degree in any other
university.

Rihards Novickis . (Signature)

Date: .

The doctoral thesis is written in English, contains introduction, 4 chapters, conclusions, ref-
erences, 10 appendices, index, 76 Figures and 7 Tables, 122 pages in total. The list of references
consists of 132 titles.

2

ABSTRACT

Despite the rapid development, hardware’s performance increase saturates; therefore, new

approaches in computing are necessary. This work is part of a global effort to solve the saturation

challenge of Moore’s Law by drawing attention to the increasing complexity of modern process-

ing systems, applying Heterogeneous System on Chip (HSoC) technology and implementing

stereo vision algorithms. The limiting factor for this application is the high complexity of the

development process that is determined by the variety of involved development paradigms, i.e.

the design of digital circuits, designing internal communications, developing software for hard-

ware control, dealing with memory virtualization and deploying system architectures.

To achieve the set objective, the following themes are examined: heterogeneous embedded

system development approaches, a combination of different abstraction levels, effective inter-

nal communications, co-processing using different computing hardware, real-time processing,

implications for modern AI-based algorithms and realization of an efficient computer vision

pipeline. The main contributions of this thesis can be summarized as follows:

• A collection of methods and approaches for the system-level design of HSoCs.

• Method for maximizing throughput of Feed Forward Neural Network processing pipeline.

• HSoC-based architecture for computer vision processing.

The thesis is useful for future system architects, computer vision researchers, SoC designers

and engineers tackling the design of HSoCs. The findings and conclusions of the thesis are

manifested in the form of a stereo-vision demonstrator.

The doctoral thesis is the result of the research carried out at the Institute of Electronics

and Computer Science (EDI) within the following Horizon2020 ECSEL projects: ”Integrated

Components for Complexity Control in affordable electrified cars” (3Ccar, GA:662192), ”Intel-

ligent Motion Control Platform for Smart Mechatronic Systems” (I-MECH, GA:737453), ”Pro-

grammable Systems for Intelligence in Automobiles” (PRYSTINE, GA:783190), ”Advanced

packaging for photonics, optics and electronics for low-cost manufacturing in Europe” (AP-

PLAUSE, GA:826588), ”Framework of Key Enabling Technologies for Safe and Autonomous

Drones” (COMP4DRONES, GA:826610).

The work consists of 122 pages, 76 figures, 7 tables, 132 sources of literature and 10 ap-

pendixes.

3

ANOTĀCIJA

Neskatoties uz tehnoloģiu straujo attīstību ir novērojams piesātinājums aprēķinu aparatūras

veiktspējas pieaugumā, līdz ar to ir nepieciešamas jaunas pieejas aprēķinu veikšanai. Šis darbs

ir daļa no globāliem centieniem rast risinājumu Mūra likuma piesātinājuma izaicinājumam,

vēršot uzmanību pieaugošajai sarežģītībai mūsdienu aprēķinu sistēmās, pielietojot uz Program-

mējamiem Loģikas Masīviem balstītas heterogēnas vienkristāla sistēmas un īstenojot stereo

redzes algoritmus. Viens no šāda pilietojuma galvenajiem limitējošiem faktoriem ir izstrādes

procesa augstā sarežģītība, kuru nosaka daudzās iekļautās izstrādes paradigmas, t.i. digitālo

shēmu projektēšana, iekščipa komunikāciju nodrošināšana, aparatūras kontroles programmatūras

izstrāde, atmiņas virtualizācijas mehānismu izmantošana un sistēmas arhitektūras realizācija.

Lai sasniegtu izvirzīto mērķi, tiek izskatīti sekojošie temati: heterogēno iegulto sistēmu

izstrādes pieejas, atšķirīgu abstrakcijas līmeņu apvienošana, efektīvas iekščipa komunikācijas,

dažādas aprēķinu aparatūras līdzapstrāde, reāla laika apstrāde, implikācijas mūsdienu, uz māk-

slīgā intelekta balstītu, algoritmu realizācijai un efektīvas datorredzes apstrādes ķēdes.

Galvenie šīs disretācijas pienesumi ir:

• metožu un pieeju krājums heterogēnu iegultu sistēmu izstrādei;

• metode dziļo neironu tīklu aprēķinu virknes caurlaidspējas palielināšana;

• heterogēnu iegultu sistēmu arhitektūra datorredzes algoritmu realizācijai.

Disertācija ir noderīga sistēmu arhitektiem, datorredzes pētniekiem, vienkristāla sistēmu

izstrādātājiem, kā arī inženieriem, kuri nodarbojas ar heterogēnām iegultām sistēmām. Šī darba

galvenie atradumi un secinājumi pielietoti reāla laika stereo redzes gala demonstrātora izveidē.

Disertācija ir izstrādāta Elektronikas un datorzinātņu institūtā (EDI) sekojošu iniciatīvas

Horizon 2020 ECSEL kopuzņēmuma projektu ietvaros: ”Integrētas komponentes sarežģītības

kontrolei pieejamos elektrificētos transporta līdzekļos” (3Ccar, GA:662192), ”Inteliģenta kustību

kontroles platforma viedām mehatroniskām sistēmām” (I-MECH, GA:737453), ”Programmē-

jamas Sistēmas Inteliģencei Automobiļos” (PRYSTINE, GA:783190), ”Uzlabota fotonikas, op-

tisko un elektroniko komponenšu iepakošana/montāža zemu izmaksu ražošanai Eiropā” (AP-

PLAUSE, GA:826588), ”Pamattehnoloģiju ietvars drošu un autonomu dronu lietojumiem”

(COMP4DRONES, GA:826610).

Darbā ir 122 lapaspuses, 76 attēli, 7 tabulas, 132 izmantotie literatūras avoti un 10 pielikumi.

4

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my supervisors Dr Artūrs Āboltiņš and Dr

Rolands Šāvelis for their patient guidance, encouragement and useful critiques.

I would also like to express my gratitude to my scientific director DrModris Grietāns andmy

friend and colleague Dr Kaspars Ozols for providing this research opportunity and broadening

my horizons with international project opportunities. You have always provided support and

advice during my creative mess. That surely would not be possible without you.

A special thanks to my mentor and friend, Mihails Pudžs. I still have not met anyone with

such appreciation, fascination and never-ending lust for the research process. Thanks to you, I

have found that passion and discipline can coexist. That surely would not have been such an

amazing experience. Special thanks also go to my friend and technical guru Rinalds Ruskulis.

Our discussions many times have facilitated the broadening of my horizons.

I thank all my colleagues at the Institute of Electronics and Computer Science (EDI) for the

friendly and motivating environment. You have been like a family to me. Specifically, I would

like to express my deepest gratitude to the EDI System on Chip research group. Our whiteboard

discussions have always made my work a pleasure, as well as our drive towards our common

ambitious goals. Special thanks go to the head of my laboratory - Dr Roberts Kadiķis. I admire

your ability to make far-reaching decisions and, of course, your deep understanding of topics of

philosophy, politics and history.

Also, thanks to the staff of Riga Technical University for providing this great opportunity of

discovering the fascinating world of electronics and special thanks to Dr Dmitrijs Pikuļins for

keeping me motivated throughout the process.

Last but not least, I would like to thank my family. My brothers - Oskars Novickis for com-

mending me to study electronics andMaris Novickis for introducing me to the fascinating world

of computers. And of course, I am very grateful to my parents Veneranda Novicka and Vilhelms

Novickis. I praise you for your encouragement, understanding and never-ending support. You

have always been there, no matter how bad things may have become.

Rihards Novickis,

Riga 2022

5

CONTENTS

ACKNOWLEDGEMENTS . 5

ABBREVIATIONS . 13

INTRODUCTION . 17

.1 TECHNOLOGICAL CONTEXT . 22

1.1 Sequential Processing . 22

1.2 Programmable logic and Field Programmable Gate Arrays 24

1.3 Other Computational Approaches . 27

1.4 Heterogeneous System on Chip . 29

1.5 Digital interfaces . 32

1.6 Linux operating system . 34

.2 COMPUTER VISION . 37

2.1 General Projective Camera . 37

2.2 Lens Distortions . 40

2.3 Epipolar Geometry. 41

2.4 Stereo Correspondence . 44

2.5 AI-based algorithms . 46

2.5.1 Technical Background . 46

2.5.2 Related work . 48

.3 HETEROGENEOUS COMPUTING ARCHITECTURES. 51

3.1 Heterogeneous Computing Based on Direct Memory Access 51

3.2 Approach of Asynchronous Multi-Processing 58

3.3 Approach to Management of Software Components. 64

3.3.1 Software component management framework - compage 65

3.3.2 Software component communication framework - icom 66

6

.4 ADAPTATION AND IMPLEMENTATION OF COMPUTER VISION ALGORITHMS 68

4.1 An Approach of Feed-Forward Neural Network Throughput-Optimized Imple-

mentation in FPGA . 68

4.1.1 Design considerations . 68

4.1.2 Design, implementation and results 71

4.2 Heterogeneous System Architecture for Stereo Image Processing 75

4.3 Design of image processing accelerators 78

4.3.1 Deinterleaving of the input image stream 78

4.3.2 Bayers pattern interpolation and RGB-to-Grayscale conversion 80

4.3.3 An approach to spatial image transformation 82

4.3.4 Parallel data access scheme for data reconstruction 86

4.3.5 Feature extraction . 94

4.3.6 Correspondence calculations . 95

4.4 Demonstrator system and results . 97

.5 CONCLUSIONS . 99

APPENDICES . 102

Appendix 1 Architecture example: NXP i.MX 6Dual/6Quad 103

Appendix 2 Architecture example: Intel Cyclone V SoC 104

Appendix 3 FPGA Master-based communication throughput for Cyclone V SoC . . 105

Appendix 4 High-level architecture of Xilinx Zynq Ultrascale+ MPSoC. 107

Appendix 5 A simplified view of the Avalon Memory Mapped interface. 108

Appendix 6 Example of compage framework’s instantiation 109

Appendix 7 Example of compage component’s description 109

Appendix 8 Example of compage framework’s configuration file 110

Appendix 9 Abstract example of icom framework’s usage 111

Appendix 10 Performance metrics of the developed FFNN implementation approach

targeting virtual sensor use case, presented by Dendaluce et al. 112

BIBLIOGRAPHY . 113

7

LIST OF FIGURES

0.1 Comparison between implementation platforms. 17

1.1 The von Neumann model. 22

1.2 Instruction pipelines. 24

1.3 Simplified FPGA structure. 25

1.4 RTL development flow of medium-sized designs. 26

1.5 Comparison of non-optimized and optimized processing pipelines. 27

1.6 High-level comparison of CPU and GPU architectures. 28

1.7 Comparison of traditional and modern business models of semiconductor

companies . 29

1.8 A simplified SoC system model. 30

1.9 Levels of abstraction for an electronic computing system. 31

1.10 Simplified view of interface between Master and Slave. 33

1.11 A simplified usage example of a memory-mapped interface. 33

1.12 A simplified usage example of streaming interface. 33

1.13 Basic structure of the Linux kernel and system call interface. 34

1.14 An example of 4 KB page-based virtual memory management in a 32-bit

ARM-based. 35

1.15 Simplified example of page-based virtual-physical address space mapping for

two processes. 36

2.1 Pinhole camera geometry. 37

2.2 Relationship between camera and world frames. 38

2.3 An example of lens distortion effect on the calibration image for bumblebee

stereo camera. 40

2.4 Point correspondence geometry. 42

2.5 Epipolar geometry. 42

2.6 An example of stereo image correspondences and their respective epipolar lines. 43

2.7 Classification of most common steps in disparity calculation 45

2.8 Structure of a single neuron. 47

2.9 General structure of a feed forward neural network. 47

8

3.1 Examples of a standard Central Processing Unit (CPU)-Graphics Processing

Unit (GPU) and Heterogeneous System on Chip (HSoC) memory coordination

models. 52

3.2 Internal blocks related to the DMA master-based architecture. 55

3.3 Conceptual design of FPGA Master-based architecture. 56

3.4 Throughput measurements for different FPGA master communication paths. . . 58

3.5 Texas instrument embedded control loop’s configuration examples. 59

3.6 Real-time application subsystem. 60

3.7 Composition of the developed Linux driver. 61

3.8 High-Level Structure of Intel Cyclone V Field Programmable SoC. 62

3.9 Inter-processor communications mechanism. 63

3.10 An approach to the management of software components. 64

3.11 Layout of a compage segment in the executable. 66

3.12 Component communication mechanism base. 67

4.1 Different delay models. a) Delays are analyzed in terms of a neurons in layers

b) Joint delay analysis for ”primitive” multiplication, addition and activation

layers. 70

4.2 Optimized and non-optimized resource sharing policies. 71

4.3 Proposed resource implementation scheme. 72

4.4 ”Elementary layer” resource dependence on the targeted pipelining latency for

a 17-40-30-20-4 FFNN topology. 72

4.5 Functional architecture of the developed HSoC stereo-vision solution. 76

4.6 Software thread synchronization using double buffer technique. 78

4.7 Interleaved input stream of the bumblebee camera. 79

4.8 Separation of interleaved image data stream. 79

4.9 Bayer RGB pattern. 80

4.10 Bayer pattern variants considered for demosaicing algorithm. 81

4.11 High-level structure of the designed demosaicing circuit. 81

4.12 Approach to fully pipelined image transformation in digital logic. 83

4.13 Representation of the rectification digital circuit. 85

9

4.14 Representation of barrel (radial) distortion correction circuit for computing

necessary input image coordinates. 86

4.15 Correction of radial lens distortions in Bumblebee camera using sparial

transformation Intellectual Property (IP). 86

4.16 The overall concept of write and read pointer acess to the memory. 87

4.17 Simple data access scheme for 4-point reconstruction. 87

4.18 Optimized data access scheme for 4-point reconstruction with 4× reduction in

memory size. 87

4.19 An example of write request demultiplexing logic when using 4 × 4 memory

matrix. 88

4.20 Dissection of a 12-bit reconstruction request for a 4-memory readout. 89

4.21 Data retrieval for reconstruction using four input data samples. 89

4.22 Data retrieval for reconstruction using four vertical input data samples. 90

4.23 Address generation for 4x4 memory matrix. 91

4.24 General address vector computing concept for N -dimensions. 92

4.25 Generic offset vector construction circuit. 92

4.26 Conceptual deisgn of the read access circuitry. 93

4.27 Conceptual deisgn data rearangment logic for 1-dimensional use-case. 93

4.28 High-level composition of the implemented feature extractor. 94

4.29 Composition of correspondence calculation and matching logic. 95

4.30 Feature descriptor comparison logic for a single pixel pair. 96

4.31 Correspondence identification circuit based on a recursive circuit description. . 96

4.32 A demonstration of the stereo-vision demonstrator in action. 97

4.33 Demonstrator image 2D and 3D representations 98

A1 Block diagram of NXP’s i.MX 6Dual/6Quad processor system. 103

A2 Block diagram of Intel’s Cyclone V SoC. 104

A3 Master-based communication throughput measurements for Cyclone V SoC’s

data path Data path: FPGA-SDRAM. 105

A4 Master-based communication throughput measurements for Cyclone V SoC’s

data path Data path: FPGA-L3-SDRAM. 105

10

A5 Master-based communication throughput measurements for Cyclone V SoC’s

data path Data path: FPGA-L3-ACP-SDRAM. 106

A6 High-level architecture of Xilinx Zynq MPSoC Ultrascale+ SoC. 107

11

LIST OF TABLES

2.1 Summary of the NN topologies and the performance metrics from the related

articles. 50

3.1 Throughput of simultaneous read/write transactions for all communication

interface configurations. 57

4.1 Small topology implementation resource utilization and benchmark. 74

4.2 Implementation resource use and benchmark result comparison table. 75

A1 Simultaneous read/write throughput measurement table 106

A2 Simplified list of Avalon-Memory Mapped interface. 108

A3 FPGA resource utilization and performance metrics for 8-16-12-8-4 FFNN. . . 112

12

ABBREVIATIONS

3Ccar Integrated Components for Complexity Control in affordable electrified cars. 21, 68

ACP Accelerator Coherency Port. 54, 57

ADC Analog-to-Digital Converter. 59

AI Artificial Intelligence. 18, 19, 74, 99, 100

ALU Arithmetic Logic Unit. 23

AMBA Advanced Microcontroller Bus Architecture. 30, 32, 55

AMD Advanced Micro Devices. 85

AMP Asynchronous Multi-Processing. 19, 51, 58–64, 99

ANN Artificial Neural Network. 46, 70, 71, 100

APPLAUSE Advanced packaging for photonics, optics and electronics for low cost manufac-

turing in Europe. 21, 75

ARM Acorn RISC Machine. 30, 32, 53–55, 60

ASIC Application Specific Integrated Circuit. 25, 26, 28, 97

ASIP Application-Specific Instruction-set Processors. 27–29

AXI Advanced eXtensible Interface. 30, 73

BPF Berkeley Packet Filter. 34

CCD Charge-Coupled Device. 39

CFA Color Filter Array. 80

CGRA Coarse-Grained Reconfigurable Array. 27, 28

CLA-FPU Control Law Accelerator Floating Point Unit. 59

CMA Contiguous Memory Allocator. 53, 56

CMOS Complementary Metal-Oxide Semiconductor. 82

CNN Convolutional Neuron Networks. 48

COMP4DRONESFramework ofKeyEnabling Technologies for Safe andAutonomousDrones.

64, 67, 75

CPU Central Processing Unit. 9, 24, 27, 30, 31, 35, 36, 52, 59, 60

CUDA Compute Unified Device Architecture. 28

DDR Double Data Rate. 57, 61, 79

13

DL Deep Learning. 46

DMA Direct Memory Access. 31, 36, 53–56, 73, 76, 78, 99

DNN Deep Neural Network. 25, 46

DSP Digital Signal Processing. 24, 31

ECSEL Electronic Components and Systems for European Leadership. 21, 58, 64

EDA Electronics Design Automation. 17

ELF Executable Linked Format. 60, 63, 65

FFNN Feed Forward Neural Network. 19, 20, 48, 68–71, 73, 74, 100

FIFO First-In-First-Out. 62, 63, 67, 79, 80

FPGA Field Programmable Gate Array. 19, 24–26, 28, 31, 32, 36, 51–58, 60, 69, 74, 76, 82,

97–100

FPSoC Field Programmable System on Chip. 53

GPU Graphics Processing Unit. 9, 27, 28, 31, 32, 52, 74

H2020 Horizon 2020. 21, 58, 64, 65

HDL Hardware Description Language. 25, 26

HLS High-Level Synthesis. 20, 27, 53, 68, 71, 73, 74

HPC High Performance Computing. 24, 25

HPS Hard Processing System. 54

HSA Heterogeneous System Architecture. 51

HSF Heterogeneous Systems Foundation. 51

HSoC Heterogeneous System on Chip. 9, 18–20, 22, 29, 31, 32, 34, 36, 51–53, 59, 61, 68, 75,

99

I-MECH Intelligent Motion Control Platform for Smart Mechatronic Systems. 21, 58, 59

I/O Input/Output. 24

IC Integrated Circuit. 17, 25, 29, 30

IOMMU Input/Output Memory Management Unit. 36

IoT Internet of Things. 98

IP Intellectual Property. 10, 73, 86

IPC Inter-Process Communication. 35, 67

IPI Inter-Processor-Interrupt. 62

ISA Instruction Set Architecture. 22, 23, 29, 31, 32

14

LUT Look-Up-Table. 72

MIMOMultiple-Input, Multiple-Output. 58

MLMachine Learning. 37, 46, 68

MMMemory-Mapped. 73

MMUMemory Management Unit. 33, 35, 60, 63

MPUMicro Processing Unit. 73, 76, 99

MSGDMAModular Scatter-Gather Direct Memory Access. 54–57

NN Neural Network. 19, 46, 68, 69, 71

NoC Network on Chip. 30

OCRAM On-Chip Random Access Memory. 53, 61, 68, 82, 88

OCROM On-Chip Read Only Memory. 61

OpenCL Open Computing Language. 28

OpenGL Open Graphics Library. 76

OS Operating System. 18, 19, 34, 36, 52

PC Program Counter. 23, 97

PCIe Peripheral Component Interconnect Express. 20, 31, 36, 52, 75, 97

PPI Programmable Peripheral Interconnect. 51

PRYSTINE Programmable Systems for Intelligence in Automobiles. 21, 64, 67

PWM Pulse Width Modulation. 59

RAM Random-Access Memory. 54

ROS Robot Operating System. 65, 67

RT Real-Time. 19, 60–62

RTL Register Transfer Level. 18, 25–27, 95, 96

SCU Snoop Control Unit. 56, 61, 73

SDRAM Synchronous Dynamic Random-Access Memory. 54

SIMD Single Input Multiple Output. 53

SIP Silicon Intellectual Property. 29, 30, 32, 77, 100

SIPO Serial-In-Parallel-Out. 95

SoA State of Art. 22, 46, 59, 65, 68, 74, 82, 99

SoC System on Chip. 17, 18, 22, 28–32, 51, 54, 57, 60, 78, 97, 99, 100

SRAM Static Random Access Memory. 82

15

ST Streaming. 73, 84

TLB Translation Lookaside Buffer. 35

TSMC Taiwan Semiconductor Manufacturing Company. 29

UAV Unmanned Aerial Vehicle. 19

USB Universal Serial Bus. 31

VHDL Very High Speed Integrated Circuit Hardware Description Language. 97

VLSI Very Large Scale Integration. 17

WTAWinner-Take-All. 45

ZMQ Zero Message Queue. 67

16

INTRODUCTION

During his or her lifetime an experienced digital Integrated Circuit (IC) engineer has ex-

perienced the incredible journey of digital design automation and the rise of Very Large Scale

Integration (VLSI), hence a migration from a very manual work-driven design of the digital chip

to the highly sophisticated Electronics Design Automation (EDA) tools, which can deal with the

placement and routing of billions of transistors. Moore’s law [1] has become something more

than just a prediction, it guides the intimate relationship between the innovation and modern

semiconductor companies. The public expects Improved performance and innovative features

while investors anticipate the new technologies.

The demand for higher performance yet lower-cost processing and standardization of on-

chip digital communication protocols have led to the emergence of revolutionary computing

system paradigm - System on Chip (SoC) [2]. The SoC is an IC which incorporates almost

all components of an electronic system into a single chip. This brings notable improvements

to power efficiency, inter-component communication bandwidth and computing power despite

increasing the complexity of the overall system. Most notably, SoC technology has led to the

rise of smartphones and is being adopted widely across the industries.

Figure 0.1. Comparison between implementation platforms.

Naturally, the computational characteristics and requirements of different applications have

led to the specialization of hardware and involves the trade-off between computational plat-

form’s universality and performance, thus leading to a range of technologies: general-purpose

17

processors, domain-specific processors, application-specific processors, programmable logic

and specialized integrated circuits. Even more difficult-to-meet performance and efficiency

requirements drove the establishment of an even more complicated system category - Hetero-

geneous System on Chip (HSoC) [3]. Now a single chip incorporates a variety of sequential

and parallel computational paradigms promising even higher performance, expectedly, on the

expense of complexity.

Meanwhile, the advancement of modern Artificial Intelligence (AI) based algorithms trans-

forms many fields and is the key-technology behind many innovative applications [4]. With this

new prospect of computerized systems being able to perceive the world reliably, we must ask an

important question: How do we facilitate the widespread of these smart systems? Apart from the

algorithms, the perception challenge concerns power consumption, communication bandwidth,

real-time performance and time-to-market considerations of the product.

The contemporary SoC technologies bare potential of solving the perception challenge in a

commercially feasible way, but this still requires solving challenges of system design involving

multiple computational paradigms and abstractions ranging from Register Transfer Level (RTL)

design to the level of Operating System (OS) and even extending to an organization of systems.

Such aspects as algorithm partitioning across different computational paradigms, reliable on-

chip communications’ architecture and compliance with real-time control system performance

are still a major challenge [5, 6].

Considering the above mentioned, this thesis is addressing the relationship between com-

puterized perception and increasingly complex HSoC technologies. Particularly, the on-chip

hardware and software co-architectures, implementation of stereo-vision and AI algorithms and

associated real-time considerations. The primary aim of this thesis is to develop and improve

computer vision development techniques and methods for HSoC technology.

Several tasks have been defined in order to reach the aim of the thesis:

1. identify methods for complementing RTL and software-based computing paradigms;

2. design heterogeneous architectures and tools for utilizing heterogeneous SoC technology;

3. design heterogeneous approach to the implementation of image processing pipelines;

4. implement and conduct experimental research on the developed tools and algorithms;

5. draw conclusions about the results of this Thesis.

The main contributions of this thesis can be summarized as:

18

1. A collection of methods and approaches for system-level design of HSoC technolo-

gies. The design of HSoC-based technologies is a relatively complex task as it involves

multiple levels of abstraction. The complexity must be addressed in order to enable an

efficient processing of stereo-vision algorithms. These methods serve as a foundation

for the rest of the thesis as they involve the primary on-chip interfacing mechanisms and

requirements for software and hardware co-development flow.

The thesis suggests an Field Programmable Gate Array (FPGA) master-based system ar-

chitecture suitable for implementing computer vision algorithms. A shortcoming in the

characterization of different HSoCs has been identified and corrected accordingly by per-

forming bench-marking of on-chip communication mechanisms. The developed system

architecture adopts Linux OS as it provides a good code base that enhances the overall

capabilities of the system, although with the caveat of increased complexity.

Furthermore, the Real-Time (RT) performance of HSoCs is addressed by developing an

Asynchronous Multi-Processing (AMP) subsystem approach. In the proposed approach,

at least one of the processor cores is dedicated to a RT application, while the rest of the

system runs Linux. This method aspires to keep both the RT performance of a bare-metal

application and the available software code base of Linux while sacrificing simplicity.

Another identified shortcoming is a lack of software component management frameworks

suitable for embedded systems. This need is addressed by developing modular soft-

ware component management (compage) and communication (icom) frameworks. These

frameworks simplify prototyping activities for systems where RT performance is essen-

tial. At the moment of writing this thesis, the developed frameworks are already utilized

for autonomous driving and Unmanned Aerial Vehicle (UAV) applications.

2. Method for maximizing the throughput of Feed Forward Neural Network (FFNN)

processing pipeline. In recent years, many algorithm benchmarks, including stereo-

vision, are being dominated by the approaches based on AI. Therefore it is crucial to

understand their positioning in the context of modern HSoC technologies.

The developed novel approach enables the design of a throughput-optimized processing

pipeline for FFNNs. It reexamines the Neural Network (NN) implementation challenge

and restates the description of FFNNs to adapt it for pipelining. The network is split

19

into elementary layers, where each layer is associated with an abstract resource. These

resources can be allocated to each of the layers and determine the delay characteristics of

the whole pipeline.

The approach accommodates a tool, which converts topology into high-level code for

High-Level Synthesis (HLS) pipeline. Tool’s inputs are the topology of the network and

target latency for a single stage of the pipeline (elementary layer). The developed method

is suitable for virtual sensor implementation, especially when a high sample rate is re-

quired.

3. HSoC-based architecture for computer vision processing. To fully comprehend the

significance of employing HSoC technologies for computer vision algorithm implemen-

tation, a stereo correspondence matching algorithm has been implemented using engi-

neering design methods.

The developed correspondencematching pipeline is fully implemented in the programmable

logic. It consists of deinterleaving, Bayers pattern interpolation, lens distortion correction,

rectification, feature extraction and correspondence matching. The processing system is

used mainly for accelerator control, image acquisition via Peripheral Component Inter-

connect Express (PCIe) bus and transfer of the resulting image to the demonstrator system.

