

ABSTRACTS

STEREOSELECTIVE ALKENE FUNCTIONALIZATIONS

BEILSTEIN
ORGANIC CHEMISTRY
SYMPOSIUM 2022

APRIL 26-28, 2022 RUEDESHEIM / GERMANY

POSTER OVERVIEW

No. 1	Stereoselective Diels-Alder-reactions of 2-methylfuran with maleic acid derivatives as key steps for preparing bio-based plasticizer molecules Bastian Altemeier / Bielefeld University
No. 2	Stereoselective synthesis of N-alkenyl compounds from azidofluoroalkanes Petr Beier / Czech Academy of Sciences
No. 3	Synthesis of highly functionalized alkenes from propargyl silanes via 1,2-silyl migration Rūdolfs Belaunieks / Riga Technical University
No. 4	Asymmetric aza-Wacker reactions driven by organo-π-acid catalysis Sebastian Graf / University of Regensburg
No. 5	Brønsted acid-catalysed enantioselective iodocycloetherification enabled by triphenylphosphine selenide cocatalyst Sudip Guria / Vrije Universiteit Brussel
No. 6	Boron- and indium-Lewis acid catalysed transfer-hydrogenation and regiodivergent hydrodeuteration of alkenes Gerhard Hilt / University of Oldenburg
No. 7	The electrochemical 200% current efficient <i>trans</i> -bromination and the <i>cis</i> -chlorination of alkenes Gerhard Hilt / University of Oldenburg
No. 8	Bimetallic catalysis with 2-phosphinoimidazole-derived Pd-Pd and Rh-Rh complexes David Michaelis / Brigham Young University
No. 9	Enantio- and regioselective lactonizations enabled by asymmetric photo- aerobic selenium-π-Acid catalysis Christopher Schöll / University of Regensburg
No. 10	Utilising frustrated Lewis pairs for alkene and alkyne functionalisation reactions Katarina Stefkova / Cardiff University
No. 11	Carbon dioxide enhances sulfur-selective conjugate addition reactions Yang Yang / University of Copenhagen

- Royal Cont	
Poster	Synthesis of highly functionalized alkenes from propargyl silanes via 1,2-silyl migration
No. 3	Rūdolfs Beļaunieks, Mikus Puriņš, Rasma Kroņkalne, Rebeka Anna Līpiņa, Artem Ubaidullaev and Māris Turks
	Institute of Technology of Organic Chemistry, Riga Technical University, Latvia

Stabilizing properties of β -silicon effect has been known to increase the rate of the reactions for unsaturated systems that proceed via the formation of β -silyl carbenium ion. The effect can be achieved by either vertical (hyperconjugation) or non-vertical (formation of cyclic silonium ion) stabilization. The formation of the latter in the combination with other stabilizing effects can lead the reactions to proceed via 1,2-silyl migration^[1]. Recently, we have reported the use of Brønsted acids as the catalyst for the synthesis of silyldienes and indenes from propargylsilanes^[2,3].

Herein, we report the synthesis of highly functionalized alkenes by the activation of propargylsilane with various electrophyles like Br^+ , I^+ , $PhSe^+$ and *in situ* generated Cu^{3+} . The obtained allyl cation then reacts with various external or internal nucleophiles to obtain alkenes or with bases to obtain dienes. Functionalized alkenes **E** possess both vinyl halide moiety (El = halogen) and allyl ester moiety (Nu = OAc) and as such are prearranged for the cross-coupling chemistry, which further increases the molecular complexity. Our findings on synthesis and further transformations of products **D** and **E** will be reported in detail.

[1] R. Belaunieks, M. Puriņš, M. Turks, Synthesis, 2020, 52, 2147

[2] M. Puriņš, A. Mishnev, M. Turks, J. Org. Chem., 2019, 84, 3595

[3] R. Belaunieks, M. Puriņš, V. Kumpiņš, M. Turks, Chem. Heterocycl. Compd., 2021. 57, 20