During the writing of this thesis, commercially viable stereo cameras have entered the

market. Nevertheless, there are still opportunities for improvement. One of the most

formidable achievements is the design of a fully pipelined image transformation circuit,

which corrects lens distortions and performs perspective transformation of images. The

design has been accommodatedwith a novel approach for parallel access ofN-dimensional

data in digital logic while conserving memory utilization.

This work examines the following theses:

1. The developed Asynchronous Multi-Processing subsystem solution enables exploit-

ing functionality of amodern operating systemwhile supporting real-time processing

with control-loop latencies’ jitter not exceeding a standard deviation of 1 ms.

2. The developed throughput-optimizedFFNNdesignmethod offers better performance

when compared to neiron-centric approaches (2-30 times) and methods following

20

RTL design flow (>1000 times).

3. The HSoC technology is suitable for implementing image processing pipelines in

a fully pipelined manner achieving performance appropriate for modern real-time

systems, whith a control loop’s length less than 50 ms for <1.5 MP images.

The thesis organization is as follows. Section 1 summarises digital computing paradigms

and principles, and Section 2 depicts image processing principles and different stereo-vision

methods and techniques. Section 3 describes the design of HSoC-based system architectures and

their real-time characteristics. Section 4 deals with the challenge of adapting and implementing

computer vision algorithms in HSoC-based technologies. Section 5 presents the conclusions of

the thesis.

The results presented in this thesis are mostly the result of research activities in Horizon

2020 (H2020) Electronic Components and Systems for European Leadership (ECSEL) Inte-

grated Components for Complexity Control in affordable electrified cars (3Ccar)1, Intelligent

Motion Control Platform for Smart Mechatronic Systems (I-MECH)2, Programmable Systems

for Intelligence in Automobiles (PRYSTINE)3, Advanced packaging for photonics, optics and

electronics for low cost manufacturing in Europe (APPLAUSE)4 projects and are also presented

in several published [7–13], accepted [14] and forming [15–17] papers.

1https://www.3ccar.eu/
2https://www.i-mech.eu/
3https://prystine.eu/
4https://applause-ecsel.eu/

21

https://www.3ccar.eu/
https://www.i-mech.eu/
https://prystine.eu/
https://applause-ecsel.eu/

1. TECHNOLOGICAL CONTEXT

This section briefly lays out the technological principles necessary to comprehend contribu-

tions to the State of Art (SoA) further depicted in sections 3 and 4. An experienced professional

can skip this section or parts of it if the respective topics are familiar. The discussed principles

cover the basics of processors and programmable logic, the principles and significance of SoC

and HSoC technologies and such essential concepts as the Linux operating system and memory

virtualization - a core principle in multiple master system design.

1.1 Sequential Processing

The definition of Entscheidungsproblem5 by David Hilbert and Wilhelm Ackermann [18],

and the attempts to solve it led to the formalization of algorithms and the establishment of early

computational models, most notably the emergence of Alan Turing’s computing machine [19] in

1936. Turing’s automatic machine model brought the prospect of automated and programmable

systems capable of executing algorithms, and it took less than a decade for John von Neumann to

develop a computer architecture [20] which in many ways still characterizes modern computers.

Since the first microprocessor6, computers are becoming an integral part of technology and

everyday life.

Memory
MAR MDR

Processing Unit
ALU

Input Output

Control Unit
IRPC

•Keyboard
•Mouse
•Disk
•Scanner

•Monitor
•Printer
•Disk
•LEDs

Figure 1.1. The von Neumann model [21] (MAR - Memory Address Register,MDR - Memory
Data Register, PC - Program Counter, IR - Instruction Register, ALU - Arithmetic and Logic

Unit).

Amicroprocessor’s functionality is fully characterized by the instruction set that it is capable

of executing, which is also called the Instruction Set Architecture (ISA). ISA has been defined
5German for ”decision problem”
6Intel 4004, introduced in 1971

22

as a contract between software and hardware, which allows independent development of both.

ISA also ensures software portability as a program written for the particular ISA can run on

many processor generations. Unfortunately, this benefit also makes migration to a new ISA very

difficult, as ISAs with a larger software base (not necessarily better design) tend to persist longer.

Besides serving as a reference to the compiler developers, ISA also serves as the specification for

the processor designers. Most often, it defines a set of instructions called assembly instructions,

which are then provided by the microarchitectures. ISAs tend to evolve very slowly due to the

inertia against recompiling and redeveloping software. Consequently, innovation tends to be on

the side of microarchitectures [22].

The main computing characteristics of the processor can be comprehended by examining

the generic instruction cycle, which typically consists of 5 phases [22, 23].

• Instruction fetch (IF). The Program Counter (PC) register is used to retrieve the next

instruction from the memory and load it into the instruction register. Simultaneously the

PC register is incremented for the next IF cycle.

• Instruction decode (ID). The instruction is examined in order to generate the necessary

control signals for the instruction execution phase.

• Operand(s) fetch (OF). Usually the instruction specifies one or more operands, which are

needed to be fetched before the actual instruction execution.

• Instruction execution (EX). Once the necessary operands are available, the decoded in-

struction generates internal control signals, e.g. to perform an arithmetic operation using

Arithmetic Logic Unit (ALU). Depending on the complexity of the operation, this phase

can execute variable number of clock cycles.

• Operand store (OS). The result of the instruction can be stored in a register or memory

location depending on the specified addressing mode.

The complexity and latency vary for different instructions and phases, therefore actual instruc-

tion pipelines are usually separated into more balanced sub-stages. Balanciation of the instruc-

tion pipeline’s stages, unification of instruction types and minimization of pipeline stalls are

three primary design challenges of a modern processor [22].

The instruction cycle encapsulates the intrinsic advantage of the sequential processing paradigm.

Most notably, the system is universal and can be used to implement almost any kind of algorithm.

23

2. Instruction1. Instruction 3. Operand 4. Instruction 5. Operand
fetch decode fetch execute store

(a) IF ID OF EX OS

(b)

IF1 ID1 OF1 EX1 OS1

IF2 OF2

OF3

EX2 OS2

OS3

Figure 1.2. a) A generic five-stage instruction pipeline. (b) Instruction pipeline balanced into
11 stages, which correspond to clock cycles.

This feature has led to a wide application of processors ranging from simple keyboard controllers

to massiveHigh Performance Computing (HPC) servers. Nevertheless, the intrinsic weaknesses

of this processing paradigm are the memory access irregularities and inter-instruction depen-

dence, both of which can lead to pipeline stalls.

The memory access irregularities can be addressed by memory hierarchy structures and

multi-level caching schemes, which have been anticipated even by von Neumann himself. Each

consecutive memory has a different latency-size trade-off, and the optimization approach lever-

ages the different probabilities of memory access, i.e. consecutive memory accesses have a

higher probability. The addressing modes with memory reference specifiers can make inter-

instruction dependence detection very difficult. This issue is dealt simultaneously at microar-

chitecture and compiler levels [22, 23]. Notably, CPU performance has been improved over the

years by applying a range of optimization techniques: subword parallelism, instruction-level

parallelism, cache optimization, thread-level parallelism, etc.

1.2 Programmable logic and Field Programmable Gate Arrays

Another essential technology is the Field Programmable Gate Arrays (FPGAs), which have

become one of the key mediums for digital circuit implementation. FPGA is a prefabricated

silicon device that can be electrically programmed to become almost any kind of digital cir-

cuit or system [24]. Simplified FPGA structure is illustrated in Fig. 1.3, it consists of general

logic, memory, Digital Signal Processing (DSP) blocks, routing fabric and programmable In-

put/Output (I/O) blocks.

Although the first programmable logic became available by the mid-1960s, the first modern-

24

Figure 1.3. Simplified FPGA structure.

era FPGA was introduced by Xilinx in 1984 [24]. The FPGAs are programmed in the ”field”

every time upon power-up as opposed to the specialized ICs which are prefabricated in a fab.

The programmability and monetary considerations have led to numerous applications of the

FPGA technology: compensation for non-existing ICs, prototyping/emulation of Application

Specific Integrated Circuits (ASICs), low-latency customized communication and data routing,

data preprocessing and analysis, HPC, Deep Neural Networks (DNNs) and many others.

FPGA development often involves balancing between performance and resource utilization.

Unlike processor systems where software directs the execution of an algorithm, in FPGAs, dif-

ferent physical parts of the chip can be dedicated to a specific task. The development process

involves the actual design of a digital circuit, which is described using specializedHardware De-

scription Languages (HDLs). Then the described circuit is synthesized into an abstract netlist

for the specified technology, which further is fed into placement, routing and programmable file

generation processes.

Conventional FPGA development can be categorized into three tracks: 1) synthesis, 2) phys-

ical design and 3) verification, as shown in Fig. 1.4. The flow starts with RTL design files

which are accompanied by a testbench. The testbench provides a virtual experiment for gener-

ating stimuli and verifying the anticipated responses. Initially, simulation verifies the functional

correction of the circuit description. The synthesis process generates a netlist7 and a delay file,

which permits verification of the synthesized design. Finally, the design is placed and routed
7Description of the connectivity of an electronic circuit

25

for the given FPGA chip. This process produces an FPGA configuration file and delay file for

the routed design. Now the placement and routing of the circuit can be verified. Finally, the

circuit’s operation is confirmed on the physical chip [25]. Usually, the synthesis, placement and

routing processes are time-consuming when compared to simulation, therefore it is productive

to verify and fix the design as early as possible in the development flow.

RTL
Description

Testbench

Delay File

Configuration
File

Synthesis

Simulation

Placement &
Routing

Device
Programming

Simulation /
Timing

Analysis

Netlist

Delay File

Simulation

Synthesis

Physical Design

Verification

FPGA
Chip

1

1

2

3

4

5

6

7

Figure 1.4. RTL development flow of a medium-sized (no partitioning required) design
targeting FPGA [25].

FPGA development resembles the design of an ASIC. However, there are additional require-

ments, i.e. inclusion of testing tracks. The additional testing is necessary to detect defects in

the fabrication process, which in the case of FPGAs, is done by the vendors. Furthermore, due

to monetary considerations and tape-out delays, testing is an integral part of the ASIC design,

which includes self-test circuits, scan registers and the insurance of extensive fault coverage

[25].

One of the main performance-increasing techniques for any digital computing system is

pipelining, which is a special kind of concurrency increasing the system’s performance by over-

lapping the processing of several tasks [25]. A fully pipelined solution can accept new input data

on every clock cycle and is characterized by a fixed latency. Examples of non-optimized and

optimized processing pipelines are shown in Fig. 1.5a and Fig. 1.5b, respectively. In figures,

functions represent different hardware blocks while D0−D7 denote data samples.

Although describing customized hardware components in HDL allows designers to adapt

existing tools for logic synthesis and to explicitly describe hardware, this approach requires the

26

(a) Non-optimized processing pipeline (b) Optimized processing pipeline
Figure 1.5. Comparison of non-optimized and optimized processing pipelines (The gray area

indicates idleness of the functional block).

designer to specify functionality at a low level of abstraction, where cycle-by-cycle behaviour

is completely specified [26]. The use of such languages requires advanced hardware expertise

and involves cumbersome development, which leads to high time-to-market expenses. Notably,

this has led to an increasingly popular design methodology involving the making use of HLS

tools, where high-level software language (e.g. C, C++ and SystemC) describes the circuit’s

functionality. While the tools generate RTL description, the further design flow resembles the

one depicted in Fig. 1.4. This high-level approach requires some hardware expertise but can

provide maintainability and enable rapid design space exploration [26].

1.3 Other Computational Approaches

Notably, other technological approaches have been proposed and successfully used for high-

performance and low-cost processing. These approaches utilize such technological paradigms

as GPUs, Application-Specific Instruction-set Processorss (ASIPs) and Coarse-Grained Recon-

figurable Arrays (CGRAs). Although these technologies are not in the focus of the thesis, it is

necessary to recognize the spectrum of different computational paradigms to appreciate the chal-

lenge of efficient processing and to understand the achieved results in a broader context.

One of the better accepted technologies for scalable computing isGPUs. TheGPUprovides a

much higher instruction throughput and memory bandwidth when compared to the CPU within

a similar price and power envelope [27]. While the CPU excels at executing a sequence of

operations, called a thread, as fast as possible and can execute a few tens of these threads in

parallel, the GPU excels at executing thousands of them in parallel [27]. The GPU is specialized

for highly parallel computations, and therefore more transistors are devoted to data processing

rather than data caching and flow control [27]. A high-level comparison of both architectures is

shown in Fig. 1.6.

27

Core

L1 Cache C
o
n
tr

o
l

Core

L1 Cache C
o
n
tr

o
l

Core

L1 Cache C
o
n
tr

o
l

Core

L1 Cache C
o
n
tr

o
l

L2 Cache L2 Cache

L3 Cache

DRAM

L2 Cache

DRAM

Figure 1.6. High-level comparison of CPU (left) and GPU (right) architectures [27].

The prospect of general-purpose GPU computing has brought the emergence of many pro-

gramming interfaces. The most popular ones are the proprietary Compute Unified Device Ar-

chitecture (CUDA) interface, which is used exclusively for NVIDIA GPUs, and an Open Com-

puting Language (OpenCL) interface applicable for a multitude of technologies, even FPGAs.

Both interfaces and GPUs, in general, have been rightfully adopted by the scientific community

due to a relatively gradual learning curve, especially for C/C++ programmers [28, 29].

Otherwise, the demand for achieving ASIC-level performance while keeping FPGA-like

flexibility has resulted in the emergence of Coarse-Grained Reconfigurable Array (CGRA)

technology. The CGRAs have domain-specific flexibility where hardware can be defined by

software at runtime, but the processing elements are more coarse-grained when compared with

FPGAs. CGRAs take advantage of time-multiplexing resources, enabling both temporal and

spatial computation and obviating costly deep pipelines and centralized communication. Al-

though CGRA programming models still require improvement, the potential of the technology,

for example, is recognized by Intel’s project to incorporating them into Xeon processors [30].

Another appealing technology for efficient computing isApplication-Specific Instruction-set

Processorss (ASIPs). ASIPs often can be a part of a larger SoC and is a result of the Component

Specialization technique [31]. The main difference between a general-purpose processor and

an ASIP is the application domain. The design focus of an ASIP is the domain-specific per-

formance and flexibility with a low cost of solving computational problems. The ASIP design

process starts with some minimalistic processor core (in the present day, usually RISC-V) which

28

is profiled against source codes of the domain application(s). Further, the results of profiling

are used to select appropriate ISA extensions, perform data path and memory specialization and

design tailored accelerated instructions [31, 32]. ASIP design involves multiple disciplines and

requires comprehensive knowledge of the target application.

1.4 Heterogeneous System on Chip

Core enablers for reducing energy consumption and enabling personalized mobile comput-

ing are System on Chip (SoC) and their extension Heterogeneous System on Chip (HSoC) tech-

nologies. An SoC integrates a range of Silicon Intellectual Property (SIP) cores designed by

different teams around the world. These SIP cores integrate processors, caching hierarchies, in-

terconnects, co-processors, accelerators, interfacing controllers, memories, encryption engines,

peripheral controllers, analogue circuits and many others into a single chip. This integration is

carried out using a single- or multi-die design depending on the monetary considerations, i.e.

faults introduced by manufacturing are constant across the area, and larger chips are deficient

more frequently.

Complementary
Innovations &
Technologies

Electronics
Industry

Marketing and
Sales

Semiconductor
Manufacturing

Design

Manufacturing
Equipment

Chemical
Materials

(a) Business model until 1987.

Complementary
Innovations &
Technologies

Electronics
Industry

Marketing and
Sales

Semiconductor
Manufacturing

Design

Manufacturing
Equipment

Chemical
Materials

Design Design Design

(b)Modern business model.
Figure 1.7. Comparison of traditional (before 1987) and modern business models of

semiconductor companies [33]. Colours represent separate companies.

The SoC industry relies on the reuse and adaptability of the SIPs cores, facilitated by the

evolving IC business models and standardization of on-chip communication protocols. The first

foundry - Taiwan Semiconductor Manufacturing Company (TSMC) - was established in 1987,

utilizing a unique business model, which boosted the collective productivity of the semicon-

29

ductor industry as new companies without any manufacturing capabilities now could develop

profitable and innovative ICs. Nevertheless, the IC design phase usually was localized to a sin-

gle team working in a single company. It was changed by one of the first fabless SIP companies

formerly based in the UK - Acorn RISC Machine (ARM) where RISC - Reduced Instruction Set

Computer. ARM decided to focus on the designs, i.e. SIPs, instead of marketing and selling

physical chips. Currently, ARM designs the most widespread processors, integrated into mobile

phones, tablets, vehicles, embedded systems, etc. At the time, other companies were attempting

this business model to work, but the “revolution” brought in byARMwas the definition and pub-

lication of unified communication protocols - Advanced eXtensible Interface (AXI) Advanced

Microcontroller Bus Architecture (AMBA) specification, which enabled interchangeability and

massive re-usability of the designed SIPs. At this point, any chip designer could assemble their

chip from a catalogue of modular verified IP cores, each developed by an experienced team [33].

Media
Processor

Core
Processor

Intercconnects

Memory
Analog and

Custom
Circuitry

System
Components

Vector
Coprocessor

Figure 1.8. A simplified SoC system model [34].

Fig. 1.8 shows a classical high-level structure of an SoC. The system usually incorporates a

single or multi-core processing unit (often ARM-based), an external memory interface, system-

level interconnections and system components, e.g. for interfacing, data movement and encryp-

tion. The SoC may also include additional domain-specific processors and circuitry depending

on the use case. The system-level interconnection is central to the performance and reliability

of the SoC, and it can be classified into two categories: bus-based (such as AMBA) and Net-

work on Chip (NoC) approaches. The bus-based interconnects usually are comprised of two

or more hierarchical sub-buses to optimize system-level performance and costs, i.e. the bus

closest to the CPU has the highest bandwidth. The NoC approaches utilize a mesh of standard-

ized elements implementing a packet-based communication scheme. Apart from processors, the

30

memory interface usually is also utilized by Direct Memory Access (DMA) engines and high-

speed controllers, such as Universal Serial Bus (USB), Ethernet and PCIe [34]. An example of

a commercial NXP i.MX 6 SoC architecture is provided in Appendix 1.

With the increase of connectivity and data production, there is a growing need for new

processing capabilities and more performant solutions. While different computing paradigms

(CPU, FPGA, GPU, DSP) excel at different processing challenges, the best mixture of perfor-

mance, efficiency and costs require a complex utilization of these computing capabilities. This

has led to the fabrication of HSoCs, where these different abilities are combined within a single

chip. Although in this thesis we mainly utilize an FPGA-based HSoCs, the same principles of

algorithm partitioning apply to other devices.

Figure 1.9. Levels of abstraction for an electronic computing system.

The simultaneous utilization of diverse computing paradigms presents the challenge of har-

monizing different design flows. Fig. 1.9 represents a variety of abstraction levels that are a

part of any semiconductor-based application. Typically, ISA manages the interface between

hardware and software. Therefore, in classical software development, everything is fixed below

and including the ISA abstraction level. Analogously, the classical FPGA development flow is

not concerned with software. Classically, when the computing system incorporates both the se-

quential processing and digital design paradigms, the design team is split in two, and the system

31

architect defines the software/hardware interfacing effectively breaking up the development into

parallel design flows. Otherwise, the degree of HSoC integration permits the development of

more customized hardware-software solutions. These solutions require multi-disciplinary ex-

pertise concerning not only implementation but also the algorithm that impacts all stages of the

development and calls for the consideration of such factors as arithmetic precision of the accel-

erator, locality and pipelining potential of the algorithm, choice for on-chip data movement, the

robustness of the kernel driver implementation, efficiency of kernel/user API, real-time char-

acteristics of the system, etc. An example of a relatively complex HSoC incorporating FPGA,

GPU, multiple processors and a wide range of SIPs is provided in Appendix 4.

1.5 Digital interfaces

Advancement in chip manufacturing technology is a major factor ensuring the availability

of SoC technology, but another factor is the standardization of the communication interfaces.

Currently, ARM’s ISA is the most widespread among SoCs and the reason for that is the de-

velopment and outspread of standardized on-chip communication protocol - AMBA. The stan-

dardization has been a tremendous push to the re-usability and compatibility, as from now on,

different parties across the globe were able to develop their designs following this specification

and assure compatibility with ARM-based systems. From the perspective of the SoC vendor,

this presented a list of silicon IP cores, which were available for licensing and immediate im-

plementation, thus reducing time-to-market expenses. In the context of HSoCs, the FPGA logic

interacts with the exposed interfaces of the hard8 processing system.

Any interface acts as a set of communication rules between a master and slave devices as

shown in Fig. 1.10. In some specifications, the master provides a source of an interface, while

the slave provides a sink. Although usually interfaces are considered to have a certain degree

of complexity, the abstraction of an interface can be (and often is) applied to a single wire or

signal, e.g. clock, reset or interrupt. Some higher-level interfaces may be classified by protocol

type, e.g. memory-mapped, streaming or conduit.

Some of the aspects of the thesis require distinguishing betweenmemory-mapped and streamed

interfaces. Memory-mapped interfaces usually govern the majority of the chip’s inner (inter-

SIP) communications. The main identifying characteristic of such an interface is its address
8As opposed to fabricated in FPGA’s (soft) logic.

32

Source SinkMaster SlaveInterface

Figure 1.10. Simplified view of interface between Master and Slave.

signal that enables an effective routing of the memory-mapped request by internal interconnects

and other circuitry, e.g. Memory Management Unit (MMU), cache controller. The Fig. 1.11

shows a simplified usage example of a memory-mapped interface and an example specification

of the AvalonMemory-Mapped interface [35] is provided in Appendix 5. Note that many signals

are optional, and their choice is dependant on the needs of the actual hardware.

Source Sink

Master

Interconnect

address
write

writedata
read

readdata

Source Sink

address
write

writedata
read

readdata

Slave

Source Sink

address
write

writedata
read

readdata

Slave
Figure 1.11. A simplified usage example of a memory-mapped interface.

Source

Master

valid
data
last
ready

Sink

Slave
Figure 1.12. A simplified usage example of streaming interface.

Another essential communication type is the streaming interface that omits the address sig-

nal and usually is present in computing pipelines. The streaming interface usually provides a

handshake mechanism to exchange information on the validity of the data and the receiver readi-

ness. There are other optional signals for carrying a range of information, e.g. start and stop

of the transfer frame, byte validity of multi-byte data bus, user’s sideband signals without any

strict definitions, etc.

33

1.6 Linux operating system

When encountered with the limitations of the contemporary low-cost, UNIX-based Minix

OS Linus Torvalds famously decided to write his operating system in 1991. The use of Linux

took off and, because of its license, became a collaborative project developed by many [36].

Linux has become very influential and is used by systems of varying scope, ranging from large-

scale servers to modern embedded systems [37]. Linux has considerably low requirements,

supports a wide range of customization, provides multi-threading and has a variety of available

open-source software which can speed up development.

OS is responsible for the elementary use and management of resources available to the sys-

tem, i.e. processor execution time, memory, storage elements, connected devices, network in-

terfaces, etc. The primary management technique for achieving this goal is virtualization, where

the OS takes a physical device, such as the processor or memory and transforms it into a more

general, easy-to-use virtual form. This virtualization is provided to the user applications via a

standardized system call interface9 as shown in 1.13.

The System Call Interface

Process
management

Memory
management

Filesystems Device
control

Networking

Concurency,
multitasking

Virtual
memory

Files and dirs:
the VFS

Ttys &
device access

Connectivity

Arch-
dependent

code

Memory
manager

File system
types

Character
devices

Network
subsystem

Block devices IF drivers

CPU Memory Disks & CDs Consoles, etc. Network
interfaces

Kernel
subsystems

Features
implemented

Software
support

Hardware

features implemented as modules

Figure 1.13. Basic structure of the Linux kernel and system call interface [38].

One of the most critical considerations for HSoC-based designs is the concept of virtual

memory, which isolates applications, provides means for efficient inter-process communica-

tion, enables requesting more dynamic memory than there is available (via page-swapping) and
9Notably, Linux provides an alternative popularity-gaining kernel interface mainly used for networking ap-

plications - Berkeley Packet Filter (BPF)

34

improves security in general [38]. The processor executes using virtual address space that is

translated to a physical address space by the MMU. Both the virtual memory and the physical

memory are broken into pages so that a virtual page is mapped to a physical page [23]. Each

processing core has its own MMU, which also acts as an independent system bus master. The

CPU-MMU relationship and an example of a two-stage physical address lookup for a 32-bit

system using 4 KB pages is shown in Fig. 1.14. The translation tables reside in the system

memory, and MMU is configured with the physical base address of the first-stage translation

table. For performance purposes MMU stores translations in a Translation Lookaside Buffer

(TLB). In addition , mappings hold flags that determine access and caching policies, e.g. device

configuration space must not be cached. The kernel manages these translation tables for all pro-

cesses and updates MMU lookup root address upon every context switch. Generally, processes

share kernelspace translations while userspace mappings are shared between threads or as a part

of a shared memory Inter-Process Communication (IPC) mechanism. If, for example, the user

application produces invalid memory access, the MMU generates a page fault for handling by

the kernel.

CPU

MMU

System
bus

LDR/STR
Virtual address

Physical address
AXI Request

Virtual address
Index31-22 Index21-12 Offset11-0

Physical address
Offset 11-0Page index31-12

Physical page index
31-12 Flags11-0

Physical page index
31-12 Flags11-0

Physical page index
31-12 Flags11-0

Physical page index
31-12 Flags11-0

Physical page index
31-12 Flags11-0

0
1
2
3

1023

Physical page index
31-12 Flags11-0

Physical page index
31-12 Flags11-0

Physical page index
31-12 Flags11-0

Physical page index
31-12 Flags11-0

Physical page index
31-12 Flags11-0

0
1
2
3

1023

Physical page index
31-12 Flags11-0

Physical page index
31-12 Flags11-0

Physical page index
31-12 Flags11-0

Physical page index
31-12 Flags11-0

Physical page index
31-12 Flags11-0

0
1
2
3

1023

Physical page index
31-12 Flags11-0

Physical page index
31-12 Flags11-0

Physical page index
31-12 Flags11-0

Physical page index
31-12 Flags11-0

Physical page index
31-12 Flags11-0

0
1
2
3

1023

Physical address of the mapping
(Unique for each process)

Figure 1.14. An example of 4 KB page-based virtual memory management in a 32-bit
ARM-based.

Page-based memory virtualization ensures that physically non-contiguous memory appears

contiguous for software as shown in Fig. 1.15. Nevertheless, other bus masters (apart from

35

CPU) operate using physical address space10. While some masters (such as PCIe) can reserve

memory at startup, it still presents a challenge for HSoC-based system development when both

CPU and FPGA share access to the same system memory. A popular option is to utilize scatter-

gather DMA that requires constructing a linked list of transaction descriptors, a process that

can be inefficient for large transfers. An alternative is to allocate a large region of contiguous

memory region and disable its swapping by using specialized features in the OS, e.g. Linux

contiguous memory allocator (introduced in 2012 [39]).

MMU

Virtual Address
(Process 1)

Virtual Address
(Process 2)

Physical (System)
Address

Figure 1.15. Simplified example of page-based virtual-physical address space mapping for
two processes. Pages illustrated in red denote kernelspace while blue and green pages denote

two distinct applications.

A complete HSoC-based system design also implies kernel-level development because ker-

nelspace accounts for communication between software and designed hardware (accelerators)

and implements the interface for the userspace. Importantly, there is a distinction between

userspace and kernelspace accompanied by different access permissions. To properly interface

the custom hardware accelerator with the actual application in the context of HSoC technology,

one has to touch upon the whole level of software abstractions: ranging from the development

of the device driver to the application.

10This statement does not hold for systems with Input/Output Memory Management Unit (IOMMU).

36

2. COMPUTER VISION

This section lays out the core principles of the general projective camera model and the

adopted mathematical notations necessary for the comprehension of contributions depicted in

Section 4. The section also presents such relevant concepts as lens distortions, epipolar ge-

ometry, feature extraction and stereo correspondence calculation. Additionally, considerations

for different stereo correspondence methods are aggregated and analysed. Finally, the section

outlines the relevant technicalities of modernMachine Learning (ML)-based algorithms.

2.1 General Projective Camera

In principle [40], a camera is a mapping between the 3D world and a 2D image. Modelling

of all cameras is based on a notion of a general projective camera, which can be conveyed as a

matrix P which maps world points Q to the image points q.

Let’s consider plane at Z = f, which is called image plane or focal plane. The pinhole

camera model determines that a point in space Q = (X,Y,Z)T is mapped to the point on the

image plane where a line from Q to the centre of the projection meets the image plane, as shown

in Fig. 2.1.

camera
center

C

Y
X

y

x

image
plane

principle
axis

Q

Zp
q

Q
Y

C
Z

fY/Z

f p

Figure 2.1. Pinhole camera geometry (image plane is mirrored towards the scene).

From similar triangles, it can be shown that (X,Y,Z)T maps to (fX/Z, fY/Z, f)T . If the

world and image points are represented in homogeneous coordinates, then point projection can

be expressed in terms of matrix multiplication as:x
y
ω

 =

f 0 0 0
0 f 0 0
0 0 1 0



X
Y
Z
1

 . (2.1)

The equation can be rewritten in a matrix form as:

37

q = PQ, (2.2)

where P denotes camera projection matrix.

The Eq. 2.1 assumes that the origin of the coordinates is in the image plane at the principle

point. Usually, this is not the case as the origin of coordinates for digital images starts at the

corner that can be accounted for simply by adding an offset as shown in Eq. 2.3.

x
y
ω

 =

f 0 px 0
0 f py 0
0 0 1 0



X
Y
Z
1

 . (2.3)

Often thematrix is rewritten by denotingmatrix K, which is called the camera calibration matrix

[40], as:

K =

f 0 px
0 f py
0 0 1

 , (2.4)

thus the description of the projection reduces to its concise form:

q = K[I|O]Q. (2.5)

Previously we have used a coordinate system which may be called the camera coordinate

frame. In general, the points in space can be expressed in the Euclidean coordinate frame,

otherwise referred to as the world coordinate frame, this is of great importance for virtual en-

vironments, more specifically synthesizing virtual cameras. Both coordinate frames are related

through rotation and translation operations as shown in Fig. 2.2.

C

Y
X

Z

O Y

X

Z

cam

cam

cam

R, t

Figure 2.2. Relationship between camera and world frames [40].

Let Q̃ represent an in-homogeneous coordinate vector of a point in the world coordinate

frame, and Q represent the same point in the camera coordinate frame. Then we may write that

38

Q = R(Q̃− C̃), where C̃ represents the coordinates of the camera in the world frame, and R is a

3× 3 rotation matrix representing the orientation of the camera coordinate frame. The equation

can be expressed in homogeneous coordinates as:

Q =

[
R −RC̃
0 1

]
X̃
Ỹ
Z̃
1

 =

[
R −RC̃
0 1

]
Q̃. (2.6)

Inserting in the Eq. 2.5 gives:

q = KR[I| − C̃]Q̃, (2.7)

where Q̃ now represents a point in a world coordinate frame. Now it can be seen that the general

pinhole camera, P = KR[I| − C̃], has 9 degrees of freedom. 3 for K, 3 for R and 3 for C̃. The

parameters contained in the K are called the internal parameters, or the internal orientation of

the camera, while the parameters R and C̃ are referred to as external parameters or the exterior

orientation [40].

Thus far, we have assumed that the image coordinates are in the Euclidean coordinate frame

and have equal scale in both axial directions. In the case of many optical systems and Charge-

Coupled Device (CCD) cameras, there is the additional possibility of having non-square pixels,

thus introducing unequal scale factors in each direction. In particular, let mx and my be the

number of pixels per unit distance in image coordinates in x and y directions, then the transfor-

mation from world coordinates to the pixel coordinates is obtained by multiplying Eq. 2.4 on

the left by an extra diagonal factor (mx,my, 1), thus the general form of the calibration matrix

becomes:

K =

αx 0 x0

0 αy y0
0 0 1

 , (2.8)

where αx = fmx and αy = fmy represent the focal length of the camera in terms of pixel

dimensions in the x and y directions respectively. Similarly, (x0, y0) is the principal point in

terms of pixel dimensions, with coordinates x0 = pxmx and y0 = pymy.

Even more general camera matrix may add a skew parameter s, thus the camera calibration

matrix becomes

K =

αx s x0

0 αy y0
0 0 1

 . (2.9)

However, for most normal cameras, skew parameter can be assumed zero.

39

2.2 Lens Distortions

Image processing models assume that cameras obey a linear projection model where a

straight line in the world results in a straight line in the image [41]. Unfortunately, lenses,

which focus light onto the camera pixel matrix, have noticeable lens distortions that manifest as

a visible curvature in the projection of straight lines, illustrated in 2.3.

Figure 2.3. An example of lens distortion effect on the calibration image for bumblebee stereo
camera.

Unless these distortions are corrected, it is impossible to create highly accurate photo-realistic

reconstructions [41]. Fortunately, for most of the lenses, these distortions can be corrected using

a simple quadratic model [42], which produces good results. The implementation of such algo-

rithms in the digital logic is much more involved and is discussed in Section 4.3.3 An approach

to spatial image transformation. The image distortion takes place during the initial projection of

the world onto the image plane; thus, calibration matrix reflects a choice of affine coordinates

in the image, translating physical locations in the image plane to pixel coordinates [40]. Let

(x̃, ỹ) be the non-distorted pinhole projection. The radial (lens) distortions can be modelled as:

(
xd

yd

)
= L(r̃)

(
x̃
ỹ

)
, (2.10)

where

• (x̃, ỹ) is the ideal image position (which obeys linear projection),

• (xd, yd) is the actual image position, after radial distortion,

• r̃ is the radial distance
√

x̃2 + ỹ2 from the centre for radial distortion,

• L(̃r) is a distortion factor, which is a function of the radius r̃ only.

40

In pixel coordinates the correction can be rewritten as:

x̃ = xc + (x− xc)L(r̃)
ỹ = yc + (y − yc)L(r̃)

, (2.11)

where (x, y) are the ”required” coordinates of the corrected image, and (x̃, ỹ) are the coordinates

in the distorted (input) image.

The distortion factor is an arbitrary function defined for positive values and at the center of

the distortion L(0) is 1. Distortion factor can be given by a Taylor expansion

L(r) = 1 + k1r + k2r
2 + k3r

3 + ..., (2.12)

where the coefficients for radial correction k1, k2, k3, ... are considered a part of the interior

calibration of the camera [40]. Notably, the polynomial model can achieve a good approximation

for less distorted lenses by using only two coefficients; nonetheless, the high-order model can

significantly increase computational complexity. Therefore other models exist that are not a part

of the developed image processing pipeline described further, e.g. division model [43].

2.3 Epipolar Geometry

An important part of any use case involving 3D reconstruction from images involves epipolar

geometry that relates two views based only on the cameras’ internal parameters and relative pose.

This relationship is encapsulated by a fundamental matrix F. F is a 3× 3matrix, and it has such

property that if the point in 3D space X projects as x in the first view and as x′ in the second

view, then the following relationship is satisfied:

x′Fx = 0. (2.13)

The fundamental matrix is independent of scene structure; however, it can be computed

from the correspondences of imaged scene points without requiring knowledge of the cameras’

internal parameters or relative pose.

The epipolar geometry between two views essentially describes the geometry of intersection

of the image planes with the pencil of planes having the baseline as an axis [40]. The epipolar

geometry is motivated by the search for correspondences across the views that lay on a plane

in 3D space and corresponds to the lines in the images, called epipolar lines, i.e. consider the

images in Fig. 2.4.

41

(a) Plane constructed by a 3D point corresponding
projections in the views.

(b) A point in one image is anticipated to be
located at a line in the other one.

Figure 2.4. Point correspondence geometry [40].

The image points x, x′, space point X , and camera centres are coplanar. Let’s denote this

plane as π. The rays back-projected from the x and x′ intersect at X are coplanar, lying in π.

This is well illustrated in 2.4b, where the same point in one image corresponds to multiple points

in the other image, but still, all these corresponding rays lay in the same plane π.

(a) Camera baseline intersecting the image planes
at the epipoles.

(b) Family of planes obtained by rotating the
epipolar plane around the baseline.

Figure 2.5. Epipolar geometry [40].

When the x is known, the epipolar geometry constrains x′ to the plane π, thus localizing the

possible correspondences. The possible correspondences lay on a cross-section between π and

image planes, this cross-section is referred to as epipolar line. The point of intersection of the

line joining camera centres and all of the epipolar lines is called the epipole, this is illustrated

in Fig. 2.5. Fig. 2.5b shows the rotation of the π plane, thus resulting in the rotation of the

42

cross-sections and epipolar lines as well.

Fig. 2.6 shows an example of matched points and their corresponding epipolar lines. By

following each of the epipolar lines, it can be observed that they cover the same points in both

images.

Figure 2.6. An example of stereo image correspondences and their respective epipolar lines
[40].

These epipolar lines can be ”straightened” by applying image rectification. Rectification is a

process of resampling pairs of stereo images to produce a pair of matched epipolar projections,

where epipolar lines run parallel with the x-axis; thus, the matching procedure can be performed

for consequent disparities between the images in the x-direction only, essentially omitting y

disparities.

A pair of 2D projective transformations are applied to the two images in order to match

the epipolar lines. Both transformations may be chosen in such a way that matching points

have approximately the same x-coordinate. In this way, the two images, if overlaid on top of

each other, will correspond as far as possible, and any disparities will be parallel to the x-axis.

In effect, two image transformation by the appropriate projective transformations reduces the

problem to the epipolar geometry produced by a pair of identical cameras placed side by sidewith

their principal axes parallel. Many stereo matching algorithms assume this geometry, after such

rectification the search for matching points is vastly simplified; therefore, that is a preliminary

step to comprehensive image matching [40].

43

2.4 Stereo Correspondence

Stereo correspondence has been and still continues to be one of the most heavily investigated

topics in computer science. The term disparitywas first introduced in the human vision literature

[44] to describe the difference in location of corresponding features seen by the left and right

eyes.

Early stereo-matching algoithms were feature-based [41], i.e. a set of potentially matchable

features are extracted from the images and then searched for the corresponding locations. One

of the advantages of such methods is that, images may have different illumination, where edges

might be the only stable features [45]. Such local methods are well suited for implementation

in digital circuitry due to their localality. More recent methods are focused on first extracting

highly reliable features and then using seeds to grow additional matches. Similar approaches

have also been extended to wide baseline multi-view stereo problems and combined with 3D

surface reconstruction [41].

There are two broad classes of stereo algorithms local and global. In the local (window-

based) algorithms the disparity computation at a given point depends only on intensity values

within a finite window, while the global ones make an explicit smoothness assumptions and then

solve an optimization problem. In between of these classes there are certain iterative algorithms

that do not explicitly state a global minimization function.

Szeliski [40] points out the subset of the following four algorithmic ”building blocks” from

which a large set of algorithms can be constructed, this classification is illustrated in Fig. 2.7.

This arrangement be used to classify stereo correspondence algorithms even further [46].

Some local methods utilize a support region, essentially combining steps 1 and 2. The global

methods make explicit smoothness assumptions that are used for minimizing a global cost func-

tion. Another subset of approaches is iterative algorithms, which are based on an image pyramid,

where results from coarser levels are used for constraining more local searches.

The solution of the correspondence problem necessitates establishing a metric to compare

individual pixels of the stereo image pair. The metrics are based on either grayscale values of

the pixels or post-processed features while varying in their ability to expose pixel uniqueness,

receptiveness to camera gain or bias, and their computational complexity. A natural measure of

similarity is the calculation of cross-correlation [47]. The most popular pixel-based matching

44

1. Matching cost
computation

2. Cost (support)
aggregation

3. Disparity
computation

4. Disparity
refinment

squared intensity
differences [47]

absolute intensity
differences [48]

truncated quadratics [49]

contaminated Gaussian

normalized
cross-correlation [47]

binary matching
costs [50, 51]

gradient-based [52]

non-parametric

linearly interpolated
image

2D square windows
or Gaussian

2D windows with
adaptive size

2D connected components
of costant disparity

3D limitted disparity
difference

limited disparity
gradient

Prazdny’s coherence
principle

local winner-take-all

global energy
optimization

dynamic
programming

cooperative
algorithms

continuous
optimization
techniques

sub-pixel
refinement

cross-checking

Figure 2.7. Classification of most common steps in disparity calculation

costs include squared intensity differences and absolute intensity differences.

Such costs as census transform and rank transform, are not only insensitive to the camera gain

and bias differences but are good candidates for implementation in digital logic. The drawback

of such algorithms is their heightened sensitivity to noise. Depending on the depth of disparity

calculations (number of pixels across the epipolar line, which are considered for matching), the

number and type of operations can be implausible for software or hardware implementation.

Aggregation is done by summing all matching costs over square windows with a constant

disparity. Nonetheless, several methods like truncating quadratics and contaminated Gaussians

limit the influence of mismatches during the aggregation [53, 54]. In local methods, the em-

phasis is on the matching cost computation and cost aggregation steps. Computing the final

disparities is trivial: simply the disparity is associates pixel with the minimum aggregation cost

value, i.e. essentially performing a localWinner-Take-All (WTA). The weakness of such meth-

ods is that the uniqueness of matches is only enforced for one image, i.e. the reference image,

45

while points in the other image might match multiple points [41].

Notably, many algorithms adopt sub-pixel refinement stages after the initial discrete corre-

spondence stage or alternatively start with more discrete disparity levels [55].

2.5 AI-based algorithms

2.5.1 Technical Background

Since 2012 when the ImageNet Image Classification competition was assuredly won by

Krizhevsky, Sutskever and Hinton with their deep-learning-based solution [56], it became evi-

dent that Deep Learning (DL) algorithms bear the potential for a variety of applications. With

the increasing availability of computational resources, ML has become a widely used technique

for solving a variety of different problems, e.g. object identification, cluster classification, pat-

tern recognition, functional regression, etc. [57]. Ever since DNNs demonstrated their superior

performance, they have been considered for a wide range of use-cases and processing architec-

tures. Considerable effort has been devoted to improve computational efficiency by developing

newArtificial Neural Network (ANN) architectures [58, 59] and optimizing implementations for

specific use-cases [60–62]. The NNs show SoA performance in the stereo-vision competitions,

therefore it is necessary to explore realization in programmable logic.

A NNsis a system that is designed to model how the brain performs a particular task or

function of interest [63]. A network can be split into fundamental information-processing units

- neurons, which form the basis for designing artificial neural networks. The block diagram in

Fig. 2.8 shows neuron’s mathematical model. Neuron’s inputs xi are multiplied by coefficients

wki, referred to as weights and summed up together with a bias bk. This sum is passed to an

activation function φ, which is used to normalize neuron’s output, k and i designates a specific

neuron and its input.

A type of frequently used neural network is constructed by arranging neurons in layers where

all neurons in every layer are connected to each neuron in the adjacent forward layer, i.e. fully

connected feed-forward network. This type of network is illustrated in Fig. 2.9.

By utilizing the neural network’s structure it is possible to derive a number of fundamental

operations for each layer depending on its input and output count. Let Nin, Nout, Nadd, Nmul,

Nact be the number of inputs, outputs, adders, multipliers and activation function operations

46

Figure 2.8. Structure of a single neuron.

Figure 2.9. General structure of a feed forward neural network.

respectively. The number of multipliers and adders corresponding to a fully pipelined imple-

mentation for a neuron is

Nmul = Nadd = Nin. (2.14)

Therefore for each layer it is:

Nlmul = Nladd = Nin ×Nout. (2.15)

Every neuron has one activation function, thus, for a layer, the theoretical number of required

activation function calculations amount to output count.

The notions presented here are further explored in the subsection 4.1.

47

2.5.2 Related work

Ever since the early formalization of NNs [64], a significant effort has beenmade and various

paradigms used to adopt different NN structures for digital circuit implementation. For example,

Convolutional Neuron Networkss (CNNs) are widely used for image recognition and classifi-

cation, although classification itself is carried out by a fully connected FFNN. Different kinds

of paradigms ranging from co-processor systems [65] to OpenCL-based solutions [66–70] have

been used to find the optimal trade-off between resource use, latency, and throughput. This sec-

tion highlights relevant aspects of previous FFNN implementations and summarizes the main

design challenges.

An implementation of an FFNN using VHDL is presented in [71]. The proposed network

is based on a collection of simple-interconnected processing elements (neurons), which are or-

ganized into a topology composed of individual layers. The neurons between layers can com-

municate concurrently. Network’s coefficients are represented using one’s complement signed

fixed-point binary numbers. Different hardware optimization techniques have been suggested,

i.e., weight storage in internal memory, Booth’s multiplication algorithm and activation func-

tion’s bilinear approximation using a counter and shift registers. The authors implemented a

simple FFNN with a 2-2-1 topology. Network’s pipelined performance is estimated to be 34 ns

per single output estimation, although latency and clock period is not provided.

Joint software and hardware implementation is presented in [72]. Architecture is based on a

control unit, neurons and shared Look-Up Table or LUT-based activation function. The imple-

mentation’s control unit uses user-defined code to dynamically load weights and inputs, store

neuron outputs and reset accumulators in neuron cells. The paper investigates two simple topolo-

gies with 1 and 4 neurons. The implementations are tested against time series prediction network,

which uses a 2-4-1 structure. The provided solution’s maximum performance is 0.66 µs and 0.44

µs for 1 and 4 neuron implementations respectively.

It is important to achieve reduced area and increased performance of the circuit, but this

becomes increasingly difficult to carry out if low approximation error is required. In [73], the

authors propose a hybrid approximationmethod of hyperbolic tangent activation function, which

takes into account the linear nature of the hyperbolic tangent when the argument value is small.

This approach is combinedwith a bit-level mapping of the function’s non-linear region. Bit-level

48

mapping returns an average value of a sub-range of the region being approximated. Sub-ranges

are split so that the approximation error is below a certain threshold.

The approach [73] is used in an optical character recognition system [74], where a FFNN

is embedded into an FPGA. The authors use the aforementioned hybrid approximation method

to implement a hyperbolic tangent activation function. The selected network’s topology is 189-

160-36, and the implementation’s processing time is 4.36 µs.

A reconfigurable neural network architecture, composed of 20 neurons, is proposed in [75]. Ar-

chitecture is divided into four parts: instructions unit, memory unit, layer unit and controller

unit. Architecture adopts 8-bit precision. The approximation of the activation function is based

on direct transformation from input to output. The network is tested using 4-8-3-3 and 1-5-1

topologies. The architecture is generic, i.e., it applies to different topologies without reconfigu-

ration. The implementation uses a VEDIC multiplier instead of available on-chip Digital Signal

Processing (DSP) blocks.

A valuable work exploring floating-point based implementation is carried out in [76]. Two

approaches - resource-saving and parallel - have been developed. The exponent, used for hy-

perbolic tangent and sigmoid function, is calculated using Padé approximation. The approach

is benchmarked with 5-16-12-16-5 topology and Xilinx ZEDBoard evaluation board with Zynq

XC7020 chip. The authors illustrate that implementation is advantageous over high-performance

software platforms due to its parallel execution.

In conclusion, the intrinsic programmable logic’s parallel nature suggests its suitability for

the implementation of FFNNs. Although different architectural approaches and design choices

have been investigated, FFNN implementations face a major challenge of limited hardware re-

sources. Furthermore, expansion of the NN topologies [77] and saturation of the manufacturing

process improvement [78] suggest the persistence of the resource challenge. The summary of

different topologies and performance metrics of previous FFNN design approaches is summed

up in Table 2.1.

An interesting use case in terms of the potential application of our developed approach is

presented in [8], where FFNNs enhance vehicle dynamics for amulti-motor electric vehicle. The

authors train a predictive NN for the estimation of the future slip values of each wheel for a batch

of possible torque-vectoring set points. These predictions determine the torque distribution that

will reduce the unnecessary slip. Furthermore, the authors benchmark the trained topologies us-

49

Table 2.1. Summary of the NN topologies and the performance metrics from the related
articles.

Paper Data Type Topology Activation
Function

Approximation
Method

Latency
(μs)

Throughput
(Samples/s)

[71] Fixed < 16, 7 > 2-2-1 Sigmoid/ Linear Piece-wise linear 0.034 29,412,000 (theoretical)

[72] Fixed < 32, 7 > 2-4-1 Sigmoid LUT-based 0.44 2,272,700

[74] Fixed 189-160-36 Hyperbolic tangent Hybrid linear
+ bit-level mapping 4.36 229,360

[75] Fixed < 8, 3 > 4-8-3-3 Hyperbolic tangent
/ linear Direct mapping 1.16 862,070

[75] Fixed < 8, 3 > 1-5-1 Hyperbolic tangent
/ linear Direct mapping 0.683 1,463,100

[76]A Single precision 5-16-12-16-5 Hyperbolic tangent
/ linear Padé 33,100 30.2

[76]B Single precision 5-16-12-16-5 Hyperbolic tangent
/ linear Padé 24,700 40.5

[76]C Single precision 5-16-12-16-5 Hyperbolic tangent
/ linear Padé 5700 175.4

[76]D Single precision 5-16-12-16-5 Hyperbolic tangent
/ linear Padé 3500 285.7

ing parallel computing platforms. One of the trained topologies is used in this article to validate

the developed approach in a virtual sensor use-case, which will be further described in Section

4.1.

50

3. HETEROGENEOUS COMPUTING ARCHITECTURES

This section is devoted to distinct developments and advancements of computing architec-

tures for HSoC-based systems and Linux in general. Most notably, an FPGA-master driven

system architecture is proposed that also facilitates the final stereo-vision demonstrator. Also, a

contribution in the field of real-time control loop systems is offered, where the designed AMP

subsystem solution combines the functional benefits of the software stack available under the

Linux operating system and real-time performance characteristics of bare-metal processing. Fur-

ther, a set of software component management frameworks is proposed that facilitate the effi-

cient implementation of the system architecture following a blackboard software development

pattern, thus making frameworks suitable for design space exploration. Furthermore, the de-

ployment of such demanding applications as autonomous driving and autonomous drones is

briefly examined.

3.1 Heterogeneous Computing Based on Direct Memory Access

HSoC technology entices implementation of algorithms where every subtask executes on the

most appropriate processing technology, i.e. processor is better suited for out-of-context tasks,

such as decision making and control, and FPGAs excel at high-throughput number crunching

and relatively local algorithms, for example, per-pixel operations, convolution and feature ex-

traction. Furthermore, embedded systems follow a trend towards multi-peripheral processing,

e.g. Nordic chips provide Programmable Peripheral Interconnect (PPI), which enables periph-

erals to interact autonomously with each other using tasks and events independent of the CPU

while ensuring precise synchronization between peripherals for real-time applications [79].

While such an approach activates processors less often and suggests lower energy consump-

tion, the utilization of the co-processing methods can be more challenging due to the main-

tenance of cache-memory coherency and dealing with memory virtualization for application-

level processors as described in Section 1.6. In pursuit of simplifying the programmability of

SoCs, Heterogeneous Systems Foundation (HSF) has created Heterogeneous System Architec-

ture (HSA) Memory Consistency Model where the host and the accelerator communicate via

coherent shared memory [80].

51

System Memory Device Memory

Virtual CPU Memory Virtual GPU Memory

CPU GPU

Cache Hierarchy
MMU IOMMUPCIe

Cache Hierarchy

(a) Standard memory model with a discrete GPU
attached to the PCIe bus. Model does not permit

zero-copy between the GPU and CPU due to distinct
physical memories [80].

System Memory Device Memory

Unified Virtual Memory

CPU GPU
IOMMU IOMMUPCIe

Cache Hierarchy Cache Hierarchy

(b) A unified virtual memory facilitates passing pointers
over PCIe; nevertheless, zero-copy is still not possible

[80].

System Memory

CPU GPU
IOMMU IOMMU

Unified Virtual Memory

Cache Hierarchy Cache Hierarchy

(c) Unified main memory, where not only programming
model is simplified, but there is no need to copy data

between the GPU and CPU [80].

System Memory Device Memory

CPU

Unified Virtual /
Physical Memory

Cache Hierarchy (ACP)
MMU

FPGA

System Interconnect
DDR Controller

DDR Controller (FPGA)

(d)Memory model and possibilities of modern HSoCs,
where FPGA has access to separate memory, the shared
system memory, internal interconnection logic and

cached processor memory.
Figure 3.1. Examples of a standard CPU-GPU and HSoC memory coordination models.

Fig. 3.1a illustrates a standard memory coordination model that distinguishes between host

and device memories; therefore, implying data copying from one master to another. More ad-

vanced models can have unified virtual memory where both masters can operate using the same

addresses (Fig. 3.1b). Nonetheless, although that may simplify the programming model, the

OS still manages data transfers between the master memories. A more advanced memory co-

ordination model can be implemented when both masters share access to the system memory

controller as shown in Fig. 3.1c, i.e. masters are implemented within a single chip. Opposed

to the GPU technology, FPGA accelerators mostly are not processor-based; therefore, memory

virtualization and context-switching mechanisms are not directly applicable. Furthermore, the

high-granularity of FPGAs manifests itself into longer reconfiguration delays making it difficult

to link it with the processor context-switching functionality.

Many modern HSoC devices provide a unique choice for memory coordination, as shown

in Fig. 3.1d. FPGA may (1) implement its own DDR controller and utilize large amounts of

isolated memory, (2) have direct access to the processing system’s DDR controller enabling

52

performant yet non-cached data transfer, (3) have access to the system’s interconnect, also en-

abling the utilization of processing system’s On-Chip Random Access Memory (OCRAM) and

(4) even access the cache-coherency ports that ensure memory access coherency on a hardware

level. The aforementioned aspects provide a unique opportunity for the system designer while

simultaneously creating a challenge for abstracting and controlling the accelerators from the

userspace application.

In addressing the underlying challenges, FPGA-master based system architecture has been

developed and benchmarked. The dual nature of the Field Programmable System on Chip (FP-

SoC) technology brings additional complexity into the system design. System architects are

required to have considerable knowledge in both: hardware and software. Intel and Xilinx FP-

SoCs use an ARM-based processor that also incorporates Single Input Multiple Output (SIMD)

NEON instruction set capable of floating-point operations. This encourages the development

of complicated co-processing systems [81]. One of the most challenging issues considering

the overall architecture of such designs is the creation of an efficient communications model

between the processor and FPGA.

Micro-processors are capable of running Linux, which is one of the most popular operating

systems for embedded devices, has considerably low requirements, supports a wide range of

customization, provides multi-threading and has a variety of available open-source software

accelerating the development [82]. Nonetheless, the usage of Linux implies additional design

considerations due to the presence of virtual memory that might not have ameaningful impact on

low-bandwidth systems. Nevertheless, when considering high-speed on-chip communications

and co-processing architectures, the non-continuous nature of the data layout must be addressed.

Furthermore, the high complexity of HSoC technology has led to the creation of specialized

integration tools and high-abstraction software for hardware description generation -High-Level

Synthesis (HLS). HLS speeds up the development cycle but is not sufficient for architectures that

exploit extreme parallelism and intermediate-level operations [83] and, in some use cases, HLS

can significantly increase the number of needed FPGA resources [84].

To address the fundamental issue of HSoC on-chip communications, a DMA-based high-

bandwidth communications architecture was developed for establishing the means of commu-

nicating between FPGA and software in an embedded Linux environment. The developed so-

lution targets the Linux memory fragmentation issue and adopts the Linux kernel’s Contiguous

53

Memory Allocator (CMA) feature. Furthermore, the data paths were benchmarked for Cyclone

V SoC device as this data was still lacking in the scientific literature [85–87]. The developed

modules and libraries have been made available to the public under MIT license11.

Cyclone V SoC [88] consists of two distinct portions– a single or dual-core ARM Cortex-

A9 based Hard Processing System (HPS) and FPGA. The HPS architecture integrates a set

of peripherals that reduce board size and increase the system’s performance. Generally, the

communication between HPS and FPGA in Cyclone V SoC devices can be accomplished using

the following paths [88]:

• HPS-to-FPGA bridge – A high-performance interface from HPS to FPGA. Transactions

are usually conducted by the processor or DMA controllers present in HPS. The bridge

enables accessing the FPGA logic, peripherals and memory.

• HPS-to-FPGALightweight bridge –A low-performance interface to the FPGA fabric that

usually is used by the processor to access control and status registers of the components

implemented in FPGA.

• FPGA-to-HPS bridge – A high-performance interface from FPGA to HPS peripherals

and memory. Cached memory transactions are supported by adopting ARMs Accelerator

Coherency Port (ACP).

• FPGA-to-HPS SDRAM interface –A high-performance interface from FPGA to the HPS

Synchronous Dynamic Random-Access Memory (SDRAM) controller. FPGA master has

access to the processor’s Random-Access Memory (RAM). Data residing in the proces-

sor’s cache will result in errors, an issue that must be addressed by the software.

An important aspect of the particular system’s structure is the Level-3 (L3) interconnect,

which is a central switch that routes data between memory, FPGA fabric, processor and periph-

erals [88]. Fig. 3.2a shows the relevant aspects of the Cyclone V SoC’s architecture.

In the particular setup, Altera’sModular Scatter-Gather Direct Memory Access (MSGDMA)

controller fulfils the role of the FPGA master; it consists of reading and writing master subcom-

ponents and a dispatcher core [89]. Fig. 3.2b shows the simplified structure of the controller.

Read and write masters communicate with memory using Avalon memory-mapped interface.

Dispatcher manages transactions and is configurable by software via HPS-to-FPGALightweight
11http://git.edi.lv/rihards.novickis/FPSoC_Linux_drivers

54

http://git.edi.lv/rihards.novickis/FPSoC_Linux_drivers

(a) Relevant Cyclone V interconnect connections. (b)Modular SGDMA controller IP.
Figure 3.2. Internal blocks related to the DMA master-based architecture.

bridge. The configuration also enables the generation of interrupt requests upon finishing the

transactions. The software utilizes this feature to measure data transfer timings. During synthe-

sis, the MSGDMA core also can be configured to one of three transfer modes:

• memory mapped to memory mapped transfers;

• memory mapped to stream transfers;

• stream to memory mapped transfers.

The specification of the utilized Avalon memory-mapped interface was created by Altera

company to simplify and accelerate the FPGA design process [90]. Moreover, on-chip com-

munications in ARM systems are defined by the AMBA specification [91]. These particular

communication protocols are bridged together using high-bandwidth structures – Qsys inter-

connects [92].

As described in section 1.6 Linux operating system, utilization of virtual memorymechanism

and process management by software resolves into memory fragmentation, and over time larger

chunks of contiguous memory become unavailable. While virtual memory enables multiple

concurrent processes, memory discontinuity is an issue for DMA since peripherals operate in

physical address space [93]. Contiguous memory acquisition involves standard driver system

calls, such as kmalloc() (with GFP_DMA flag) or dma_alloc_coherent(). Usually, this approach

is limited to a few megabytes, but high order requests are prone to fail even when the requested

buffer is less than 128 KB due to memory fragmentation [93].

An alternative is to allocate a buffer in smaller pieces and use scatter/gather memory access.

Although the MSGDMA controller acts as an FPGA master, another approach is encouraged.

Usually, large DMA buffers are reserved at system boot time, and if the device is not using

55

this memory region, it stays unused [94], which may lead to insufficient resource utilization.

Memory continuity is achieved by applying CMA feature [93] that enables dynamic allocation

of large buffers (>50MB) suitable for benchmarking and efficient memory utilization in real-

life applications. For this purpose, a custom Linux driver has been developed that allocates

contiguousmemory and providesmechanisms for transferring control to the user-space. Another

custom driver ensures the control of the MSGDMA dispatcher; it also supports multiple user-

space applications and event handling.

Figure 3.3. Conceptual design of FPGA Master-based architecture.

All the above considerations constituted the development of the modular FPGA Master-

based architecture shown in Fig. 3.3, where user applications are able to:

• dynamically allocate contiguous memory,

• reserve MSGDMA resources,

• initiate DMA transactions,

• are suspended by the driver when the transactions start and awoken when transfers have

ended (interrupt support).

Finally, the throughput measurement procedure utilized the VEEK-MT-C5SoC development

board for all FPGA master communication bridges by adjusting the interface bus width, trans-

action size and FPGA clocking frequency. The timing measurements utilized the internal Snoop

Control Unit (SCU) timer via call to clock_gettime() function. Measurements incorporate the

56

execution of the MSGDMA controller and software that corresponds to usage in real-life ap-

plications. All tests were run ten times, and a full set of measurement results is provided in

Appendix 3. Table 3.1 shows the maximum (saturated) throughput for each of the data path

configurations and Fig. 3.4 shows the nature of throughput measurements at the widest config-

urable bus widths and varying FPGA clock frequencies. The power consumption was measured

in different setup where tests were run continuously for 300 seconds, and the measurements

where taken using the onboard power monitor with a total unadjusted error of ±1.0%, but no

distinguishable results were found. Power consumption in the idle state was 8.11W, but for any

of the data path scenarios, it was always 8.18W within the measurement error range.

Table 3.1. Throughput of simultaneous read/write transactions for all communication
interface configurations.

Data path Bus width Maximum
throughput

Saturation
frequency

FPGA-L3-SDRAM
32 bits 5.05 Gbps 120 MHz
64 bits 10.10 Gbps 120 MHz
128 bits 10.52 Gbps 65 MHz

FPGA-L3-ACP-SDRAM
32 bits 6.90 Gbps -
64 bits 8.64 Gbps 120 MHz
128 bits 11.26 Gbps 90 MHz

FPGA-SDRAM

32 bits 7.52 Gbps -
64 bits 14.64 Gbps -
128 bits 17.68 Gbps 80 MHz
256 bits 20.08 Gbps 45 MHz

In summary, the examined technology (Intel Cyclone V SoC) can sustain on-chip communi-

cations bandwidth of 20.08 Gbps, which is suitable for real-time image co-processing. Fig. 3.4c

shows a curious result where communication bandwidth hits a peak and then drops to saturation.

This characteristic is explained by the nature of the particular communication scenario, as, in

this case, the transactions are first hitting the ACP, which then forwards the requests to the L2

cache. If the request ”hits” the cached data, it is returned immediately, but if encountered with

a cache miss, the transaction is forwarded further to the Double Data Rate (DDR) controller.

Because the L2 cache size for the Intel Cyclone V SoC is 512 kB and tests utilize simultane-

ous writes and reads (the cache simultaneously holds data from both - read and write memory

regions), the throughput peaks at the half size of the cache.

57

8 10 12 14 16 18 20 22 24 26
0

5

10

15

20

25

log2(size), log2(Bytes)

S
p

e
e
d

,
G

b
/s

FPGA−SDRAM_256b

125 MHz

115 MHz

105 MHz

95 MHz

85 MHz

75 MHz

65 MHz

55 MHz

45 MHz

35 MHz

25 MHz

(a) FPGA-SDRAM interface at 256 bit bus
configuration.

8 10 12 14 16 18 20 22 24 26
0

2

4

6

8

10

12

log2(size), log2(Bytes)

S
p

e
e
d

,
G

b
/s

FPGA−L3−SDRAM_128b

125 MHz

115 MHz

105 MHz

95 MHz

85 MHz

75 MHz

65 MHz

55 MHz

45 MHz

35 MHz

25 MHz

(b) FPGA-L3-SDRAM interface at 128 bit bus
configuration.

8 10 12 14 16 18 20 22 24 26
0

2

4

6

8

10

12

log2(size), log2(Bytes)

S
p

e
e
d

,
G

b
/s

FPGA−L3−ACP−SDRAM_128b

125 MHz

115 MHz

105 MHz

95 MHz

85 MHz

75 MHz

65 MHz

55 MHz

45 MHz

35 MHz

25 MHz

(c) FPGA-L3-ACP-SDRAM interface at 128 bit bus configuration.
Figure 3.4. Throughput measurements for different FPGA master communication paths.

3.2 Approach of Asynchronous Multi-Processing

Aconsiderable contribution of this thesis is the novel employment of heterogeneous architec-

tures for real-time control loop systems by using an approach based on the Asynchronous Multi-

Processing (AMP) subsystem. While FPGA technology is a well-suited medium for real-time

control due to its determinism, acceleration of such computational tasks where the processing in-

volves leaping across memory can be problematic or even unsuitable, e.g. server applications,

recursive algorithms, complex decision making. These considerations were addressed within

the H2020 ECSEL I-MECH project by designing a real-time application subsystem that com-

bines application-level functionality while not compromising the determinism of the processing

hardware.

I-MECH project was devoted to modern motion control systems, which usually are designed

in a distributed manner. There is a central controller that manages motion trajectory planning

and higher-levelMultiple-Input, Multiple-Output (MIMO) control loops. Actuators, sensors and

58

motor drivers are connected to the central controller with high-speed real-time data communi-

cation interface, .e.g. EherCat [95]. Simplified examples of different embedded control loop

configurations is shown in Fig. 3.5. Although EtherCAT is capable of running communica-

tion cycles under 50µs [96], the conventional platforms are usually based on multicore x86-64

CPUs that provide large computing performance but are not applicable for non-standard I/O

technology required for SoA applications [97]. By acknowledging the requirements of latency,

reliability, supporting local feedback loops and application-level customization, the I-MECH

project came up with a concept - the modular signal processing unit for motion control applica-

tions based on HSoC technology [97]. The developed AMP subsystem is a part of this modular

processing unit.

ADC

PWMs

CLA
FPU

CPU

(a) Running parallel control
loops.

ADC

PWMs

CLA
FPU

CPU

(b) Preprocessing input data.

ADC

PWMs

CLA
FPU

CPU

(c) Co-processing with the main
CPU.

Figure 3.5. Texas instrument embedded control loop’s configuration examples using their
Control Law Accelerator Floating Point Unit (CLA-FPU) [98]. The Analog-to-Digital

Converter (ADC) measures feedback signals and triggers control-loops execution, the Pulse
Width Modulation (PWM) represents the outputs of the system.

The asymmetric multiprocessing (AMP) refers to a multiprocessor computer system where

different processing units are treated unequally. The processing cores may have different ar-

chitectures (heterogeneous or homogeneous multicore) and may run various operating systems.

The AMP is likely to be used when different CPU architectures are optimal for specific activ-

ities. The AMP approach also applies for mixed-criticality use-cases, when, for example, the

critical code runs on a separate core, which also simplifies the certification of the system as

only the critical code needs to be certified. Commonly, a software layer - hypervisor - is added

that administers multiple operating systems, including managing accessible hardware and even

prioritizing bus access, thus effectively configuring the real-time characteristics of the different

cores. The AMP cores may also have some inter-core communication facility, e.g. through

shared memory and inter-core interrupts [99]. While the hypervisor helps set up AMP system,

it negatively affects the performance. For example, Byoungwook and Min [100] demonstrated

59

that on the NVIDIA Jetson TK-1 platform, the hypervisor introduces substantial delays in task

switching (from 3.5µs to 4ms) and interrupts (from 3µs to 150µs).

Figure 3.6. Real-time application subsystem.

The developed overall AMP solution aspires to provide the best of the two worlds: real-time

processing capabilities provided by the AMP core and FPGA and functionality of the Linux

software stack. Fig. 3.6 illustrates the overall concept of the developed AMP subsystem; in

this dual-core processing system, CPU0 executes the operating system (Linux) while the CPU1

(AMP subsystem) cooperates with FPGA and collaboratively executes RT tasks. The interface

to the AMP subsystem is implemented as a Linux driver (illustrated in Fig. 3.7), and it ensures

the following functionalities:

• controlling the AMP core (putting the core on reset or pausing its execution),

• loading baremetal Executable Linked Format (ELF) applications for execution on the

AMP core (including the configuration of the virtual memory),

• providing diagnostics for the execution of the application,

• providing means for on-the-fly configuration of the application,

• communicating with the AMP core (stdin, stdout, stderr).

In an ARM-based processor, some aspects of the configuration, e.g. enabling interrupts,

bringing up caches and MMU, can be set only by the CPU core itself, i.e. via co-processor

configuration interface [101]. AMP subsystem setup can be comprehended by examining the

booting process of a particular SoC. Although, SoCs have distinct internal structures, the mech-

60

Linux Module (Kernel object)

Userspace Interfaces Hardware Control

cdev-interface

sysfs-interface

Cache Controller
(PLC310)

Generic Interrupt
Controller

OCRAM (64 KB)

Reset Manager
Control

Configuration

Diagnostics

(application)

Virtual Memory
Initialization

AMP Cores
Startup Code

Diagnostics
Aggregation

SW FIFO-Based
Communication

U
se

rs
p
a
ce

H
a
rd

w
a
re

Figure 3.7. Composition of the developed Linux driver.

anisms have commonalities, therefore lets use Intel’s Cyclone V dual-core HSoC [88], the rel-

evant parts of the architecture are illustrated in Fig. 3.8.

In a conventional setup, when the system returns from the reset state, the first core fetches

instructions from the 0x00000000 physical address. SCU, which is ensures cache coherency

between the processor cores, passes this data request to the Level 2 (L2) cache controller. L2

controller utilizes a “filtering” feature, which steers requests either to Level-3 (L3) interconnect

or DDR memory controller. The default (reset) configuration propagates the transactions below

1MB to the L3 interconnect, which furthers it to the On-Chip Read Only Memory (OCROM),

which holds the startup code written by Altera. This code is responsible for copying the next

program stage into OCRAM and passing it control. Eventually, startup code configures the

DDR controller and re-configures the L2 controller’s filtering feature to propagate low address

requests to the DDR controller.

Therefore, bringing up the core during the runtime requires the control of the 0x00000000

physical address, which during the execution of the Linux targets the DDR memory. By plant-

ing custom code at this address, it is possible to kick off the bootup of the AMP core and the

respective RT application. By default, the caching mechanisms are disabled; therefore, it is also

necessary to flush L1 and L2 caches after deploying the core’s bootup code. It may be beneficial

to place the RT application in the OCRAM as it is faster than the DDR memory; nevertheless, it

is limited to 64 KB, and the developed solution utilizes it for inter-core communications. Unfor-

tunately, only the processing core can invalidate and enable its L1 cache and MMU; therefore,

this functionality must be executed as a part of the RT application or its startup code.

61

Figure 3.8. High-Level Structure of Intel Cyclone V Field Programmable SoC.

Consequently, after the AMP core’s setup, it is necessary to incorporate some inter-core

communications mechanisms. The straightforward approach is to use the shared memory mech-

anism, where the processor cores communicate via some predefined protocol. By itself, such an

approach can be ineffective, as it implies periodic memory access or even polling, which also

harms the real-time characteristics of the system bus. Conventional processing systems and in-

terrupt mechanisms incorporate means of sending Inter-Processor-Interrupt (IPI) as this would

enable asynchronous communication. When developing the AMP subsystem, the Linux IPI

configuration is separate from the rest of the interrupt mechanism and, therefore, Linux kernel

code required some minor modifications. The designed inter-process communication mecha-

nism utilizes software-based First-In-First-Out (FIFO) implementation and the asynchronous

IPIs (the working principle is illustrated in Fig. 3.9). Simultaneously several such FIFOs are

implemented, establishing the conventional stdin, stdout and stderr data streams for the RT ap-

plication.

62

CPU1
(Baremetal)

CPU0
(Linux)

Read Pointer
Write Pointer

CPU1
(Baremetal)

CPU0
(Linux)

Read Pointer
Write Pointer Data

Flow

CPU1
(Baremetal)

CPU0
(Linux)

Read Pointer
Write Pointer

Data
Flow

(1) Communications FIFO is
initialized. Read/Write point-
ers point to the start of the
shared buffer (physical ad-
dress).

(2) Communications master
core wants to communicate. It
fills the buffer with data, up-
dates the write pointer, flushes
caches to the point of common
coherency and initiates IPI to
the slave core.

(3) Slave core has received
communications IPI. It reads
and interprets data, updates
read pointer and flush caches
to the point of common co-
herency.

Figure 3.9. Inter-processor communications mechanism.

Another feature of the designed AMP subsystem is the runtime capability to change the con-

figuration. The method utilizes the implemented FIFO communication mechanism and custom

segments in the ELF file. During the AMP core setup, the driver parses the custom segments

and configuration options are made available to the user using the sysfs interface. From the

user’s perspective, the application code can utilize read-only and read-write configuration us-

ing C-macro functions, e.g. to define read-only VERSION string and DELAY unsigned integer

variables, one would use:

CONFIG_RO_CSTR(VERSION, ”0.1.1”);

CONFIG_RW_UINT(DELAY, 125);

A similar concept is utilized in the designed Linux software component management approach,

described in more detail in Section 3.3 Approach to Management of Software Components.

As for the user perspective, the driver provides the standard cdev (character device) and sysfs

(pseudo-filesystem) interfaces. The cdev interface is used to upload the new ELF application

onto the AMP subsystem. During this process, the driver (1) puts AMP core into the reset state,

(2) allocates memory for the new executable, (3) parses ELF file, (4) copies the application to

memory while simultaneously initializing the MMU page table, (5) updates entry points and

MMU translation page address in the startup code, (6) parses and initializes configuration API,

(7) flushes caches and (8) unsets core’s reset. While it is possible not to use theMMU, the built-in

63

mapping provides an additional layer of security and isolation, including controlling the access

to hardware resources and isolating AMP execution from the operating system. This interface

is also utilized for providing the stdin, stderr and stdout streams of the baremetal application.

The sysfs interface provides access to the internal kernel data structures, i.e. from the user’s

perspective, the communication is through a set of directories and files that resemble the internal

kernel object (driver) structures defined internally within the kernel [102]. This interface pro-

vides access to the configuration of the application, control of the AMP core and control loop’s

diagnostics (minimum, maximum and average control loop’s lengths). Opposing the standard

approach for exchanging custom data structures across userspace and kernelspace, i.e. ioctl, the

user can select any programming language for interfacing with the system, e.g. bash, python,

C.

3.3 Approach to Management of Software Components

As a consequence of building and investigating Linux-based multi-component (process)

systems is the development of a novel component-based software architecture concept, which

already has been successfully applied for autonomous vehicles and drone systems in H2020

ECSEL PRYSTINE and Framework of Key Enabling Technologies for Safe and Autonomous

Drones (COMP4DRONES) projects. While developing a complex and evolving system, it

may be necessary to have an architecture that facilitates effortless software component manage-

ment and provides convenient means for their inter-communication. This approach resembles

a “blackboard” pattern from the software development theory [103], which anticipates non-

determinism of the software-component final composition. Furthermore, the processing capa-

bility requirement may evolve; thus, the system architecture should also be scalable.

Component 0 Component 1 Component 2 Component 3

compage compage compage compage
System 0 System 1

icom
(inproc)

icom
(inproc)

icom
(deep copy)

Figure 3.10. An approach to the management of software components.

Fig. 3.10 represents the principle of the developed system’s component management and

inter-communication solution. The developed approach utilizes two modular frameworks:

64

• compage (component management framework) - ensures component management within

a single system, including the initialization and execution of the components in separate

threads or processes. The framework also provides the means of generating and applying

component configuration using .ini files. The developed framework is made available to

the public at: https://gitlab.com/rihards.novickis/compage.

• icom (component communication framework) - ensures coherent communication between

different software components by providing various underlying communication mecha-

nisms, thus enabling zero-data copy whenever possible. Zero-data copy excels when the

processing pipeline involves a large quantity of data, which, if not shared efficiently, can

result in a substantial performance drop due to the saturation of the on-chip communica-

tions backbone (interconnect). Essentially, if software components execute on a single

system, they can share data references and avoid data duplication, e.g. utilizing the dou-

ble buffer technique [104]. The developed framework is made available to the public at:

https://gitlab.com/rihards.novickis/icom.

The core reasons for the development of such frameworks are the shortcomings of the SoA

solution - Robot Operating System (ROS) [105]. Although ROS has become a widely adopted

standard in robotics research, it is not suitable for embedded control systems [106] mainly due

to its real-time characteristics and size. Notably, ROS2 overcomes some limitations of its pre-

decessor [107], and there are also initiatives for bringing ROS to embedded systems, e.g. H2020

project - Micro-ROS: Platform for seamless integration of resource-constrained devices in the

robot ecosystem.

3.3.1 Software component management framework - compage

The component management framework was set to meet the following requirements:

• the framework shall have a small footprint, marking it suitable also for embedded systems;

• the framework shall provide means of configuring and replicating software components;

• the framework shall be integrable in both C and C++ workflows;

• the framework shall be manageable, i.e. adding new components shall require minimum

effort.

compage framework addresses these requirements by creating a custom segment in the ELF

executable, with a structure as shown in Fig. 3.11. The software component essentially is a

65

https://gitlab.com/rihards.novickis/compage
https://gitlab.com/rihards.novickis/icom

function (entry point) with a predetermined and configurable data structure as its argument.

The framework permits denoting such an entry point, its default associated data structure and

marking specific parameters for configuration. The framework can express component compo-

sition using an ini configuration file that can further be generated (the default configuration),

modified to change parameters or duplicate software components and used as input to execute

the described system.

Figure 3.11. Layout of a compage segment in the executable.

An example of framework’s instantiation is shown in Appendix 6, Appendix 7 illustrates

description example of a simple compage component and generated / modified configuration

file is shown in Appendix 8. The compage development flow can be summarized as follows:

1. The framework is integrated into the main program flow by utilizing its API.

2. New components are developed and registered with the framework. Notably, each com-

ponent’s code may be located in a single file.

3. The framework generates the default configuration file.

4. User modifies configuration file to update component parameters and instantiate multiple

copies of the same component.

5. The configuration file is supplied to the executable to run a component-based application.

3.3.2 Software component communication framework - icom

The blackboard paradigm also requires a universal communication interface; nonetheless,

there must be some context awareness to enable seamless switching between zero and deep copy

approaches (Illustrated in Fig. 3.12). The developed icom framework originally was based on

66

ZeroMessage Queue (ZMQ) [108] framework, but extends to other IPCmechanisms, e.g. FIFO,

message queues, sockets, shared memory, etc. The framework supports the standard PUSH-

PULL, PUBLISH-SUBSCRIBE andREQUEST-REPLY communication paradigms. Compared

to ROS-based solutions, this framework is suitable for deployment in complicated perception-

based control systems, .e.g. high-level perception and control for autonomous drones (appro-

bated in COMP4DRONES project) and vehicles (approbated in PRYSTINE project).

(a) Communication based on deep data copy.

(b) Communication based on zero data copy.
Figure 3.12. Component communication mechanism base.

An abstract example for using icom framework is provided in Appendix 9.

67

4. ADAPTATION AND IMPLEMENTATION OF COMPUTER VISION
ALGORITHMS

This section illustrates the application of HSoC technologies in stereo-vision algorithm im-

plementation. Currently, ML algorithms dominate many image processing applications; there-

fore, the initial discussion focuses on fully connected FFNN implementation in programmable

logic. While the designed solution applies to torque vectoring algorithms of multi-motor electric

vehicles, the gained insights illustrate the limitations of NN algorithm pipelining. The section

further explores the developed heterogeneous system architecture for executing stereo image

processing and discusses the details of implemented algorithms, i.e. image deinterleaves logic,

interpolation of Bayer’s pattern, spatial image transformation logic (for barrel distortion correc-

tion and rectification), feature extraction and disparity calculation. A core contribution - spatial

image transformation - is discussed in more detail as it utilizes a novel approach to ensuring

parallel data access that is generalized for N-dimensions and enables SoA interpolation while

conserving OCRAM resources.

4.1 An Approach of Feed-Forward Neural Network Throughput-Optimized
Implementation in FPGA

4.1.1 Design considerations

One contribution of the 3Ccar project focused on algorithms for enhancing vehicle dynam-

ics on multi-motor electric vehicles, which benefit from better controllability offered by such

powertrains. A part of this work is the development of a novel solution to the FFNN imple-

mentation challenge. The proposed approach proposes to revise the implementation challenge

viewing it in terms of elementary structures and utilizing pipelining paradigm. The FFNN is

split into elementary layers, where each layer can be characterized by its resource, e.g. adder,

multiplier, activation function. These layers reserve different numbers of resources to achieve

even distribution of latencies and attain an optimally pipelined implementation, where every

layer’s latency is less or equal to the time necessary for the network to accept new input. An

accompanying tool, developed for the solution, converts the given network’s topology into C++

code that further feds into an HLS tool. The generated code already incorporates necessary

directives to ensure the envisioned solution with the requested pipelining iteration interval.

68

As a consequence of the NN parallel nature, a fully pipelined implementation can require

more resources than is available. Furthermore, the pipeline’s throughput depends on its slowest

function, thus provided with a limited communications bandwidth, a fully pipelined implemen-

tation can be wasteful. As described in Section 2.5, FFNNs abstract a combination of neurons,

and if we denote delay with τ and take into account data dependency, as illustrated in Fig. 2.9,

neuron’s delay can be characterized with Eq. 4.1:

τtotal = τmul + τadd + τact, (4.1)

where τmul, τadd and τact are the respective delays of the multiplication, addition and activation

operations.

By studying NN structure and assuming every operation is characterized by some operation-

specific constant delay τc, we can derive the corresponding delay-resource relationships. For

example, for the multiplication layer, all operations can be done in parallel; therefore, the delay

model of such layer is:

τmul =
⌈ Nin

Nmul

⌉
× τc. (4.2)

As for the summation phase, the computational process involves additional dependencies

because all inputs are added together (bias is treated as one of the inputs). Depending on the

clock frequency, chosen data type and routing, sometimes the adders may be cascaded, but such

an approach requires additional information regarding the clock frequencies, adder widths and

the technological characterization of the FPGA chip and, therefore, such level of detail is not

analyzed. In the simple case, the minimum delay of the addition operations can be achieved by

adopting a tree-like adder structure, and it is:

τadd = ⌈log2(Nin)⌉ × τc. (4.3)

In general, if the adder count is limited, the adder layer’s delay can be determinedwith Algorithm

1.

Although neuron is an intuitive abstraction, it subdivides architecture as shown in Fig. 4.1a.

This approach omits resource sharing between parallel neurons. Therefore a different abstraction

is proposed, which is shown in Fig. 4.1b. In this approach, neural network structure is separated

into elementary layers, where each layer is characterized by a specific resource - adder, multiplier

or activation function.

69

(a) Non-optimized delay model for a single layer. (b) Optimized delay model with resource sharing
for a single layer.

Figure 4.1. Different delay models. a) Delays are analyzed in terms of a neurons in layers b)
Joint delay analysis for ”primitive” multiplication, addition and activation layers.

By considering the main bottlenecks, e.g. limited bandwidth or resource availability, it is

possible to optimize the network by allocating an appropriate amount of resources for every

layer. One of the most common limitations in FFNNs is the activation function that often is

difficult to pipeline. Furthermore, applying the elementary layer abstraction increases the com-

plexity in adder scheduling, as different resource sharing arrangements can lead to different

delays. This is illustrated in Fig. 4.2.

Algorithm 2 provides a procedure for delay calculation that considers the unused resources in

one stage and carries them to the next one. Variables are designated as follows: Nlin - elementary

layer’s input count, Nadd - adder count, Nuadd - adders used in the current stage, Ncadd - adders

carried to the next stage, τ - delay cycles.

Another important consideration for the ANN implementation is the choice of data type, as

floating-point data types contribute high precision and range but are costly to implement and

pipeline. Furthermore, recent studies [109, 110] show that fixed-point data types can be used

with a relatively small precision loss, especially if the ANN training procedure is aware of the

Algorithm 1 Addition delay for single neuron
1: N = Nin

2: τ = 0

3: WHILE N > 1

4: N = N −min(N/2, Nadd)

5: τ ++

70

Figure 4.2. Illustration of different resource sharing policies where two adders are being
shared between two neurons. The first scheduler prioritizes a neuron, which results in

additional delay due to dependencies. The second approach prioritizes all neurons equally,
leading to a more efficient resource sharing policy.

Algorithm 2 Delay of elementary addition layer
1: N = Nlin

2: τ = 0

3: Nuadd = Nadd

4: WHILE N > 1

5: Ncadd = N −Nuadd

6: Nuadd = min(N/2, Nadd +Ncadd)

7: N = N −Nuadd

8: τ ++

fixed-point data type.

Digital ANN implementations also involve the coefficient storage trade-off. Coefficients

can reside in registers, which ensures parallel access to all coefficients, or they may be stored

in the on-chip memory, thus limiting their accessibility. The choice depends on the pipeline’s

performance requirements and also the size of the NN.

4.1.2 Design, implementation and results

A tool has been developed to automate FFNN implementation that takes the FFNN topology

as an input and generates C++ code for the Xilinx HLS. The tool uses the following method-

ology: first, it splits network topology into ”elementary” layers, where each layer is associated

with a specific resource, i.e. adder, multiplier, activation function, etc. Resource sharing is ac-

complished with multiplexing logic as shown in Fig. 4.3, the implementation of this logic is left

to the HLS. Further, the network delay model is derived. This information supports the latency

71

calculations for every elementary layer and enables making choices regarding the pipeline de-

sign. The tool reduces layer delay by increasing the number of its allocated resources; in an

optimal pipeline, all layers should have the same delay - a principle that guides calculations

behind throughput optimization.

Figure 4.3. Proposed resource implementation scheme.

One of the main parameters of the tool, steering the process of the code generation, is the

maximum delay acceptable for pipeline’s stages, which is given in clock cycles. The parameter

ensures allocating ”just enough” resources to comply with the given constraint - the pipeline’s

initiation interval. Fig. 4.4 shows an example of such a relationship, where the same FFNN

topology is fed into the developed tool while targeting the range of initiation intervals. Fur-

thermore, the developed tool supports different normalization, addition, multiplication and ac-

tivation layers. Activation function can be calculated either analytically by utilizing Xilinx and

LOGICore IPs or by implementing a simple Look-Up-Table (LUT).

Figure 4.4. ”Elementary layer” resource dependence on the targeted pipelining latency for a
17-40-30-20-4 FFNN topology. The normalization layers are not displayed, because their

usage varies minimally (1-2 resources).

The generated code consists of header, source and data files and every elementary layer is

72

abstracted as a function. Source code incorporates directives, which guide hardware implemen-

tation. The developed tool is open-source and made available on-line12. Generated FFNN IP

cores are tested using two hardware interfaces: Memory-Mapped (MM) interface for latency

estimation and Streaming (ST) interface for latency and throughput estimation. MM interface

implies active control from the side ofMicro Processing Unit (MPU), but ST interface is set up

by utilizing LogiCORE DMA IP cores [111] and AXI high performance interface [112].

In summary, the developed methodology implements FFNN by splitting the neural network

into elementary layers, generating a high-level description of the topology and adopting HLS

tools for the FFNN IP core generation. The developedworkflow is designed for optimal through-

put and, although it is not suitable for fully pipelined image processing, the solution applies for

virtual sensor implementation as it can provide a relatively high sampling rate.

All tests were performed on the Xilinx Zynq ZC702 SoC evaluation board using a bare metal

stack with FPGA logic clocked at 100MHz frequency. Timing measurements are made by using

the Cortex-A9 SCU timer. MM-based accelerator variant of the core is benchmarked by running

IP core 100 times and measuring its time of operation. Timer measurements are made before

launching IP and after receiving the interrupt signal indicating the end of the core’s operation.

Notably, there are sub-microsecond measurement errors brought in by the internal interconnect

structure. The ST interface was tested 100 times with 10,000 continuous neural network data

points for estimating throughput and 100 times with just a single data point for estimating la-

tency. The performed tests and detailed comparison with other solutions are provided in Tables

4.1 and 4.2.

Results in Table 4.1 illustrate that ST-based implementation throughput approaches the the-

oretical initiation interval and can be characterized with about 2.7 µs latency. This is a result

of different factors, e.g., DRAM controller delay, interconnect hierarchy and high-performance

interface buffering logic. ST interface implementations provide higher throughput than any of

the related work implementations, which is due to the pipelined nature of the accelerator.

Theoretical and practical measurements for the MM-based implementations are slower than

implementations presented in [71, 72], although [71] does not provide a practical implemen-

tation. Of course, additional latency, in this case as well, is introduced by the interconnect
12http://git.edi.lv/rihards.novickis/generation_tool_hls_c_fully_connected_feed_forward_

neural_network

73

http://git.edi.lv/rihards.novickis/generation_tool_hls_c_fully_connected_feed_forward_neural_network
http://git.edi.lv/rihards.novickis/generation_tool_hls_c_fully_connected_feed_forward_neural_network

Table 4.1. Small topology implementation resource utilization and benchmark result
comparison table with [71], [72], [74], [75] (LUT-Look-up-Table, FF-Flip Flop, DSP-Digital

Signal Processor core,BRAM-Block Random Access Memory).

Topology Interface LUTs FFs DSPs BRAM
Target

Initiation
Interval

Theoretical
Initiation
Interval

Theoretical
Latency

Latency Throughput
(Samples/s)

Original Achieved Original Achieved

[71]
2-2-1

Memory-
mapped

246
(0.46%)

118
(0.11%)

6
(2.73%)

3
(2.14%) 1 2 6 34 ns

555 ns
σ = 3.4 ns 29,412,000 1,803,200

Streaming 205
(0.39%)

135
(0.13%)

6
(2.73%)

3
(2.14%) 1 2 9 2.68 μs

σ = 37.5 ns 49,272,000

[72]
2-4-1

Memory-
mapped

980
(1.84%)

800
(0.75%)

48
(21.82%)

9
(6.43%) 1 2 10 44 ns

586 ns
σ = 3.4 ns 2,272,700 1,705,600

Streaming 983
(1.85%)

946
(2.92%)

48
(21.82%)

9
(6.43%) 1 2 12 2.69 μs

σ = 44 ns 49,231,000

[74]
4-8-3-3

Memory-
mapped

1304
(2.45%)

912
(0.86%)

0
(0.0%)

3.5
(2.5%) 1 4 12 1.16 μs

620 ns
σ = 8.7 ns 862,070 1,612,400

Streaming 1356
(2.55%)

1028
(0.97%)

0
(0.0%)

3.5
(2.5%) 1 4 19 2.78 μs

σ = 91 ns 24,796,000

[75]
1-5-1

Memory-
mapped

257
(0.5%)

78
(0.1%)

0
(0.0%)

1.5
(1.1%) 1 3 5 683 ns

578 ns
σ = 9.5 ns 1,463,100 1,730,100

Streaming 257
(0.5%)

81
(0.1%)

0
(0.0%)

1.5
(1.1%) 1 3 7 2.68 μs

σ = 35 ns 33,005,000

hierarchy. Nevertheless, the presented approach performs better than [75]. The results in Table

4.1 suggest that the developed approach excels at maximizing NN throughput.

Although the topology presented in [76] implements the hyperbolic tangent function using

Xilinx LOGICore IPs, the solution outperforms any of the versions presented in the paper, mark-

ing solution’s suitability for a floating-point implementation. The reason for such an impressive

performance difference is the distinct design goals. In [76], the author prioritizes on-the-fly

reconfiguration of the network, while presented solution targets maximum throughput of the

network.

The proposed approach still can be improved because it failed to achieve one cycle itera-

tion interval for small FFNN topologies where it is certainly possible. Additionally, usage of

HLS introduces additional logic, which was the main limitation to implementing more com-

plex networks. Regarding the image processing pipeline in digital logic, although the AI-based

methods present SoA performance, the usage of FFNN generally undermines the prospect of

fully pipelined implementation.

The developed solution also has been applied for virtual sensor use-case, and some con-

figurations achieved an impressive performance of two mega-samples per second, which even

overcomes the results in the original article [8]. The approach potentially could outperformGPU

implementations for virtual sensor use cases with a bigger FPGA chip while having the benefit

74

Table 4.2. Implementation resource use and benchmark result comparison table with [76]
(Theoretical II = 100, Theoretical Latency = 987). (LUT-Look-up-Table, FF-Flip Flop,

DSP-Digital Signal Processor core, BRAM-Block Random Access Memory)

Implementation LUTs FFs DSPs BRAM Latency Throughput
(Samples/s)

[76]A 2232
(4.2%)

1210
(1.1%)

2
(0.9%) - 33.1 ms 30.2

[76]B 3306
(6.2%)

1326
(1.3%)

4
(1.8%) - 24.7 ms 40.5

[76]C 41,297
(77.6%)

33,395
(31.4%)

33
(15.0%) - 5.7 ms 175.4

[76]D 51,028
(95.9%)

35,655
(33.5%)

65
(29.5%) - 3.5 ms 285.7

Impl.
Memory-Mapped

30,197
(56.8%)

55,231
(51.9%)

122
(55.5%)

6
(4.3%)

10.4 μs
σ = 0.011 96,435

Impl.
Streaming

31,246
(58.7%)

56,067
(52.7%)

122
(55.5%)

6
(4.3%)

12.5 μs
σ = 0.027 997,852

of lower power consumption. The detailed virtual sensor performance comparison is provided

in Appendix 10.

4.2 Heterogeneous System Architecture for Stereo Image Processing

A HSoC-based point-correspondence computational system has been developed – a chal-

lenge involving a range of design abstractions, i.e. digital circuit design, on-chip communica-

tions, Linux driver and system development and system architecture. The partitioned functional

architecture of the designed solution is shown in Fig. 4.5. The processor (software) side of

the HSoC ensures the overall control of the system and establishes communication with the

off-board hardware (stereo camera through PCIe and demonstrator system through Ethernet)

by utilizing the available software stack. Notably, the developed approach is also applied for

implementing other computer vision algorithms13.

The demonstrator integrates the following structure:

• Software components

– Acquisition component (optional) orchestrates the system’s image acquisition process. The

software thread utilizes the libdc1394 library for interfacing with the Bumblebee stereo cam-

era and stores images in a memory region shared with the processing thread. The component
13Infrared image preprocessing in APPLAUSE project and vision-based odometry in COMP4DRONES

project

75

Deinter-
leave

Bayer's
Pattern

Interpolation

Barrel Distortion
Correction and
Rectification

Feature
Extraction

Disparity
Calculation

Bayer's
Pattern

Interpolation

Barrel Distortion
Correction and
Rectification

Feature
Extraction

Disparity
Calculation

Left-Right
Consistency

Check

DMA
Read Master

DMA
Write Master

Acquisition Processing Transfer

PCIe
Controller

Ethernet
Controller

Stereo Camera Demonstrator

Software

FPGA Logic

DDR Memory

Figure 4.5. Functional architecture of the developed HSoC stereo-vision solution partitioned
across processing paradigms and components.

can be considered optional because image acquisition also may be implemented in the pro-

grammable logic by ensuring direct interfaces to the cameras.

– Transfer component (optional) ensures the delivery of the processed image to the demon-

strator display or next component in the processing pipeline. In the designed demonstrator,

the component transfers processed images to the host computer, where an Open Graphics

Library (OpenGL) application renders it to the display. Alternatively, this functionality also

could be implemented in the programmable logic.

– Processing component ensures the accelerator’s control and the actual processing in the pro-

grammable logic. This thread accounts for configuring the DMA transactions and the overall

configuration and management of the accelerator pipeline.

• Programmable logic components

– DMA Write/Read Masters are FPGA bus masters devoted to transferring images from the

coherent (in respect to FPGA and MPU) memory to the acceleration pipeline and from the

acceleration pipeline back to the coherent memory region. Current implementation utilizes

proprietary DMA engines provided by Altera, now part of Intel [89].

– Deinterleaving block addresses the characteristic of the particular stereo camera that produces

76

a synchronized yet interleaved image stream; therefore, the stream is deinterleaved into two

separate image streams.

– Bayer’s Pattern Interpolation deals with the underlying camera’s image acquisition mecha-

nism meaning that every pixel supplied by the Bumblebee camera is either red, green or blue,

i.e. the user is exposed to the Bayer’s pattern. The image needs to be interpolated [41]; in

this particular case, the bi-linear interpolation algorithm is used.

– Barrel Distortion Correction and Rectification executes the spatial transformation of the sep-

arate image streams and therefore corrects the distortions introduced by the camera lenses

and applies homography transformation to rectify the images and align epipolar lines with

the horizontal axis.

– Feature Extraction characterizes every image pixel in terms of a descriptor – a vector con-

taining a multitude of features. While feature sets can be modified to explore the design space

and evaluate performance, the demonstrator system utilizes target pixel’s and their neighbour

intensity, horizontal gradient, vertical gradient and census transform.

– Disparity Calculation evaluates the actual correspondence that is found by comparing the

feature vectors of the pixels in one image to the features of a single target pixel in the other.

The SIP core estimates similarities by providing a confidence metric, and although the imple-

mentation of this block is relatively straightforward, it is very demanding in terms of resource

consumption.

– Left-Right Consistency Check optionally performs filtering of outlier disparities by verifying

that computed left and right disparity images correspond to each other, i.e. the computed

correspondences are consistent across both images, meaning that they have a high probability

of being estimated correctly.

The designed inter-communication mechanism utilizes shared coherent memory, as it en-

ables other bus masters apart from the processor to perform memory transfer operations; nev-

ertheless, there is a challenge of software component synchronization. The challenge has been

solved by utilizing a double buffering technique [104], and Fig. 4.6 illustrates an example of a

two-component synchronization procedure.

The developed system utilizes the double buffering technique two times - in between Ac-

quisition-Processing and Processing-Transfer components. Two memory regions are shared

and handled to ensure parallel component execution; for example, while the Acquisition thread

77

(a) The initial access of the memory region by both
components. First component succeeds in locking
the resource and now uses it while the second

component stalls.

(b) First component releases the first resource and
is acquiring the second resource. The second
component now is able to lock the first buffer.

(c) Both components simultaneously use their own
buffers.

(d) Both components release the lock and turn to
the opposite buffers, just like in c) step. From now

on both components are synchronized.
Figure 4.6. Software thread synchronization using double buffer technique.

writes input image into one of the buffers, the Processing thread uses the other buffer for con-

figuring DMA transactions and transferring data through the accelerator. The same mechanism

provides communication between the Processing and Transfer components; therefore, SoC si-

multaneously performs image acquisition, image processing and output image transfer resulting

in a high-level pipeline. Notably, the Cyclone V SoC’s processing system contains two cores,

and only two processing units can truly execute simultaneously; nonetheless, the Processing

component spends most of its time in a process queue as it waits for the end of DMA transac-

tions. The system handles shared memory and controls DMA accelerators by using the same

modules described in Section 3.1.

Further sections describe the actual digital implementations of the corresponding image pro-

cessing algorithms.

4.3 Design of image processing accelerators

4.3.1 Deinterleaving of the input image stream

The first procedure implemented in the stereo-vision pipeline is the deinterleaving algorithm

that splits the input image stream from the Bumblebee camera into multiple output streams.

This requirement rises from the camera’s synchronization characteristics as it avoids storing the

entire image snapshots in-camera memory by interleaving data into a unified stream. Fig. 4.7

78

illustrates such input stream. Note that the used variant of the camera system incorporates three

cameras.

Cam 0
Pixel 0

Cam 1
Pixel 0

Cam 2
Pixel 0

Cam 0
Pixel 1

Cam 1
Pixel 1

Cam 2
Pixel 1

Cam 0
Pixel 2

Cam 1
Pixel 2

Cam 2
Pixel 2

Input Stream

Cam 0
Pixel 0

Cam 0
Pixel 1

Cam 0
Pixel 2

Cam 1
Pixel 0

Cam 1
Pixel 1

Cam 1
Pixel 2

Cam 2
Pixel 0

Cam 2
Pixel 1

Cam 2
Pixel 2

Cam 0
Pixel 3

Cam 0
Pixel 3

Cam 0
Pixel 3

Camera 0
Stream

Camera 1
Stream

Camera 2
Stream

Figure 4.7. Interleaved input stream of the bumblebee camera.

The challenge is solved in the digital logic by using an of-the-shelf stream adapter and con-

verting input stream width to 24 bits, i.e. resulting in 3 parallel pixels each expressed using a

single byte. A further deinterleaving of the stream is relatively simple, as illustrated in Fig. 4.8.

At this point, the image already resides in the DDR, and therefore there is no risk of the accel-

erator pipeline interfering with the Bumblebee camera streaming process. Nonetheless, directly

interfaced cameras require additional FIFO buffers, as image sensors stream data assuming an

always-ready data sink.

Figure 4.8. Separation of interleaved image data stream.

The synchronization aspect must be examined in more detail. Firstly, the solution is not per-

fect as the ready signals are ”anded” together. In longer processing pipelines, such an approach

would lead to the degradation of the timing characteristics of the entire circuit. Nevertheless,

such issues can be avoided by utilizing, for example, elastic buffers [113]. Secondly, some oper-

79

ations discussed further, e.g. rectification and lens distortion correction, have different latency

characteristics for each of the sensors; therefore, every output stream should be buffered, .e.g.

using FIFO buffers. Luckily, the relative differences can be calculated before the deployment

of the processing pipeline, therefore ensuring suitable buffer size before synthesis.

4.3.2 Bayers pattern interpolation and RGB-to-Grayscale conversion

Modern cameras employ Color Filter Array (CFA), where different-colour filters reside on

alternating sensor pixels. The most commonly used pattern in modern cameras is the Bayer

pattern shown in Fig. 4.9, which places green filters over half of the sensors in a checkerboard

pattern, while the red and blue filters cover the rest. The green pixels are also termed luminance-

sensitive elements, while the red and blue ones – chrominance-sensitive elements. The number

of green pixels is higher to mimic the physiology of the human eye, i.e. human eye’s retina is

most sensitive to the green light [114]. The process of interpolating the missing colour values

to acquire valid RGB values for all pixels is known as demosaicing.

G R G

B G B

G R G

R G

G B

R G

B G B G B

R

G

R

G

G

B

G

B

R

G

R

G

Figure 4.9. Bayer RGB pattern.

Although many demosaicing methods have been developed [115], the designed pipeline

utilizes simple reconstruction based on linear and bilinear interpolation algorithms. Fig. 4.10

illustrates different patterns to be considered by the demosaicing algorithm.

On closer examination, it becomes evident that at any particular clock cycle, two colour

values have to be inferred simultaneously. Further, the applied interpolation algorithm examines

a region of 3× 3 by using a sliding window approach, and at any particular clock cycle, either

4 (two and two) or 8 (four and four) values contribute to the reconstruction process. Fig. 4.11

represents the high-level structure of the designed circuit.

The input to the demosaic logic is provided by the sliding window block, which can be con-

veniently implemented in the digital logic [116]. The fully-pipelined demosaic block produces

80

(a) Red value is
known, green and
blue values are
inferred from the
adjacent pixels.

(b) Blue value is
known, red and
green values are
inferred from the
adjacent pixels.

(c) Green value is known, red and blue values
are inferred from the adjacent pixels.

Figure 4.10. Bayer pattern variants considered for demosaicing algorithm.

G R G

B G B

G R G

Output from
Sliding Window

3 X 3
State (Pattern)

Machine
and Pixel

Multiplexing

State Delay

Pipelined
Adder

Pipelined
Adder

Data Delay

Channel
Demultiplexer

R

G

B

Figure 4.11. High-level structure of the designed demosaicing circuit.

sets of data corresponding to Fig. 4.10. Further, the proposed structure consists of a state gener-

ator, where each state corresponds to the patterns in Fig. 4.10. The block arranges these inputs

for the pipelined adders, while the centre pixel is simply delayed because its value requires no

reconstruction. The generated state is also delayed and fed into the demultiplexing block for

output rearrangement. In cases when interpolation requires 2 + 2 pixels, i.e. Fig. 4.10c, the

same pixel pairs are provided to the pipelined adders twice. The outputs of the pipeline adders

must be divided by 4, which is achieved by simply ignoring the two least significant bits.

The demosaic block also includes optional RGB-to-Grayscale conversion functionality as

grayscale images reduce the number of operations triple-fold while not having major precision

drawbacks, e.g. edge detection rate may be reduced by less than 10% [117, 118]. Therefore, a

hardware-friendly lightness colourspace conversion method has been selected [119], which is

expressed with the following equation:

max(IR, IG, IB) +min(IR, IG, IB)

2
, (4.4)

where IR, IG, IB are the intensities of the red, green and blue pixels, respectively.

81

4.3.3 An approach to spatial image transformation

An essential part of any image pre-processing is the algorithms for pixel transformation

or mapping, i.e. lens distortion correction, image rectification, digital zoom. Executing such

tasks in digital logic is associated with higher complexity due to the semi-global nature of the

memory access patterns. Notably, the storage of the entire image in the OCRAMmemory of the

programmable logic is either impossible (FPGA chips often have on-chip memory less than 1

MB) or expensive (a single dual-port Static Random Access Memory (SRAM) cell in the on-chip

memory requires eight Complementary Metal-Oxide Semiconductor (CMOS) transistors, which

results in a large area).

Notably, performing image transformations in digital logic is a significant field of research

because data streaming and computer vision solutions require lower energy consumption, and

edge devices more often include processing, e.g. specialized image processors emerge even

within cameras. Nonetheless, the solution developed in this thesis challenges SoA as it formal-

izes the process to such an extent that a transformation circuit can be generated for any number

of dimensions, not just images.

For example, Zemcík et al. [120] propose an efficient resampling algorithm based on sepa-

rable Finite Impulse Response (FIR) filtering and bi-linear interpolation for geometry distortion

correction, where distortion is described through a rectangular mesh. The pipelined solution

separates vertical and horizontal resampling in independent modules with separate buffering

schemes. While the solution is efficient, it is suitable for small geometrical distortions, where

the displacement is only a few pixels.

Multiple teams [121] have developed solutions specifically for lens distortion correction.

Clapa et al. [121] have optimized a fisheye distortion correction algorithm for hardware imple-

mentation using CORDIC [122] algorithms, while the actual distortion removal is managed by

Microblaze soft processor.

Guo et al. [123] have developed a relevant system for the real-time image distortion correc-

tion based on a bilinear interpolation algorithm with a custom edge enhancement scheme. The

algorithm sensibly utilizes four-block RAM buffering scheme for ensuring parallel access to the

pixels. Notably, this thesis adopts a similar approach but extends it to even higher dimensions.

Another category of accelerators targets image scaling, where pixels are re-sampled at a dif-

82

ferent resolution and interpolation is necessary to restore the missing information. Aho et al.

[124] presents a detailed look at a parallel memory unit describing separate address computa-

tion and data permutation blocks. Data element read and write addresses are computed with

predetermined address functions, while the permutation block organizes data in a pattern based

on the address of each element. A four point window for bilinear interpolation is achieved in

this work, but increasing the neighbourhood size has not been demonstrated.

The proposed work is a generic solution for carrying out spatial image transformation in

digital logic that enables real-time computing by omitting the need for introducing mechanisms

for saving communication bandwidth as in [125] and enables fully digital implementation of

such use case as real-time zoom lens distortion correction.

Fig. 4.12 illustrates the functional architecture of the spatial transformation accelerator that

consists of input and output coordinate counters, dual-port memory matrix, writes and read

masters, output buffering logic, control logic and external inverse transformation calculation

logic.

Output
Coordinate

Counter

AXIS

Inverse
Transformation
Computation

Xin,Yin

X
o
u
t,Y

o
u
t

Xin',Yin'

Logic
Control

Xin,Yin

Xin',Yin' Control Signals

Generic Spatial Transformation

Memory
Write-Read

Masters

Write Port

Read Port

Dual Port
Memory Matrix

Read
Data Recon-

struction

Output
FIFO

Buffer

AXIS

Input
Coordinate

Counter

Figure 4.12. Approach to fully pipelined image transformation in digital logic.

Any spatial image transformation can be expressed as a mapping of input pixels to output:

xout, yout = f(xin, yin), (4.5)

where xin, yin and xout, yout denote the input/output image coordinates, and f is some arbitrary

function, often expressed as a matrix in the case of linear transformations. In such cases, in-

crementing input coordinates may result in ”hopping” for output coordinates. The proposed

solution necessitates the opposite: computing the inverse transformation and essentially retriev-

83

ing the next input coordinate pair for the consecutive output coordinates, i.e.:

xin, yin = f−1(xout, yout). (4.6)

This functionality is achieved by the Output Coordinate Counter and Inverse Transformation

Computation blocks. The Inverse Transformation Computation is external, it utilizes a simple

ST interface and can incorporate any combination of spatial transformations, for example14:

xin, yin = f−1
correction(f

−1
transformation(f

−1
zoom(xout, yout))). (4.7)

Somewhat symmetrically, the Input Coordinate Counter provides image coordinates for the in-

put data stream; therefore, the Control Logic has information about the data samples required

by the transformation and the ones available in the buffers. This structure enables simultane-

ous processes of writing input data to the memory matrix and calculating the appropriate read

addresses for the output data. Although, the circuit requires some time to initialize, which is

determined by the first performed transformation. Notably, the dual-port memory matrix may

be replaced with a single memory when using reconstruction based on the nearest-neighbour

algorithm.

The designed circuit performs in the following manner: the Inverse Transformation Com-

putation block receives the next necessary coordinates for the output image and calculates the

”required” coordinates for the pixel in the input image. Simultaneously, the Input Coordinate

Counter generates coordinates for the received input image. The control logic compares both co-

ordinate pairs, and if the ”required” coordinates are smaller than the input coordinates, it means

that the input image still is not sufficiently buffered, the Inverse Transformation Computation

andOutput Coordinate Counter blocks are stalled until more of the input image data is available.

If it appears that the ”required” pixels are loaded, then the transformation logic works simulta-

neously with retrieving the input image, i.e., the circuit operates in a fully pipelined manner.

The solution adopts a unique technique for signal reconstruction that enablesN -point recon-

struction while preserving memory resources. This technique is also generalized to any number

of dimensions and is described in detail in the following Section: 4.3.4 Parallel data access

scheme for data reconstruction. The tedious task of generating addresses for the individual

memories in the Dual Port Memory Matrix is performed by the Memory Write-Read Masters.
14The f−1

zoom and f−1
transformation are usually expressed as matrices and could be combined into a single ma-

trix to save hardware resources.

84

In the particular use-case, the external Inverse Transformation Computation block corrects

lens distortions and performs image rectification using homography matrix. The homography

transformation is exected using a straightforward matrix multiplication; nonetheless, the homo-

geneous coordinates must be converted to cartesian. While the initial approach utilized a lookup

table, which is based on the prior knowledge on the transformations, the current solution is more

generic and utilizes Goldschmidt divider, which is also used in Advanced Micro Devices (AMD)

processors [126, 127]. Fig. 4.13 illustrates the rectification circuit of the developed prototype

system.

Yout

H21
X

H22
X

Xout

H11
X

H12
X

H13

+
+

H23

+
+

H31
X

H32
X

H33

+
+

Matrix Multiplication

N
o
rm

a
liz
a
ti
o
n -

X

X2
-

X

X2

-
X

X2
-

X

X2 Yin

Xin

Homogeneous to Cartesian

w

y

x

Figure 4.13. Representation of the digital circuit for homography transformation. Notably, the
Goldschmidt divider requires the divisor to be in the range of (0; 1]; nonetheless, if the
characteristics of the transformation are known beforehand and the computed scaler w is

always in bounds, the normalization circuit may be omitted.

As for the lens distortions, the Bumblebee camera distorts images radially and the images can

be corrected using the second-order approximation, i.e. by using the following set of equations:

r =
(
Xout − Xcenter

αx

)2

+

(
Yout − Ycenter

αy

)2

, (4.8)

Xin = (Xout − Xcenter)(1+ K1r+ K2r2) + Xcenter, (4.9)

Yin = (Yout − Ycenter)(1+ K1r+ K2r2) + Ycenter. (4.10)

Fig. 4.14 represents the digital circuit executing the calculations of the Barrel distortion cor-

rection transformation, and Fig. 4.15 illustrates the transformation block’s output with actual

images from the Bumblebee camera. The designed transformation block is an essential part of

the stereo-vision demonstrator system, as it cancels spatial image distortions and aligns epipolar

lines.

85

-

+

Xout

Xcenter
X

1
αx

X
αx

Xout Xcenter-

-
Yout

Ycenter
X

1
αy

X
αy

Yout Ycenter-

αx

Xout Xcenter-((
2

αy

Yout Ycenter-((
2

X

X

K1

X

K2

1

+
+

X
+

X
+

Xcenter

Ycenter

Xin

Yin

Xout Xcenter-

Yout Ycenter-

r

r

r2 r2

rK1

K2

1 rK1 r2K2+ +

Figure 4.14. Representation of barrel (radial) distortion correction circuit for computing
necessary input image coordinates.

Figure 4.15. Correction of radial lens distortions in Bumblebee camera using sparial
transformation IP.

4.3.4 Parallel data access scheme for data reconstruction

Fig. 4.16 illustrates the overall approach to image buffering and data access. While the

write pointer continuously rolls over, the read pointer updates simultaneously and is computed

using the respective write and read requests. The approach is relatively straightforward with a

single memory, i.e. the signal is reconstructed using the nearest neighbour interpolation method.

Nonetheless, signal reconstruction using multiple samples introduces an additional complexity

that yields a compelling optimization challenge.

86

WP

RP

Write / Read
Request

Difference

Generated
by

Rollover
Counter

Computed
Using

Read / Write
Request

Difference

Figure 4.16. The overall concept of write and read pointer acess to the memory.

One of the principal requirements for carrying out a fully pipelined spatial transformation

with interpolation is a memory buffering scheme that would permit interpolation logic to have

simultaneous access to adjacent pixels. The simplest solution would be to use multiple dual-

port memories as shown in Fig. 4.17. Although this construct is convenient, it can be optimised

considering that pixel data for interpolation is adjacent. Fig. 4.18 illustrates a more efficient

solution, where memories are reduced in size and only contain data for the respective (odd /

pair) columns and rows. Although this solution reduces the required memory size four times, it

depends on additional write and read logic for multiplexing.

Memory
(size = N)

WP

RP0
RP1
RP2
RP3Memory

(size = N)

Memory
(size = N)

Memory
(size = N)

Figure 4.17. Simple data access scheme for 4-point reconstruction.

Memory
(size = N/4)

WP

RP0
RP1
RP2
RP3Memory

(size = N/4)

Memory
(size = N/4)

Memory
(size = N/4)

Demux
Logic

Pseido
Mux
Logic

To Recon-
struction

4 adjacent
pixel data

Figure 4.18. Optimized data access scheme for 4-point reconstruction with 4× reduction in
memory size.

Typically, the image address corresponds to the coordinates with the following equation:

a = Y ×W +X, (4.11)

where a denotes address,W - image width, Y - image row andX image column. Nonethe-

less, the Generic Spatial Transformation circuit does not require storing the whole image in the

87

OCRAM. Utilizing the incrementing quality of the write pointer, we can substitute write address

generation logic with a simple rollover counter with the maximum value corresponding to the

size of the memory buffer. Nonetheless, we still require row and column signals for computing

the difference between the write and read pointers.

Considering that the memory matrix consists of M rows and N columns, the last log2(M)

row signal bits and log2(N) column signal bits control the demultiplexing logic for the write

pointer’s write request signal as illustrated in Fig. 4.19. Naturally, all write ports of the memory

matrix share the write data and address signals.

x0x1x2x3x4x5x6x7

y0y1y2y3y4y5y6y7

log2(N)

log2(M)
00
01
10
11

00 01 10 11

Write Request

Column

Row
Towards
Memory
Matrix

Figure 4.19. An example of write request demultiplexing logic when using 4× 4 memory
matrix.

Data retrieval is more challenging because there is a need of generating varied addresses for

each of the memories’ read ports. To formalize the derivation of such a circuit, first, let’s assume

a one-dimensional data reconstruction use-case using four samples, i.e. four memories. The Fig.

4.20 dissects a one dimensional request into rf - fixed-point part later used for reconstruction,

rl - low bits used for individual memory address generation (dissected later) and rh - high bits

representing the core address for the sliced memories.

Fig. 4.21 illustrates an application of such request where stored data samples spread across

four memories. Here i denotes the input sample index and a - memory address in the corre-

sponding memory. The readout circuit can be considered an operator that takes the request and

outputs the address vector for retrieving the relevant data. Recognize that while the address vec-

tor corresponds to the memories in orderm0−m3, the retrieved data further should be reordered

88

x0x1 x-1.x2x3x4x5x6x7 x-2x-3x-4

High request bits (used as base
for individual memories)

Fixed request bits
(used for interpolation)

Low request bits (used for the
readout multiplexing logic)

rh rl rf

Figure 4.20. Dissection of a 12-bit reconstruction request for a 4-memory readout.

for sample reconstruction (interpolation).

Sample Index:Memory Address: i
m0

i+1
m1

i+2
m2

i+3
m3Memory ID:

a a a a i+4
m0

i+5
m1

i+6
m2

i+7
m3

a+1 a+1 a+1 a+1i-2
m2

i-1
m3

a-1 a-1

i-1 i+0 i+1 i+2

i+2 i+3 i+4 i+5
i+1 i+2 i+3 i+4

i+3i+0 i+1 i+2

[1 1 0 0]' + [r r r r]'

[0 0 0 -1]' + [r r r r]'
[0 0 0 0]' + [r r r r]'
[1 0 0 0]' + [r r r r]'

4x1
Memory
Request
Address
Vector

Data Request In Range
h h h h

h h h h

h h h h

h h h h

r = 11:l

r = 10:l

r = 01:l

r = 00:l

Figure 4.21. Data retrieval for reconstruction using four input data samples.

The illustrated data retrieval mechanism can be expressed in a matrix form using the follow-

ing equation:

a = Svo + rh, (4.12)

where a denotes address vector, S - shift matrix, vo - offset vector and rh - high bits of the

request. In this particular, case the offset vector would be:

vo =
[
1 1 0 0 0 0 −1

]′ (4.13)

and with J being the reverse identity matrix, the shift matrix is:

S4×7 =



[
04×3 J4×4

]
, if rl = 0[

04×2 J4×4 04×1

]
, if rl = 1[

04×1 J4×4 04×2

]
, if rl = 2[

J4×4 04×3

]
, if rl = 3

(4.14)

89

Further, the offset vector can be constructed for any ”power-of-two” number of memories -N -

as:

vo =
[1 · · · 1︸ ︷︷ ︸

N/2

0 · · · 0︸ ︷︷ ︸
N

−1 · · · − 1︸ ︷︷ ︸
N/2-1

] (4.15)

Let’s advance the derived model by extending it to the second dimension by considering an

unconventional signal reconstruction use-case where reconstruction is executed only across the

vertical axis. Such constraints correspond to stretching or contracting the image only along the

vertical axis. The Fig. 4.22 illustrates this use-case using four memories. The only difference

compared to horizontal reconstruction is the offset added to the memory request address - it

equals one-fourth of the image width, i.e.

C =
image width

log2(number of memories)
. (4.16)

Sample Index
Memory Address

Memory ID

i-wm3 a-w/4
i-w i+0 i+w i+2wr = 00:lim0 a

i+wm1 a
i+2wm2 a
i+3wm3 a
i+4wm0 a+w/4
i+5wm1 a+w/4
i+6wm2 a+w/4
i+7wm3 a+w/4

w/4[0 0 0 -1]' + [r r r r]'h h h h

w/4[0 0 0 0]' + [r r r r]'h h h h

w/4[1 0 0 0]' + [r r r r]'h h h h

w/4[1 1 0 0]' + [r r r r]'h h h h

i+3wi+0 i+w i+2wr = 01:l

i+3w i+4wi+w i+2wr = 10:l

i+3w i+4w i+5wi+2wr = 11:l

Da
ta

Re
qu

est
In

Ra
ng

e

Figure 4.22. Data retrieval for reconstruction using four vertical input data samples.

The vertical retrieval mechanism can be expressed similarly to Eq. 4.12 by adding offset

constant C:

a = CSvo + rh, (4.17)

Extending to any dimension, the address vector is:

an = CnSnvon + rhn , (4.18)

where C1 = 1 and n is dimension index.

90

Fig. 4.23 illustrates how the combination of vertical and horizontal retrieval mechanisms

generate required addresses for all memories. The only difference here is that we have cho-

sen to omit the offset constant from the offset vector to highlight the relationships between the

combining output address matrix.

Sample Index
Memory Address
Memory ID

i
m00

a
i+1
m01

a
i+2
m02

a
i+3
m03

a

i+w
m10

a i+w+1
m11

a i+w+2
m12

a i+w+3
m13

a

i+2w
m20

a
i+2w+1

m21
a

i+2w+2
m22

a
i+2w+3

m23
a

i+3w
m30

a
i+3w+1

m31
a

i+3w+2
m32

a
i+3w+3

m33
a

i-1
m03
a-1

i+w-1
m13
a-1

i+2w-1
m23
a-1

i+3w-1
m33
a-1

i-w
m30

a-w/4
i-w+1
m31

a-w/4
i-w+2
m32

a-w/4
i-w+3
m33

a-w/4
i-w-1
m33

a-w/4-1

i+w+4
m10
a+1

i+2w+4
m20
a+1

i+3w+4
m30
a+1

i+4w+1
m01

a+w/4
i+4w+2

m02
a+w/4

i+4w+3
m03

a+w/4
i+4w+4

m00
a+w/4+1

 0 0 0 -1

a a a-1
a a a-1

a-w/4 a-w/4 a-w/4-1

a
a

a-w/4

a a a-1a

Ro
w

Of
fse

t V
ect

or 0
0
0
-1

1 0 0 0

a a a
a a a
a a a

a+1
a+1
a+1

a+w/4 a+w/4 a+w/4a+w/4+11
0
0
0

Column Offset Vector

Column Offset Vector

Ro
w

Of
fse

t V
ect

or

Requests

Figure 4.23. Address generation for 4x4 memory matrix.

Finally, this approach can be extended to any number of dimensions. For N dimensions

memory addresses would be expressed as an N -dimensional matrix A ∈ EN , where each ele-

ment is computed by:

Ai1i2···iN =
N∑

n=1

CnSnvoin . (4.19)

Further, the developed mathematical model can be mapped into particular digital circuits.

Fig. 4.24 illustrates the overall data retrieval concept and the organizational structure of the

necessary components. In the overall concept, there is an identical Offset Vector generation

circuit for every dimension, but the Read Access Generation and demultiplexing circuits are

unique for the particular dimensional variants. The inputs for the Offset Vector correspond to

the rl bits of the respective dimension, and Read Access Generation block must be also supplied

with Cn constants, i.e. C1 = 1, C2 = W/log2(N2), C3 = H × W/log2(N3), etc. These

constants are supplied externally to support variable input frame size, e.g. the constants could

be routed from configuration registers as signal slicing replaces the apparent division.

Fig. 4.25 illustrates circuit for the offset vector generation and shifting, i.e. SnVo. The

vector from the Eq. 4.15 is implemented statically, and the rest of the logic ensures the actual

91

Offset
Vector
Dim-1

Offset
Vector
Dim-2

Offset
Vector
Dim-N

Read Access
Generation

Circuitry

Memory Matrix

Demultiplexing
Logic

Const 1

Offset
Vector 1

Const 2

Offset
Vector 2

Const N

Offset
Vector N

Read
Request
Vector(s)

Read
Data

Ordered
Data Towards

Recon-
struction

Offset Vector
Delay

Offset
Vector(s)

Offset
Vector(s)

Simultaneous Writing
of Input Data

Figure 4.24. General address vector computing concept for N -dimensions.

shift operation. Notably, for larger vectors, i.e. higher number of memories, it would be more

efficient to adopt a barrel shifter.

-1
-1
0
0
1
1

N/2-1

N

N/2

[N-1..0]
[N..1]

[2N-1..N-1]

Vector
Slicing

Treelike
Mux

r (0)l

r (1)l

r (log2(N)-1)l

Offset Bit
Vector

[N-1..0]

Figure 4.25. Generic offset vector construction circuit.

The read address generation is more complex and has to be implemented separately for each

number of dimensions; nonetheless, patterns exist assisting such designs. Let’s explore Read

Access Generation logic for two dimensions, as shown in Fig. 4.26. The concept presents an

approach consisting of three parts: computing all possible combinations for offset constants,

computing all possible combinations for a memory address, multiplexing possible memory ad-

dresses to the actual memories. Firstly, the offset constant computation process is singled out

because the constants do not change throughout the transformation, i.e. they must be updated

whenever image dimensions change, meaning there is an opportunity for design optimization,

as only a single adder can generate all the possible constants. Further, in the case of higher

dimensionality, this constant matrix would transform into a constant cube, tesseract, etc. Next,

these constants are added to the ”current” read address, which is an operation that, in this partic-

92

ular case, requires eight adders for a fully pipelined design. At this point, all possible memory

addresses are available, and they are routed accordingly for the memories. Fig. 4.26 illustrates

such routing logic for the first column of the memory matrix. In a case of higher dimensionality,

the routing logic is constructed similarly, but with an additional cascade of multiplexers for the

particular plane of the memory address ”cube”.

address

-const x
-const y -const y const x

-const y

-const x 0 const x

-const x
 const y const y const x

const y

-const x
-const y

+a
-const y

+a
 const x
-const y

+a
-const x

+a a const x
+a

-const x
 const y

+a
const y

+a
const x
const y

+a

-const y

const y

0

-const x const x0

Adder
Cascade

0
1 0

1

0
1 0

1

0
1 0

1

0
1 0

1

OX(0)(0)='0'
OX(0)(1)='0'

OY(0)(1)='0'
OY(0)(0)='0'

OffsetX(0..3)(1..0) => OX
OffsetY(0..3)(1..0) => OY

0
1 0

1

OY(1)(1)='0'
OY(1)(0)='0'

0
1 0

1

OY(2)(1)='0'
OY(2)(0)='0'

0
1 0

1

OY(3)(1)='0'
OY(3)(0)='0'

0
th

 C
o
lu

m
n
 A

d
d
re

ss
e
s

Analogous Mux Logic
for 1st, 2nd, 3rd

Column Addresses

Figure 4.26. Conceptual deisgn of the read access circuitry.

Finally, the readmemory datamust be rearranged for a consistent reconstruction of the output

sample. Fig. 4.27 illustrates such rearrangement logic for one-dimensional case that basically

resembles the opposite action of the multiplexing logic in the offset generation circuit, i.e. Fig.

4.25. In a multi-dimensional case, the same circuit must be implemented for every dimension.

Data from M0
Data from M1
Data from M2
Data from M3

Data M3
Data M0
Data M1
Data M2

Data M0
Data M1
Data M2
Data M3

Data M1
Data M2
Data M3
Data M0

Data M2
Data M3
Data M0
Data M1

00

01

10

11

Data Point 0
Data Point 1
Data Point 2
Data Point 3

Offset Vector Encoder

Towards
Recon-

struction

2

Figure 4.27. Conceptual deisgn data rearangment logic for 1-dimensional use-case.

Different memory access patterns have been examined to develop a general mathematical

model that ensures simultaneous access to N dimensional data, marking the developed method

applicable for the real-time reconstruction of volumetric data. The transformation and especially

93

the reconstruction logic is the most complex part of the designed stereo-vision image pipeline.

The reconstruction method is not discussed further, and the reader is redirected to the work

of Chiew et al. [128] who provide a comprehensive analysis of different image interpolation

methods. The demonstrator system utilizes the nearest neighbour’s reconstruction methods as

the research for simultaneousN -dimensional data access came after the system’s development.

4.3.5 Feature extraction

Feature extraction is one of the most suitable tasks for programmable logic when compared

to other computing paradigms [129]. Nonetheless, feature comparison (pixel matching) in a

fully pipelined application may require many adders, increasing the overall size of the circuit.

Notably, a hardware-efficient option - census transform - has been proposed by Zabih and

Woodfill [130]. Census is a non-parametric transformRT (P) that maps the local neighbourhood

surrounding a pixel P to a bit string representing the set of neighbouring pixels whose intensity

is less than that of P . Let ⊗ denote concatenation, D – a set of displacements and let ξ(P, P ′)

be a transform that is 1 if I(P ′) < I(P), then census transform can be specified as:

RT (P) = ⊗
[i,j]∈D

ξ(P, P + [i, j]). (4.20)

Comparing two census vectors reduces to XOR operations, which makes it suitable for hardware

implementation.

Intensity

Horizontal
Sobel 3x3

Vertical
Sobel 3x3

Census
Transform 5x5

Delay

Delay

Delay

Delay

Vector Formation

I
H
H
V
C
C

C
C

Feature
Vector

Figure 4.28. High-level composition of the implemented feature extractor.

Fig. 4.28 illustrates the feature extractor as implemented by the demonstrator system. The

feature extractor provides four types of features: (1) pixel’s intensity, (2) values of horizontal

94

Sobel filter for adjacent left / right pixels, (3) vertical Sobel filter at the pixel and (4) a cen-

sus transform using 5x5 pixel region. For experimentation, the RTL has been developed using

generics allowing for different feature configurations. Each feature also incorporates variable

delay blocks, whose generation depends on the latency of the respective extraction block. The

extraction itself is done in a fully pipelined manner using the sliding window approach. Finally,

a vector from all the features is formed that further feeds into the correspondence matching

components.

4.3.6 Correspondence calculations

Correspondence matching is the most resource consuming part of the whole stereo-image

processing pipeline, because a fully pipelined implementation requires that all correspondence

descriptor matching is accomplished in parallel. Fig. 4.29 illustrates the overall concept for

simultaneous left-to-right and right-to-left correspondence matching using 128 points. The ex-

tracted feature descriptors are buffered using Serial-In-Parallel-Out (SIPO) buffers and linked

through Feature Comparator blocks. The comparison results are further fed into Correspon-

dence Search Circuits that identify a correspondence with the least amount of ”energy” (oppo-

site of confidence). Notably, a single left image-based correspondence matching would be more

efficient as 127 point descriptors would not be buffered.

127 126 125 124 1 0

127 126 125 124 1 0

Feature
Extractor

Right Image Descriptors

Left Image Descriptors

Feature
Extractor

Feature Comparison

Feature Comparison

Correspondence
Search Circuit

Correspondence
Search Circuit

Energy

Corresp.

Energy

Corresp.

Disparity
Enhancement

/
Left-Right

Consistency
Check

Figure 4.29. Composition of correspondence calculation and matching logic.

The feature descriptor comparison block is illustrated in Fig. 4.30, its goal is to provide a

metric of point similarity, or in this case, dissimilarity. The comparison logic consists of several

comparison blocks for comparing magnitudes of Sobel and intensity values and a block for

95

comparing census vectors, which is a simple bitwise XOR and bit summation. Essentially, the

operations performed in this block are expensive as they should be multiplied with the number

of correspondence matches in consideration, i.e. the demonstrator system considers 128 points.

Intensity

H. Sobel
V. Gradient
Census

Intensity

H. Sobel
V. Gradient
Census

>
0
1

0
1

- X
W

>
0
1

0
1

- X

>
0
1

0
1

- X

Σ X

Σ Energy

0

W1

W2

W3

Feature
Vector From
Left Image

Feature
Vector From
Right Image

Figure 4.30. Feature descriptor comparison logic for a single pixel pair. Note that in the
actual implementation, there are two features based on the horizontal Sobel values.

Fig. 4.31 illustrates the recursive (in terms of the RTL description) correspondence identifi-

cation circuit. It accepts two arrays – correspondence point matching energies (disconfidence)

and correspondence pixel indexes, which map directly to the distance of the correspondence

pixel from the camera. As an output, the circuit produces the disconfidence of the match and

correspondence index, i.e. disparity.

0
1

>

0
1

0
1

>

0
1

0
1

>

0
1

0
1

2
3

126
127

Energy 0
Energy 1

Energy 2
Energy 3

Energy 126
Energy 127

Recursive Correspondence Search Circuit

6
4

 i
n
p

u
ts

0
1

>

0
1

0
1

>

0
1

0
1

>

0
1

3
2

 i
n
p

u
ts

0
1

>

0
1

0
1

>

0
1

0
1

>

0
1

1
6

 i
n
p

u
ts

0
1

>

0
1

0
1

>

0
1

0
1

>

0
1

8
 i
n
p

u
ts

0
1

>

0
1

0
1

>

0
1

0
1

>

0
1

4
 i
n
p

u
ts

0
1

>

0
1

0
1

>

0
1 2

 i
n
p

u
ts

0
1

>

0
1

Disparity

Energy (Uncertainty)

Figure 4.31. Correspondence identification circuit based on a recursive circuit description.

96

4.4 Demonstrator system and results

The demonstrator system has been developed according to the system architecture described

in Section 4.2. Fig. 4.32 illustrates deployed demonstrator that is composed of Bumblebee

BBX3 stereo-vision camera, Terasic’s VEEK-MT Cyclone V heterogeneous SoC development

kit and OpenGL-based host demonstrator. The developed technology targets high computational

performance while having low-power consumption (< 10W) and overall costs. The SoC soft-

ware application ensures image acquisition via PCIe, control of the FPGA accelerator pipeline

and dispatching processed images to PC -based demonstrator via Ethernet. All disparity-related

computations are carried out on FPGA logic (schematic described in Very High Speed Inte-

grated Circuit Hardware Description Language (VHDL)), including an interpolation of Bayer

filter mosaic, correction for barrel distortions, rectification, feature extraction and disparity cal-

culation.

Veek-MT Cyclone V
Development Kit

Bumblebee
Stereo Camera

Firewire
Interface

PCIe Firewire
Adaptor Card

Ethernet
Interface to PC

OpenGL-Based
Visualization

(by PC)

Figure 4.32. A demonstration of the stereo-vision demonstrator in action.

During the development of this thesis, Intel has disclosed an ASIC-based solutions, which

has rapidly concured applications in field of robotics. Nonetheless, considering the sparsity of

97

the computed disparity map, the developed technology already can be used for depth sensing

applications in power-critical systems such as mobile drones (obstacle avoidance) and some

Internet of Things (IoT) use-cases. Fig. 4.33 illustrates the reconstructed 3D point cloud from

the disparity image. While the reconstruction is performed using the OpenGL software, the

necessary computations can be transferred into the digital logic if necessary.

Figure 4.33. Demonstrator image 2D and 3D representations .

While the developed system’s limitation is 16 fps due to the limitations imposed by the

Bumblebee camera, the theoretical calculations (interface and FPGA accelerator throughput)

suggest the maximum performance of at least 70 fps for the 1.4 MP resolution images using 100

MHz signal as the FPGA logic’s clock.

98

5. CONCLUSIONS

This thesis addresses the relationship between computerized perception and increasingly

complex HSoC technologies. In particular, the on-chip hardware and software co-architectures,

implementation of stereo-vision and AI algorithms and associated real-time considerations. The

primary aim of this thesis is to develop and improve computer vision development techniques

and methods for HSoC technology. In order to achieve the set aim, five tasks were defined.

1. Identify methods for complementing RTL and software-based computing paradigms.

This task was accomplished in Section 1 and Subsection 3.1. The literature review acknowl-

edged the SoA in different computing paradigms that were further used to analyze their trade-

offs. Further, this knowledge facilitated the development of architecture based on control by the

MPU and offloading computing tasks to the FPGA. Both computing paradigms utilize memory-

centric communication mechanisms for maximizing the overall throughput of the system.

2. Design heterogeneous architectures and tools for utilizing heterogeneous SoC technol-

ogy. This task was accomplished in Section 3 by developing an FPGA-master based architec-

ture for SoCs running Linux with the accompanying drivers and libraries for coherent contigu-

ous memory management and DMA engine control. Further, an Asymmetric Multiprocessing

(AMP) subsystem has been developed that enables real-time processing in Linux-based systems

by offloading the critical applications to a fully dedicated bare-metal processing core. The de-

veloped solution unites the broad availability of open-source software with real-time control

using a Linux driver interface. The driver ensures the setup of the bare-metal application and its

configuration, AMP core’s control, and it provides means for aggregating real-time performance

characterization using sysfs interface. Finally, software-based system architecture implementa-

tion tools – compage and icom – have been developed. The tools enable the implementation of

blackboard programming patterns for constrained Linux systems by giving the user means of

configuring, replicating and interconnecting different software components, i.e. threads.

3. Design heterogeneous approach to the implementation of image processing pipelines.

This task was accomplished in Subsections 3.1 and 4.2 by establishing a heterogeneous architec-

ture for image processing pipelines using stereo-vision use-case as an example. The developed

architecture utilizes software for image acquisition into coherent memory from a Bumblebee

camera through PCIe, oversees the processing pipeline implemented in the FPGA and handoffs

99

the produced results to the demonstrator system via Ethernet interface. In the developed system,

essentially, all components – software and hardware – execute simultaneously, thus achieving

software + hardware parallelism.

4. Implement and conduct experimental research on the developed tools and algorithms.

This task was accomplished in Section 4. First, an ANN-based solution was implemented in the

FPGA hardware probing the possibility of a fully pipelined design. The developed approach is

accompanied by a software tool for converting FFNN topologies into SIP cores with a stream-

ing or memory-mapped interface. The achieved results not only outperform other solutions

described in the literature but also show the applicability of the developed method for virtual

sensor implementation, i.e. using the electric vehicle torque vectoring use-case as an example.

Further, a range of fully-pipelined accelerators have been designed for the implementation

in digital logic, including deinterleaving of the combined input image streams, demosaicing of

Bayer’s RGB pattern, spatially transforming images to perform lens distortion correction and

rectification, extracting features and computing the correspondence matching challenge. One

of the main contributions is the generalization of the circuit for enabling fully-pipelined access

to adjacent data samples for reconstruction in a memory-conserving way. While the developed

solution is utilized for image processing, i.e. two dimensions, the generalized model enables the

construction of a circuit for any number of dimensions; therefore enabling reconstruction, for

example, of volumetric data. Finally, the developed accelerators were utilized for the develop-

ment of the stereo-vision demonstrator.

5. Draw conclusions about the results of this Thesis. The main conclusion regarding the

stereo-vision algorithm implementation using heterogeneous SoCs is that the unique blend of

software and hardware ensures the feasibility of implementing such image processing pipelines.

Furthermore, the technology achieves that in an energy-efficient way and provides extendability.

The developed approach to image processing in heterogeneous SoC technology can (and is)

applicable to other applications, e.g. processing of large (>50MP) images.

The value of the achieved results is further highlighted by several ongoing and finalized inter-

national research projects. For example, the software architecture implementation frameworks

are being used for the development of AI-based perception system for vehicles (PRYSTINE,

G.A. 783190, AI4CSM, G.A. 101007326) and control software for the control of autonomous

drones (COMP4DRONES, G.A. 826610) while the developed image processing pipeline is

100

reused in the design of infrared image preprocessing algorithms (APPLAUSE, G.A. 826588).

Further, the outcomes of this thesis serve as a basis for an ongoing commercialization activity

(SilHouse, No. KC-PI-2020/12) where a framework is being developed that joins a range of

accelerators and provides a convenient software-based framework for their application to the

industry.

101

.

APPENDICES

102

Appendix 1

Architecture example: NXP i.MX 6Dual/6Quad

Figure A1. Block diagram of NXP’s i.MX 6Dual/6Quad processor system [131].

103

Appendix 2

Architecture example: Intel Cyclone V SoC

Figure A2. Block diagram of Intel’s Cyclone V SoC [88].

104

Appendix 3

FPGA Master-based communication throughput for Cyclone V SoC

8 10 12 14 16 18 20 22 24 26
0

1

2

3

4

5

6

7

8

log2 from size in bytes

S
p

e
e
d

,
G

b
/s

F2H−SDRAM−32b

8 10 12 14 16 18 20 22 24 26
0

5

10

15

log2 from size in bytes

S
p

e
e
d

,
G

b
/s

F2H−SDRAM−64b

8 10 12 14 16 18 20 22 24 26
0

2

4

6

8

10

12

14

16

18

log2 from size in bytes

S
p

e
e
d

,
G

b
/s

F2H−SDRAM−128b

8 10 12 14 16 18 20 22 24 26
0

5

10

15

20

25

log2 from size in bytes

S
p

e
e
d

,
G

b
/s

F2H−SDRAM−256b

125 MHz

115 MHz

105 MHz

95 MHz

85 MHz

75 MHz

65 MHz

55 MHz

45 MHz

35 MHz

25 MHz

Figure A3. Master-based communication throughput measurements for Cyclone V SoC’s data
path Data path: FPGA-SDRAM.

8 10 12 14 16 18 20 22 24 26
0

1

2

3

4

5

6

log2 from size in bytes

S
p

e
e
d

,
G

b
/s

F2H−32b

8 10 12 14 16 18 20 22 24 26
0

2

4

6

8

10

12

log2 from size in bytes

S
p

e
e
d

,
G

b
/s

F2H−64b

8 10 12 14 16 18 20 22 24 26
0

2

4

6

8

10

12

log2 from size in bytes

S
p

e
e
d

,
G

b
/s

F2H−128b

125 MHz

115 MHz

105 MHz

95 MHz

85 MHz

75 MHz

65 MHz

55 MHz

45 MHz

35 MHz

25 MHz

Figure A4. Master-based communication throughput measurements for Cyclone V SoC’s data
path Data path: FPGA-L3-SDRAM.

105

8 10 12 14 16 18 20 22 24 26
0

1

2

3

4

5

6

7

log2 from size in bytes

S
p

e
e
d

,
G

b
/s

F2H−ACP−32b

8 10 12 14 16 18 20 22 24 26
0

1

2

3

4

5

6

7

8

9

log2 from size in bytes

S
p

e
e
d

,
G

b
/s

F2H−ACP−64b

8 10 12 14 16 18 20 22 24 26
0

2

4

6

8

10

12

log2 from size in bytes

S
p

e
e
d

,
G

b
/s

F2H−ACP−128b

125 MHz

115 MHz

105 MHz

95 MHz

85 MHz

75 MHz

65 MHz

55 MHz

45 MHz

35 MHz

25 MHz

Figure A5. Master-based communication throughput measurements for Cyclone V SoC’s data
path Data path: FPGA-L3-ACP-SDRAM.

Table A1. Simultaneous read/write throughput measurement table

Frequency
Scenario,
[MHz]

F2H
-S-32b,[G

bps]

F2H
-S-64b,[G

bps]

F2H
-S-128b,[G

bps]

F2H
-S-256b,[G

bps]

F2H
-L3-S-32b,[G

bps]

F2H
-L3-S-64b,[G

bps]

F2H
-L3-S-128b,[G

bps]

F2H
-L3-A

C
P-32b,[G

bps]

F2H
-L3-A

C
P-64b,[G

bps]

F2H
-L3-A

C
P-128b,[G

bps]

20 1.20 2.41 4.82 9.64 0.85 1.71 3.41 1.28 1.71 3.41

25 1.51 3.01 6.02 12.04 1.07 2.13 4.27 1.60 2.13 4.25

30 1.81 3.61 7.23 14.43 1.28 2.56 5.12 1.92 2.56 4.87

35 2.11 4.22 8.43 16.67 1.49 2.99 5.97 2.24 2.99 5.60

40 2.41 4.82 9.64 18.78 1.71 3.41 6.83 2.56 3.41 6.21

45 2.71 5.42 10.84 20.08 1.92 3.84 7.68 2.88 3.84 6.90

50 3.01 6.02 12.02 20.07 2.13 4.27 8.53 3.20 4.25 7.54

55 3.31 6.62 13.18 20.08 2.35 4.69 9.38 3.52 4.55 8.01

60 3.61 7.23 14.32 20.07 2.56 5.12 10.20 3.84 4.88 8.71

65 3.91 7.83 15.44 20.08 2.77 5.55 10.52 4.14 5.24 8.86

70 4.22 8.43 16.54 20.08 2.99 5.97 10.52 4.39 5.57 9.49

75 4.52 9.02 17.11 20.07 3.20 6.40 10.54 4.60 5.90 10.24

80 4.82 9.62 17.58 20.05 3.41 6.83 10.55 4.86 6.23 10.49

85 5.12 10.16 17.68 20.06 3.63 7.25 10.56 5.14 6.57 10.88

90 5.42 10.72 17.68 20.08 3.84 7.68 10.53 5.40 6.96 11.13

95 5.72 11.31 17.68 20.08 4.05 8.11 10.51 5.61 7.23 10.92

100 6.02 11.89 17.68 20.08 4.27 8.53 10.52 5.88 7.48 11.10

105 6.36 12.53 17.68 20.08 4.50 9.01 10.52 6.17 7.86 10.45

110 6.62 13.00 17.68 20.08 4.69 9.38 10.52 6.39 8.16 11.00

115 6.92 13.59 17.68 20.08 4.91 9.80 10.53 6.64 8.45 11.12

120 7.20 14.11 17.68 20.08 5.05 10.08 10.54 6.80 8.62 11.19

125 7.51 14.64 17.68 20.08 5.05 10.10 10.54 6.90 8.64 11.26

106

Appendix 4

High-level architecture of Xilinx Zynq Ultrascale+ MPSoC

Figure A6. High-level architecture of Xilinx Zynq MPSoC Ultrascale+ SoC [132].

107

Appendix 5

A simplified view of the Avalon Memory Mapped interface.

Table A2. Simplified list of Avalon-Memory Mapped interface.
Signal Width Direction Description

address 1-64 Master->Slave
Signal represents a byte address. (By default,
the interconnect translates the byte
address into a work address)

byteenable
byteenable_n

2,4,8,16,32,
64,128 Master->Slave

Enables one or more specific byte lanes
during transfers on interfaces of width
greater than 8 bits. Each bit corresponds to
a byte in writedata and readdata.

read
read_n 1 Master->Slave Asserted to indicate a read transfer. If present, readdata

is required.

readdata
8,16,32,64,
128,256,
512,1024

Slave->Master Data driven from the slave to the master in response to a
read transfer.

response 2 Slave->Master

An optional signal that carries the response status.
00: OKAY
01: RESERVED
10: SLAVEERROR
11: DECODEERROR

write
write_n 1 Master->Slave Asserted to indicate a write transfer. If present, write-

data is required.

writedata
8,16,32,64,
128,256,
512,1024

Master->Slave Data for write transfers.

lock 1 Master->Slave
Ensures that once a master wins arbitration,
the winning master maintains access
to the slave for multiple transactions.

waitrequest
waitrequest_n 1 Slave->Master Asserted when slave is unable to respond to a read or

write request.
readdatavalid
readdatavalid_n 1 Slave->Master When asserted, indicates that the readdata signal con-

tains valid data.

writeresponsevalid 1 Slave->Master When asserted, the value on the response signal is
a valid write response.

108

Appendix 6

Example of compage framework’s instantiation

#include ”compage.h”

int main(int argc, char *argv[]){
return compage_main(argc, argv);

}

Appendix 7

Example of compage component’s description

/* 1. include compage header file */
#include ”compage.h”

/* 2. define component’s data structure */
typedef struct {

uint32_t a;
float b;
char *c;

} pdata_t;

/* 3. provide default component’s data structure */
pdata_t pdataDefault = {

.a = 3735928559,

.b = 3.14159265,

.c = ”String parameter”;
};

/* 4. describe the component */
void *componentName(void *p){

pdata_t *pdata = (pdata_t*)p;

/* implementation of the component */
}

/* 5. register component and configuration data with the framework */
COMPAGE_REGISTER(componentName, pdataDefault);
COMPAGE_PDATA_ADD_CONFIG(componentName, pdata_t, a);
COMPAGE_PDATA_ADD_CONFIG(componentName, pdata_t, b);
COMPAGE_PDATA_ADD_CONFIG(componentName, pdata_t, c);

109

Appendix 8

Example of compage framework’s configuration file

first instance of the component
[component_0]
handler=componentName
enabled=1
a=0
b=2.7182
c=”Updated string parameter”

another instance of the component
[component_1]
handler=componentName
enabled=1
a=0
b=2.7182
c=”Another updated string parameter ”

3rd instance of the component, but it is disabled
[component_2]
handler=componentName
enabled=0
a=0
b=2.7182
c=”Yet another updated string parameter ”

110

Appendix 9

Abstract example of icom framework’s usage

void *componentPull(void *arg){
/* 1. Initialize communication */
icom_t *icom = icom_initPull(”inproc://push_pull”, PAYLOAD_SIZE, flags);
char *buffer;

/* 2. Communicate and get buffer */
ICOM_DO_AND_FOR_EACH_BUFFER(icom, buffer);

/* 3. do work */

/* Receive buffers - END */
ICOM_FOR_EACH_END;

}

void *componentPush(void *arg){
/* 1. Initialize communication */
icom_t *icom = icom_initPush((char*)arg, PAYLOAD_SIZE, 2, flags);
char *buffer;

/* 2. Get buffer */
ICOM_GET_BUFFER(icom, buffer);

/* 3. do work */

/* 4. Communicate */
ICOM_DO(icom);

}

111

Appendix 10

Performance metrics of the developed FFNN implementation approach
targeting virtual sensor use case, presented by Dendaluce et al.

Table A3. FPGA resource utilization and performance metrics for 8-16-12-8-4 FFNN [8].
Data type: single floating point; Activation function: implemented using LogiCore IP.

(Theoretical throughput is provided for Streaming implementation.)

NN
Data
Type

Act.
Func.

Iter.
Interv.

Resource Utilization
Latency
(μs)

Throughput
(Samples/s)

Absolute
Mean
Error

BRAM DSP Registers LUTs

Tot. % Tot. % Tot. % Tot. %

Fixed
14, 5

LUT
8, 1

32 8 20.79% 14 5.71% 22452 21.1% 8958 16.84% 10.221
σ = 0.03 μs

1.52 M
σ = 0.046 μs 0.0232

σ = 0.014Fixed
14, 5

LUT
8, 1

24 8 20.79% 20 9.09% 22123 20.79% 8881 16.69% 8.067
σ = 0.01 μs

2.02 M
σ = 0.063 μs

Fixed
14, 5

LUT
10, 1

24 10 21.02% 20 9.09% 22369 21.02% 9607 18.06% 8.058
σ = 0.111 μs

2.02 M
σ = 0.063 μs

0.0189
σ = 0.011

112

BIBLIOGRAPHY

1. Moore, G. E. Cramming more components onto integrated circuits, Reprinted from Elec-
tronics, volume 38, number 8, April 19, 1965, pp.114 ff. IEEE Solid-State Circuits Society
Newsletter. - (2006.) - Vol.11. - Nr.3. - 33–35 p. (2006.).

2. Saleh, R. et al. System-on-Chip: Reuse and IntegrationProceedings of the IEEE. - (2006.)
- Vol.94. - Nr.6. - 1050–1069 p. (2006.).

3. Nguyen, H. K., Le-Van, T.-V. & Tran, X.-T. A Survey on Reconfigurable System-on-
Chips REV Journal on Electronics and Communications. - (2018.) - Vol.7. - Nr.3-4. -
74–86 p. (2018.).

4. Gadepally, V. et al. AI Enabling Technologies: A Survey - 2019 arXiv: 1905.03592 [cs.AI].
5. Wan, Z. et al. A Survey of FPGA-Based Robotic Computing IEEE Circuits and Systems

Magazine. - (2021.) - Vol.21. - Nr.2. - 48–74 p. (2021.).
6. Hou, N., Yan, X. & He, F A survey on partitioning models, solution algorithms and algo-

rithm parallelization for hardware/software co-design Des Autom Embed Syst. - (2019.)
- Vol.23 - 57–77 p. (2019.).

7. Novickis, R. & Greitāns, M. FPGA Master based on chip communications architecture
for Cyclone V SoC running Linux// 2018 5th International Conference on Control, De-
cision and Information Technologies (CoDIT). ISSN: 2576-3555 - Apr. 2018. - 403–408
p. doi:10.1109/CoDIT.2018.8394842.

8. Dendaluce Jahnke, M., Cosco, F., Novickis, R., Pérez Rastelli, J. & Gomez-Garay, V.
Efficient Neural Network Implementations on Parallel Embedded Platforms Applied to
Real-Time Torque-Vectoring Optimization Using Predictions for Multi-Motor Electric
Vehicles en Electronics. - (Feb. 2019.) - Vol.8. - Nr.2. - 250 p. ISSN: 2079-9292 (Feb.
2019.).

9. Setka, V., Jezek, O. & Novickis, R. Modular Signal Processing Unit for Motion Control
Applications Based on System-on-Chip with FPGA en// 2019 24th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA). - Zaragoza,
Spain: IEEE, Sept. 2019. - 857–863 p. ISBN: 978-1-72810-303-7 doi:10.1109/ETFA.
2019.8869121 / URL - https://ieeexplore.ieee.org/document/8869121/ (2020).

10. Novickis, R., Justs, D. J., Ozols, K. &Greitāns, M. AnApproach of Feed-Forward Neural
Network Throughput-Optimized Implementation in FPGA Electronics. - (2020.) - Vol.9.
- Nr.12. - 2193 p. (2020.).

11. Novickis, R., Levinskis, A., Kadikis, R., Fescenko, V. & Ozols, K. Functional Archi-
tecture for Autonomous Driving and its Implementation 2020 17th Biennial Baltic Elec-
tronics Conference (BEC). - (2020.) doi:10 .1109/bec49624 .2020 .9276943 / URL -
https://ieeexplore.ieee.org/abstract/document/9276943 (2020.).

12. Druml, N. et al. Programmable Systems for Intelligence in Automobiles (PRYSTINE)
Technical Progress after Year 2 2020 23rd Euromicro Conference on Digital System De-
sign (DSD). - (2020.) doi:10.1109/dsd51259.2020.00065 / URL - https://ieeexplore.
ieee.org/document/9217654 (2020.).

113

http://arxiv.org/abs/1905.03592
http://dx.doi.org/10.1109/CoDIT.2018.8394842
http://dx.doi.org/10.1109/ETFA.2019.8869121
http://dx.doi.org/10.1109/ETFA.2019.8869121
https://ieeexplore.ieee.org/document/8869121/
http://dx.doi.org/10.1109/bec49624.2020.9276943
https://ieeexplore.ieee.org/abstract/document/9276943
http://dx.doi.org/10.1109/dsd51259.2020.00065
https://ieeexplore.ieee.org/document/9217654
https://ieeexplore.ieee.org/document/9217654

13. Druml, N. et al. Programmable Systems for Intelligence in Automobiles (PRYSTINE):
Final results after Year 3// 2021 24th Euromicro Conference on Digital System Design
(DSD). - 2021. - 268–277 p. doi:10.1109/DSD53832.2021.00049.

14. Novickis, R. et al.Development and experimental validation of high performanceembed-
ded intelligence and fail-operational urban surroundperception solutions of the PRYS-
TINE project Applied Sciences. - (2021.) (2021.).

15. Rihards, N., Vlastimil, S.&Kaspars, O.An exploration ofAsynchronousMulti-Processing
for Real-Time Control Systems.. en 2020.

16. Rihards, N. & Justs, D. J. Modular architecture suitable for deployment in real-time sys-
tems.. en 2020.

17. Rihards, N. Simultaneous access of n-dimensional data in digital circuits.. en 2020.
18. Sieg, W. en// Philosophy of Mathematics - 535–630 p. - Elsevier, 2009. ISBN: 978-0-

444-51555-1 doi:10.1016/B978-0-444-51555-1.50017-1 / URL - https://linkinghub.
elsevier.com/retrieve/pii/B9780444515551500171 (2020).

19. Turing, A. M. On Computable Numbers, with an Application to the Entscheidungsprob-
lem en Proc London Math Soc. - (Jan. 1937.) - Vol.s2-42. - Nr.1. Publisher: Oxford Aca-
demic - 230–265 p. ISSN: 0024-6115 (Jan. 1937.).

20. Von Neumann, J. First Draft of a Report on the EDVAC tech. rep. (United States Army
Ordnance Department, Moore School of Electrical Engineering University of Pennsyl-
vania, June 1945).

21. Patt, Y. N. & Patel, S. J. Introduction to computing systems: from bits and Gates to C
and beyond. en OCLC: 145555083 ISBN: 978-0-07-124501-2 - Boston: McGraw-Hill
Higher Education, 2005.

22. Shen, J. P. & Lipasti, M. H. L. Modern processor design: Fundamentals of superscalar
processors. en ISBN: 1-3786-0783-1 978-1-4786-0783-0 - Waveland Press, Inc., 2013.

23. David A. Patterson & John L. Hennessy Computer Organization and Design: the hard-
ware and software interface. ARM edition ISBN: 978-0-12-801733-3 - United States of
America: Elsevier, 2017.

24. Kuon, I., Tessier, R. & Rose, J. FPGA Architecture: Survey and Challenges en Founda-
tions and Trends® in Electronic Design Automation. - (2007.) - Vol.2. - Nr.2. - 135–253
p. ISSN: 1551-3939, 1551-3947 (2007.).

25. Chu, P. P. RTL hardware design using VHDL. ISBN: 9780471720928 doi:10 . 1002 /
0471786411 - John Wiley & Sons, 2006.

26. Nane, R. et al. A Survey and Evaluation of FPGA High-Level Synthesis Tools en IEEE
Transactions onComputer-AidedDesign of IntegratedCircuits and Systems. - (Oct. 2016.)
- Vol.35. - Nr.10. - 1591–1604 p. ISSN: 0278-0070, 1937-4151 (Oct. 2016.).

27. NVIDIA corporation CUDA C++ Programming Guide, Design Guide en (2020.) - 404
p. (2020.).

28. Intel corporation Intel FPGASDK for OpenCL Pro Edition: ProgrammingGuide en (June
2020.) - 231 p. (June 2020.).

114

http://dx.doi.org/10.1109/DSD53832.2021.00049
http://dx.doi.org/10.1016/B978-0-444-51555-1.50017-1
https://linkinghub.elsevier.com/retrieve/pii/B9780444515551500171
https://linkinghub.elsevier.com/retrieve/pii/B9780444515551500171
http://dx.doi.org/10.1002/0471786411
http://dx.doi.org/10.1002/0471786411

29. Demidov, D., Ahnert, K., Rupp, K. & Gottschling, P. Programming CUDA and OpenCL:
A Case Study Using Modern C++ Libraries SIAM J. Sci. Comput.. - (2013.) - Vol.35. -
Nr.5. doi:10.1137/120903683 / URL - https://doi.org/10.1137/120903683 (2013.).

30. Liu, L. et al. A Survey of Coarse-Grained Reconfigurable Architecture and Design: Tax-
onomy, Challenges, and Applications ACM COMPUTING SURVEYS. - (2020.) - Vol.52.
- Nr.6. ISSN: 0360-0300 doi:{10.1145/3357375} (2020.).

31. Kumar, A., Balakrishnan, M, Jain, M. K. & Gangwar, A. Customizing Embedded Pro-
cessors for Specific Applications en - 25 p.

32. Liu, D. Embedded DSP Processor Design: Application Specific Instruction Set Proces-
sors. ISBN: 9780123741233 doi:10.1016/b978-0-12-374123-3.x5001-5 / URL - https:
//www.sciencedirect.com/book/9780123741233/embedded-dsp-processor-design -
Elsevier, 2008.

33. Galetovic, A. Intellectual Property and the history of the semiconductor industry - Uni-
versidad de los Andes, May 2018 / URL - https : / / hooverip2 . org / wp - content /
uploads/What-Patents-Really-Do-Galetovic-051718.pdf (2020).

34. Flynn,M. J. &Luk,W.Computer system design : system-on-chip. ISBN: 9780470643365
/ URL - https : / / www . wiley . com / en - us / Computer + System + Design \ %3A +
System+on+Chip-p-9780470643365 - Wiley, 2011.

35. Intel corporation Avalon® Interface Specifications en (May 2020.) - 70 p. (May 2020.).
36. Robert Love Linux Kernel Development - A thorough guide to the design and implemen-

tation of the Linux kernel. 3rd Edition ISBN: 978-0-672-32946-3 / URL - https://www.
doc- developpement- durable .org/file/Projets - informatiques/cours - &- manuels -
informatiques/Linux/Linux%20Kernel%20Development,%203rd%20Edition.pdf
(2020) - Pearson Education, 2010.

37. Insight Technologies State of Linux in the public cloud for enterprises Solution overview
(Red Hat, 2018) / URL - https://www.redhat.com/cms/managed-files/cl-state-of-
linux-in-public-cloud-for-enterprises-f11154kc-201802-en_0.pdf (2020).

38. Corbet, J., Rubini, A. &Kroah-Hartman, G. Linux Device Drivers. Third - O’Reilly, Dec.
2010.

39. Michal Nazarewicz A deep dive into CMA en (2012.) / URL - https : / / lwn . net /
Articles/486301/ (2012.).

40. Szeliski, R. Multiple view geometry in computer vision. en OCLC: 171123855 ISBN:
978-0-511-18711-7 978-0-511-18618-9 978-0-511-18895-4 978-0-511-18535-9 978-0-
511-18451-2 978-0-511-81168-5 978-1-280-45812-5 / URL - http://dx.doi.org/10.
1017/CBO9780511811685 (2019) - 2004.

41. Szeliski, R. Computer Vision: Algorithms and Applications en (2011.) - 979 p. ISSN:
1868-0941 (2011.).

42. Brown, D. Decentering distortion of lenses Photogramm. Eng.. - (1966.) (1966.).
43. Fitzgibbon, A. Simultaneous linear estimation of multiple view geometry and lens distor-

tion// Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition. CVPR 2001. - Vol.1 - 2001. - I–I p. doi:10.1109/CVPR.2001.
990465.

115

http://dx.doi.org/10.1137/120903683
https://doi.org/10.1137/120903683
http://dx.doi.org/{10.1145/3357375}
http://dx.doi.org/10.1016/b978-0-12-374123-3.x5001-5
https://www.sciencedirect.com/book/9780123741233/embedded-dsp-processor-design
https://www.sciencedirect.com/book/9780123741233/embedded-dsp-processor-design
https://hooverip2.org/wp-content/uploads/What-Patents-Really-Do-Galetovic-051718.pdf
https://hooverip2.org/wp-content/uploads/What-Patents-Really-Do-Galetovic-051718.pdf
https://www.wiley.com/en-us/Computer+System+Design\%3A+System+on+Chip-p-9780470643365
https://www.wiley.com/en-us/Computer+System+Design\%3A+System+on+Chip-p-9780470643365
https://www.doc-developpement-durable.org/file/Projets-informatiques/cours-&-manuels-informatiques/Linux/Linux%20Kernel%20Development,%203rd%20Edition.pdf
https://www.doc-developpement-durable.org/file/Projets-informatiques/cours-&-manuels-informatiques/Linux/Linux%20Kernel%20Development,%203rd%20Edition.pdf
https://www.doc-developpement-durable.org/file/Projets-informatiques/cours-&-manuels-informatiques/Linux/Linux%20Kernel%20Development,%203rd%20Edition.pdf
https://www.redhat.com/cms/managed-files/cl-state-of-linux-in-public-cloud-for-enterprises-f11154kc-201802-en_0.pdf
https://www.redhat.com/cms/managed-files/cl-state-of-linux-in-public-cloud-for-enterprises-f11154kc-201802-en_0.pdf
https://lwn.net/Articles/486301/
https://lwn.net/Articles/486301/
http://dx.doi.org/10.1017/CBO9780511811685
http://dx.doi.org/10.1017/CBO9780511811685
http://dx.doi.org/10.1109/CVPR.2001.990465
http://dx.doi.org/10.1109/CVPR.2001.990465

44. Marr, D. Vision: A Computational Investigation into the Human Representation and Pro-
cessing of Visual Information. en - Nr.2. ISBN: 0-7167-1567 - W. H. Freeman and Com-
pany, 1982.

45. Collins, R. A space-sweep approach to true multi-image matching// Proceedings CVPR
IEEEComputer Society Conference on Computer Vision and Pattern Recognition. - 1996.
- 358–363 p. doi:10.1109/CVPR.1996.517097.

46. Scharstein, D., Szeliski, R. & Zabih, R. A taxonomy and evaluation of dense two-frame
stereo correspondence algorithms// Proceedings IEEE Workshop on Stereo and Multi-
Baseline Vision (SMBV 2001). - Dec. 2001. - 131–140 p. doi:10.1109/SMBV.2001.
988771.

47. Hannah, M. J. Computer Matching of Areas in Stereo Images. PhD thesis (Standford
University, 1974.).

48. Kanade, T. &Okutomi,M. A stereomatching algorithmwith an adaptive window : theory
and experiment en Image Understanding Workshop. - (1994.) - 549–557 p. (1994.).

49. Kumar, M. P. & Torr, P. H. S. Improved Moves for Truncated Convex Models en (2011.)
- 8 p. (2011.).

50. D. Marr, T. P. Cooperative computation of stereo disparity Science. - (1976.) / URL -
http://cbcl.mit.edu/people/poggio/journals/marr-poggio-science-1976.pdf (2020)
(1976.).

51. Prazdny, K. Detection of binocular disparities en Biol. Cybern.. - (June 1985.) - Vol.52. -
Nr.2. - 93–99 p. ISSN: 1432-0770 (June 1985.).

52. Scharstein, D. Matching images by comparing their gradient fields en// Proceedings of
12th International Conference on Pattern Recognition. - Vol.1 - Jerusalem, Israel: IEEE
Comput. Soc. Press, 1994. - 572–575 p. ISBN: 978-0-8186-6265-2 doi:10.1109/ICPR.
1994.576363 / URL - http://ieeexplore.ieee.org/document/576363/ (2020).

53. Black, M. J. & Rangarajan, A. On the unification of line processes, outlier rejection,
and robust statistics with applications in early vision International Journal of Computer
Vision. - (1996.) - Vol.19. - Nr.1. - 57–91 p. (1996.).

54. Scharstein, D. & Szeliski, R. Stereo matching with non-linear diffusion// Proceedings
CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
- 1996. - 343–350 p. doi:10.1109/CVPR.1996.517095.

55. Szeliski, R. & Scharstein, D. Sampling the disparity space image IEEE Transactions
on Pattern Analysis and Machine Intelligence. - (2004.) - Vol.26. - Nr.3. - 419–425 p.
(2004.).

56. Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet classification with deep convo-
lutional neural networks en Communications of the ACM . - (May 2017.) - Vol.60. - Nr.6.
- 84–90 p. ISSN: 00010782 (May 2017.).

57. Liu, W. et al. A survey of deep neural network architectures and their applications en
Neurocomputing. - (Apr. 2017.) - Vol.234 - 11–26 p. ISSN: 09252312 (Apr. 2017.).

58. Soni, D. Spiking Neural Networks, the Next Generation of Machine Learning - Jan. 2018
/ URL - https : / / towardsdatascience . com / spiking - neural - networks - the - next -
generation-of-machine-learning-84e167f4eb2b (2018).

116

http://dx.doi.org/10.1109/CVPR.1996.517097
http://dx.doi.org/10.1109/SMBV.2001.988771
http://dx.doi.org/10.1109/SMBV.2001.988771
http://cbcl.mit.edu/people/poggio/journals/marr-poggio-science-1976.pdf
http://dx.doi.org/10.1109/ICPR.1994.576363
http://dx.doi.org/10.1109/ICPR.1994.576363
http://ieeexplore.ieee.org/document/576363/
http://dx.doi.org/10.1109/CVPR.1996.517095
https://towardsdatascience.com/spiking-neural-networks-the-next-generation-of-machine-learning-84e167f4eb2b
https://towardsdatascience.com/spiking-neural-networks-the-next-generation-of-machine-learning-84e167f4eb2b

59. Qiao, L., Zhao, H., Huang, X., Li, K. & Chen, E. A Structure-Enriched Neural Network
for network embedding EnglishExpert Syst. Appl.. - (Mar. 2019.) - Vol.117WOS:000449892000021
- 300–311 p. ISSN: 0957-4174 (Mar. 2019.).

60. Ince, T., Kiranyaz, S., Eren, L., Askar, M. & Gabbouj, M. Real-Time Motor Fault Detec-
tion by 1-D Convolutional Neural Networks English IEEE Trans. Ind. Electron.. - (Nov.
2016.) - Vol.63. - Nr.11.WOS:000388622100042 - 7067–7075 p. ISSN: 0278-0046 (Nov.
2016.).

61. Kadikis, R. Recurrent neural network based virtual detection line// Tenth International
Conference on Machine Vision (ICMV 2017). - Vol.10696 - International Society for Op-
tics and Photonics, Apr. 2018. - 106961V p. doi:10.1117/12.2309772 / URL - https:
//www.spiedigitallibrary.org/conference- proceedings- of - spie/10696/106961V/
Recurrent-neural-network-based-virtual-detection-line/10.1117/12.2309772.short
(2018).

62. Wu, Y. & Lee, T. Reducing Model Complexity for DNN Based Large-Scale Audio Clas-
sification. EnglishWOS:000446384600066 ISBN: 978-1-5386-4658-8 - NewYork: Ieee,
2018.

63. Haykin, S. Neural Networks: AComprehensive Foundation. 2nd ISBN: 978-0-13-273350-
2 - Upper Saddle River, NJ, USA: Prentice Hall PTR, 1998.

64. Fine, T. L. Feedforward Neural Network Methodology. 1st ISBN: 978-0-387-98745-3 -
Cornell University, Ithaca, NY, USA: Springer-Verlag New York, 1999.

65. Chakradhar, S., Sankaradas, M., Jakkula, V. & Cadambi, S. A dynamically configurable
coprocessor for convolutional neural networks// ACM SIGARCH Computer Architecture
News. - Vol.38 - ACM, 2010. - 247–257 p. / URL - http://dl.acm.org/citation.cfm?
id=1815993 (2017).

66. Suda, N. et al. Throughput-Optimized OpenCL-based FPGAAccelerator for Large-Scale
Convolutional Neural Networks en// Proceedings of the 2016 ACM/SIGDA International
Symposium on Field-Programmable Gate. - ACM Press, 2016. - 16–25 p. ISBN: 978-1-
4503-3856-1 doi:10.1145/2847263.2847276 / URL - http://dl.acm.org/citation.cfm?
doid=2847263.2847276 (2017).

67. Zhang, C. et al. Optimizing fpga-based accelerator design for deep convolutional neu-
ral networks// Proceedings of the 2015 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays. - ACM, 2015. - 161–170 p. / URL - http://dl.acm.org/
citation.cfm?id=2689060 (2017).

68. Foumani, S. N. A. An FPGAAccelerated Method for Training Feed-forward Neural Net-
works Using Alternating Direction Method of Multipliers and LSMR. MA thesis (Impe-
rial College London, Department of Computing, 2020.).

69. Blott, M. et al. FINN-R: An End-to-End Deep-Learning Framework for Fast Exploration
of Quantized Neural Networks ACM Transactions on Reconfigurable Technology and
Systems. - (2018.) doi:10.1145/3242897 (2018.).

70. Guan, Y. et al. FP-DNN: An Automated Framework for Mapping Deep Neural Networks
onto FPGAs with RTL-HLS Hybrid Templates// 2017 IEEE 25th Annual International
Symposium on Field-Programmable Custom Computing Machines (FCCM). ISSN: 978-
1-5386-4038-8 - 2017. doi:10.1109/FCCM.2017.25.

117

http://dx.doi.org/10.1117/12.2309772
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10696/106961V/Recurrent-neural-network-based-virtual-detection-line/10.1117/12.2309772.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10696/106961V/Recurrent-neural-network-based-virtual-detection-line/10.1117/12.2309772.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10696/106961V/Recurrent-neural-network-based-virtual-detection-line/10.1117/12.2309772.short
http://dl.acm.org/citation.cfm?id=1815993
http://dl.acm.org/citation.cfm?id=1815993
http://dx.doi.org/10.1145/2847263.2847276
http://dl.acm.org/citation.cfm?doid=2847263.2847276
http://dl.acm.org/citation.cfm?doid=2847263.2847276
http://dl.acm.org/citation.cfm?id=2689060
http://dl.acm.org/citation.cfm?id=2689060
http://dx.doi.org/10.1145/3242897
http://dx.doi.org/10.1109/FCCM.2017.25

71. Hariprasath, S. & Prabakar, T. N. FPGA implementation of multilayer feed forward neu-
ral network architecture using VHDL// Computing, Communication and Applications
(ICCCA), 2012 International Conference on. - IEEE, 2012. - 1–6 p. / URL - http :
//ieeexplore.ieee.org/abstract/document/6179225/ (2017).

72. Youssef, A., Mohammed, K. & Nasar, A. A Reconfigurable, Generic and Programmable
Feed Forward Neural Network Implementation in FPGA// 2012 UKSim 14th Interna-
tional Conference on Computer Modelling and Simulation. - IEEE, 2012. - 9–13 p. ISBN:
978-1-4673-1366-7 978-0-7695-4682-7 doi:10.1109/UKSim.2012.12 / URL - http:
//ieeexplore.ieee.org/document/6205543/ (2017).

73. Zamanlooy, B. & Mirhassani, M. Efficient VLSI Implementation of Neural Networks
With Hyperbolic Tangent Activation Function IEEE Transactions on Very Large Scale In-
tegration (VLSI) Systems. - (2014.) - Vol.22. - Nr.1. - 39–48 p. ISSN: 1063-8210 (2014.).

74. Yuan Jing, Youssefi, B., Mirhassani, M. & Muscedere, R. An efficient FPGA implemen-
tation of Optical Character Recognition for License Plate Recognition en// 2017 IEEE
30th Canadian Conference on Electrical and Computer Engineering (CCECE). - IEEE,
2017. - 1–4 p. ISBN: 978-1-5090-5538-8 doi:10.1109/CCECE.2017.7946734 / URL -
http://ieeexplore.ieee.org/document/7946734/ (2018).

75. Oliveira, J. G. M., Moreno, R. L., de Oliveira Dutra, O. & Pimenta, T. C. Implementation
of a reconfigurable neural network in FPGA en// 2017 International Caribbean Confer-
ence on Devices, Circuits and Systems (ICCDCS). - Cozumel, Mexico: IEEE, 2017. -
41–44 p. ISBN: 978-1-5386-1962-9 doi:10 . 1109 / ICCDCS . 2017 . 7959699 / URL -
http://ieeexplore.ieee.org/document/7959699/ (2018).

76. Hajduk, Z. Reconfigurable FPGA implementation of neural networks en Neurocomput-
ing. - (2018.) - Vol.308 - 227–234 p. ISSN: 09252312 (2018.).

77. Khan, A., Sohail, A., Zahoora, U. & Qureshi, A. S. A survey of the recent architectures
of deep convolutional neural networks en Artif Intell Rev. - (2020.) - Vol.53. - Nr.8. -
5455–5516 p. ISSN: 1573-7462 (2020.).

78. Shalf, J. & Leland, R. Computing beyond Moore’s Law Computer. - (2015.) - Vol.48 -
14–23 p. (2015.).

79. nRF52832 Product Specification v1.4 Nordic Semiconductors - Oct. 2017 553 / URL -
https://infocenter.nordicsemi.com/pdf/nRF52832_PS_v1.4.pdf.

80. HSA Platform System Architecture Specification http://www.hsafoundation.com/ HSA
foundation - Jan. 2016.

81. Liu, W., Chen, H. &Ma, L. Moving object detection and tracking based on ZYNQ FPGA
and ARM SOC// IET International Radar Conference 2015. - Oct. 2015. - 1–4 p.

82. EETimes EETimes - Why choose Linux for embedded development projects? - Library
Catalog: www.eetimes.com Section: Report - Dec. 2002 / URL - https://www.eetimes.
com/why-choose-linux-for-embedded-development-projects/ (2020).

83. Bailey, D. G. The Advantages and Limitations of High Level Synthesis for FPGA Based
Image Processing//Proceedings of the 9th International Conference onDistributed Smart
Cameras. - ACM New York, NY, USA, Sept. 2015. - 134–139 p.

118

http://ieeexplore.ieee.org/abstract/document/6179225/
http://ieeexplore.ieee.org/abstract/document/6179225/
http://dx.doi.org/10.1109/UKSim.2012.12
http://ieeexplore.ieee.org/document/6205543/
http://ieeexplore.ieee.org/document/6205543/
http://dx.doi.org/10.1109/CCECE.2017.7946734
http://ieeexplore.ieee.org/document/7946734/
http://dx.doi.org/10.1109/ICCDCS.2017.7959699
http://ieeexplore.ieee.org/document/7959699/
https://infocenter.nordicsemi.com/pdf/nRF52832_PS_v1.4.pdf
https://www.eetimes.com/why-choose-linux-for-embedded-development-projects/
https://www.eetimes.com/why-choose-linux-for-embedded-development-projects/

84. Cortes, I., Velez, I. & Irizar, A. High level synthesis using Vivado HLS for Zynq SoC:
Image processing case studies// 2016 Conference on Design of Circuits and Integrated
Systems (DCIS). - Nov. 2016.

85. Sadri, M., Weis, C., Wehn, N. & Benini, L. Energy and Performance Exploration of Ac-
celerator Coherency Port Using Xilinx ZYNQ// FPGAworld ’13 Proceedings of the 10th
FPGAworld Conference. - 2013.

86. Molanes, R. F., Salgado, F., Fariña, J. & Rodríguez-Andina, J. J. Characterization of
FPGA-master ARM communication delays in Cyclone V devices// 41st Annual Confer-
ence of the IEEE Industrial Electronics Society. - 2015. - 4229–4234 p.

87. Vogel, P., Marongiu, A. & Benini, L. An Evaluation of Memory Sharing Performance
for Heterogeneous Embedded SoCs with Many-Core Accelerators// COSMIC ’15 Pro-
ceedings of the 2015 International Workshop on Code Optimisation for Multi and Many
Cores. - 2015.

88. Altera corp. Cyclone V Hard Processor System Technical Reference Manual - Oct. 2016.
89. Embedded Peripherals IP User Guide Intel corp. - Dec. 2016.
90. Avalon Interface Specification Altera corp. - Dec. 2015.
91. AMBA AXI and ACE Protocol Specification AXI3, AXI4, and AXI4-Lite ACE and

ACE-Lite en (2003.) - 306 p. (2003.).
92. Intel corporation Qsys Interconnect en (Aug. 2014.) - 65 p. (Aug. 2014.).
93. Corbet, J., Rubini, A. &Kroah-Hartman, G. Linux Device Drivers. Third - O’Reilly, Dec.

2010.
94. Nazarewicz, M. A deep dive into CMA (Mar. 2012.) https://www.lwn.net/ (Mar. 2012.).
95. Group, E. T. EtherCAT Technology Group | EtherCAT / URL - https://www.ethercat.

org/en/technology.html.
96. Jasperneite, J., Schumacher, M. & Weber, K. Limits of increasing the performance of

Industrial Ethernet protocols// 2007 IEEE Conference on Emerging Technologies and
Factory Automation (EFTA 2007). - 2007. - 17–24 p. doi:10.1109/EFTA.2007.4416748.

97. Šetka, V., Ježek, O. & Novickis, R. Modular Signal Processing Unit for Motion Control
Applications Based on System-on-Chip with FPGA// 2019 24th IEEE International Con-
ference on Emerging Technologies and Factory Automation (ETFA). - 2019. - 857–863
p. doi:10.1109/ETFA.2019.8869121.

98. Sangmin ChonWhat it Takes to do Efficient and Cost-Effective Real-Time Control with a
Single Microcontroller The C2000™Advantage White paper (Texas Instruments, 2011)
/ URL - https://www.ti.com/lit/wp/spry157/spry157.pdf?ts=1637148859226\
&ref_url=https\%253A\%252F\%252Fwww.google.com\%252F (2021).

99. Walls, C. Multicore basics: AMP and SMP - Embedded.com / URL - https://www.
embedded.com/multicore-basics-amp-and-smp.

100. Kim, B. & Choi, M. Design and Analysis of Multiple OS Implementation on a Single
ARM-Based Embedded Platform Sustainability. - (2017.) - Vol.9. - Nr.5. - 684 p. (2017.).

101. ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition en (2000.) -
2736 p. (2000.).

119

https://www.ethercat.org/en/technology.html
https://www.ethercat.org/en/technology.html
http://dx.doi.org/10.1109/EFTA.2007.4416748
http://dx.doi.org/10.1109/ETFA.2019.8869121
https://www.ti.com/lit/wp/spry157/spry157.pdf?ts=1637148859226\&ref_url=https\%253A\%252F\%252Fwww.google.com\%252F
https://www.ti.com/lit/wp/spry157/spry157.pdf?ts=1637148859226\&ref_url=https\%253A\%252F\%252Fwww.google.com\%252F
https://www.embedded.com/multicore-basics-amp-and-smp
https://www.embedded.com/multicore-basics-amp-and-smp

102. Kerrisk, M. Linux Programmer’s Manual. sysfs - a filesystem for exporting kernel objects
Linux - Mar. 2021 / URL - https://man7.org/linux/man-pages/man5/sysfs.5.html.

103. F. Buschmann, K. Henney & D. C. Schmidt Pattern-Oriented Software Architecture Vol-
ume 4: A Pattern Language for Distributed Computing. - Chichester: Wiley, 2007.

104. NVIDIA Corporation NVIDIA GPU Programming Guide en (2005.) - 80 p. (2005.).
105. Stanford Artificial Intelligence Laboratory et al. Robotic Operating System version ROS

Melodic Morenia - / URL - https://www.ros.org.
106. Maruyama, Y., Kato, S. & Azumi, T. Exploring the performance of ROS2// 2016 Inter-

national Conference on Embedded Software (EMSOFT). - Oct. 2016. - 1–10 p. doi:10.
1145/2968478.2968502.

107. Maruyama, Y., Kato, S. & Azumi, T. Exploring the performance of ROS2// 2016 Inter-
national Conference on Embedded Software (EMSOFT). - 2016. - 1–10 p. doi:10.1145/
2968478.2968502.

108. Akgul, F. ZeroMQ. ISBN: 978-1-78216-104-2 - Packt Publishing, 2013.
109. Fu, Y. et al. Deep Learning with INT8 Optimization on Xilinx Devices en (2017.) - 11 p.

(2017.).
110. Dettmers, T. 8-Bit Approximations for Parallelism inDeep Learning en arXiv:1511.04561

[cs]. - (Nov. 2015.) arXiv: 1511.04561 / URL - http://arxiv.org/abs/1511.04561
(2018) (Nov. 2015.).

111. AXI DMA v7.1, LogiCORE IP Product Guide (Apr. 2018.) - 95 p. (Apr. 2018.).
112. Zynq-7000 All Programmable SoC Technical Reference Manual (UG585) en (2016.) -

1863 p. (2016.).
113. Galceran-Oms, M., Cortadella, J. & Kishinevsky, M. Automatic Pipelining of Elastic

Systems. en PhD thesis (UNIVERSITAT POLITÈCNICA DE CATALUNYA DEPAR-
TAMENT DE LLENGUATGES I SISTEMES INFORMÀTICS, June 2011.) - 201 p.

114. Bayer, B. E. US Patent - Nr.US3971065A. (1976).
115. Li, X., Gunturk, B. & Zhang, L. Image demosaicing: a systematic survey en// (eds Pearl-

man, W. A., Woods, J. W. & Lu, L.) - San Jose, CA, Jan. 2008. - 68221J p. doi:10.1117/
12.766768 / URL - http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=
10.1117/12.766768 (2020).

116. Yu, H. & Leeser, M. Automatic Sliding Window Operation Optimization for FPGA-
Based// 2006 14th Annual IEEE Symposium on Field-Programmable Custom Computing
Machines. - 2006. - 76–88 p. doi:10.1109/FCCM.2006.29.

117. Hagara, M., Stojanović, R., Bagala, T., Kubinec, P. & Ondráček, O. Grayscale image
formats for edge detection and for its FPGA implementation Microprocessors and Mi-
crosystems. - (2020.) - Vol.75 - 103056 p. ISSN: 0141-9331 (2020.).

118. Huntsberger, T.&Descalzi,M. Color edge detectionPattern Recognition Letters. - (1985.)
- Vol.3. - Nr.3. - 205–209 p. ISSN: 0167-8655 (1985.).

119. Cook, J. D. Three algorithms for converting to grayscale / URL - https : / / www .
johndcook.com/blog/2009/08/24/algorithms-convert-color-grayscale/.

120

https://man7.org/linux/man-pages/man5/sysfs.5.html
https://www.ros.org
http://dx.doi.org/10.1145/2968478.2968502
http://dx.doi.org/10.1145/2968478.2968502
http://dx.doi.org/10.1145/2968478.2968502
http://dx.doi.org/10.1145/2968478.2968502
http://arxiv.org/abs/1511.04561
http://dx.doi.org/10.1117/12.766768
http://dx.doi.org/10.1117/12.766768
http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.766768
http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.766768
http://dx.doi.org/10.1109/FCCM.2006.29
https://www.johndcook.com/blog/2009/08/24/algorithms-convert-color-grayscale/
https://www.johndcook.com/blog/2009/08/24/algorithms-convert-color-grayscale/

120. Zemčík, P., Přibyl, B., Herout, A. & Seeman, M. Accelerated image resampling for ge-
ometry correction Journal of Real-Time Image Processing. - (2011.) - Vol.8. - Nr.4. -
369–377 p. (2011.).

121. Clapa, J., Blasinski, H., Grabowski, K. & Sekalski, P. A fisheye distortion correction al-
gorithm optimized for hardware implementations 2014 Proceedings of the 21st Interna-
tional Conference Mixed Design of Integrated Circuits and Systems (MIXDES). - (2014.)
doi:10.1109/mixdes.2014.6872232 / URL - https://ieeexplore.ieee.org/document/
6872232 (2014.).

122. Andraka, R. A survey of CORDIC algorithms for FPGA based computers Proceedings
of the 1998 ACM/SIGDA sixth international symposium on Field programmable gate
arrays. - (1998.) doi:10.1145/275107.275139 / URL - https://dl.acm.org/doi/10.
1145/275107.275139 (1998.).

123. Guo, W., Zhang, C. & Zheng, Y. R. Real-Time Image Distortion Correction System
Based on Improved Bilinear Interpolation Algorithm Applied Mechanics and Materials.
- (2014.) - Vol.513-517 - 3773–3776 p. (2014.).

124. Aho, E., Vanne, J., Hämäläinen, T. D. & Kuusilinna, K. Configurable Implementation of
Parallel Memory Based Real-Time Video DownscalerMicroprocess. Microsyst.. - (Aug.
2007.) - Vol.31. - Nr.5. - 283–292 p. ISSN: 0141-9331 (Aug. 2007.).

125. Junger, C., Hess, A., Rosenberger, M. & Notni, G. FPGA-based lens undistortion and im-
age rectification for stereo vision applications Photonics and Education in Measurement
Science 2019. - (2019.) (eds Zagar, B., Rosenberger, M. & Dittrich, P.-G.) doi:10.1117/
12.2530692 / URL - https://www.spiedigitallibrary.org/conference-proceedings-of-
spie/11144/1114416/FPGA-based-lens-undistortion-and-image-rectification-for-
stereo-vision/10.1117/12.2530692.full (2019.).

126. Soderquist, P. & Leeser, M. Division and square root: choosing the right implementation
IEEE Micro. - (1997.) - Vol.17. - Nr.4. - 56–66 p. (1997.).

127. Oberman, S. Floating point division and square root algorithms and implementation in the
AMD-K7/sup TM/ microprocessor// Proceedings 14th IEEE Symposium on Computer
Arithmetic (Cat. No.99CB36336). - 1999. - 106–115 p. doi:10 . 1109 / ARITH . 1999 .
762835.

128. Chiew, W. M., Lin, F. & Soon, S. H. A Novel Embedded Interpolation Algorithm with
Negative Squared Distance for Real-Time Endomicroscopy ACM Transactions on Em-
bedded Computing Systems (TECS). - (2016.) - Vol.15 - 1 –19 p. (2016.).

129. Why is fpga-gpu heterogeneity the best option for embedded deep neural networks?Preprint
- ResearchGate, 2021 / URL - https://www.researchgate.net/publication/348980299_
Why_is_FPGA- GPU_Heterogeneity_the_Best_Option_ for_Embedded_
Deep_Neural_Networks.

130. Zabih, R. & Woodfill, J. Non-parametric local transforms for computing visual corre-
spondence// Computer Vision — ECCV ’94. (ed Eklundh, J.-O.) - Berlin, Heidelberg:
Springer Berlin Heidelberg, 1994. - 151–158 p. ISBN: 978-3-540-48400-4.

131. i.MX 6Dual/6Quad Applications Processors for Consumer Products Rev 6. NXP - Nov.
2018 171 / URL - https : //www.nxp . com/docs/en/reference - manual/ i .MX\
_Reference_Manual_Linux.pdf.

121

http://dx.doi.org/10.1109/mixdes.2014.6872232
https://ieeexplore.ieee.org/document/6872232
https://ieeexplore.ieee.org/document/6872232
http://dx.doi.org/10.1145/275107.275139
https://dl.acm.org/doi/10.1145/275107.275139
https://dl.acm.org/doi/10.1145/275107.275139
http://dx.doi.org/10.1117/12.2530692
http://dx.doi.org/10.1117/12.2530692
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11144/1114416/FPGA-based-lens-undistortion-and-image-rectification-for-stereo-vision/10.1117/12.2530692.full
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11144/1114416/FPGA-based-lens-undistortion-and-image-rectification-for-stereo-vision/10.1117/12.2530692.full
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11144/1114416/FPGA-based-lens-undistortion-and-image-rectification-for-stereo-vision/10.1117/12.2530692.full
http://dx.doi.org/10.1109/ARITH.1999.762835
http://dx.doi.org/10.1109/ARITH.1999.762835
https://www.researchgate.net/publication/348980299_Why_is_FPGA-GPU_Heterogeneity_the_Best_Option_for_Embedded_Deep_Neural_Networks
https://www.researchgate.net/publication/348980299_Why_is_FPGA-GPU_Heterogeneity_the_Best_Option_for_Embedded_Deep_Neural_Networks
https://www.researchgate.net/publication/348980299_Why_is_FPGA-GPU_Heterogeneity_the_Best_Option_for_Embedded_Deep_Neural_Networks
https://www.nxp.com/docs/en/reference-manual/i.MX_Reference_Manual_Linux.pdf
https://www.nxp.com/docs/en/reference-manual/i.MX_Reference_Manual_Linux.pdf

132. Bont, F. d. Zynq UltraScale+ MPSoC for the System Architect nl-NL Library Catalog:
www.core-vision.nl - / URL - https://www.core-vision.nl/events/zynq-ultrascale-
mpsoc-for-the-system-architect-11/ (2020).

122

https://www.core-vision.nl/events/zynq-ultrascale-mpsoc-for-the-system-architect-11/
https://www.core-vision.nl/events/zynq-ultrascale-mpsoc-for-the-system-architect-11/

	ACKNOWLEDGEMENTS
	ABBREVIATIONS
	INTRODUCTION
	TECHNOLOGICAL CONTEXT
	Sequential Processing
	Programmable logic and Field Programmable Gate Arrays
	Other Computational Approaches
	Heterogeneous System on Chip
	Digital interfaces
	Linux operating system

	COMPUTER VISION
	General Projective Camera
	Lens Distortions
	Epipolar Geometry
	Stereo Correspondence
	AI-based algorithms
	Technical Background
	Related work

	HETEROGENEOUS COMPUTING ARCHITECTURES
	Heterogeneous Computing Based on Direct Memory Access
	Approach of Asynchronous Multi-Processing
	Approach to Management of Software Components
	Software component management framework - compage
	Software component communication framework - icom

	ADAPTATION AND IMPLEMENTATION OF COMPUTER VISION ALGORITHMS
	An Approach of Feed-Forward Neural Network Throughput-Optimized Implementation in FPGA
	Design considerations
	Design, implementation and results

	Heterogeneous System Architecture for Stereo Image Processing
	Design of image processing accelerators
	Deinterleaving of the input image stream
	Bayers pattern interpolation and RGB-to-Grayscale conversion
	An approach to spatial image transformation
	Parallel data access scheme for data reconstruction
	Feature extraction
	Correspondence calculations

	Demonstrator system and results

	CONCLUSIONS
	APPENDICES
	Architecture example: NXP i.MX 6Dual/6Quad
	Architecture example: Intel Cyclone V SoC
	FPGA Master-based communication throughput for Cyclone V SoC
	High-level architecture of Xilinx Zynq Ultrascale+ MPSoC
	A simplified view of the Avalon Memory Mapped interface.
	Example of compage framework's instantiation
	Example of compage component's description
	Example of compage framework's configuration file
	Abstract example of icom framework's usage
	Performance metrics of the developed FFNN implementation approach targeting virtual sensor use case, presented by Dendaluce et al.

	BIBLIOGRAPHY

