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Abstract: Mullite and mullite–alumina ceramics materials with dominance of the mullite phase are
used in different areas of technology and materials science. Porous mullite ceramics materials can be
used simultaneously as refractory heat insulators and also as materials for constructional elements.
The purpose of this work was to investigate the WO3 nanoparticle influence on the evolution of the
aluminum tungstate and zircon crystalline phases in mullite ceramics due to stabilization effects
caused by different microsize ZrO2 and WO3. The use of nano-WO3 prevented the dissociation
of zircon in the ceramic samples with magnesia-stabilized zirconia (MSZ), increased porosity by
approximately 60 ± 1%, increased the intensity of the aluminum tungstate phase, decreased bulk
density by approximately 1.32 ± 0.01 g/cm3, and increased thermal shock resistance by ensuring a
loss of less than 5% of the elastic modulus after 10 cycles of thermal shock.

Keywords: mullite; aluminum tungstate; zircon; porous ceramic; tungsten oxide; zirconia

1. Introduction

The relevance of new investigations in mullite ceramic synthesis and modification,
as well as of new areas of mullite ceramics application, has been going on for 10 years.
The popularity of research on mullite ceramics has increased significantly over the past
4 years (from 2019 to 2022); the increased number of published research articles confirms
that. Moreover, mullite ceramics are actively being studied as high-temperature filters and
thermal insulation materials [1,2]. Such thermal insulation mullite ceramic can be used to
prevent heat losses and heat release to the environment, as well as to avoid damage caused
by contact with high-temperature objects [2–7].

Improving the thermal insulation properties and thermal stability of mullite ceram-
ics can be observed by increasing such material’s porosity, modifying by the addition of
mullite whiskers [8,9] or by in situ formed mullite whiskers [10,11], or with nanosized
oxides [12–14]. The pores’ morphology and size have important significance for refractory
castables’ thermal properties. Ceramic structure, crystal morphology, and pore size can be
changed by ceramic modification with nanoparticles [12,15]. The high specific surface area
of nanometer size components increases the reactivity of particles and, as a result, the tem-
perature required to start the sintering process will be decreased. The addition of nanosized
oxides to refractory ceramics has an impact on the material’s properties. Research work
has adopted nanosized TiO2, ZrO2, and MgO as sintering additives for technical ceramic
modification [16]. Therefore, previous work has shown that nano-TiO2 could enhance the
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mechanical properties, for example, of high-alumina castables [17], yttria-stabilized zirco-
nia (3YSZ) ceramics [18], and zirconia/alumina ceramics [19]. Esmaili et al. [20] reported
that the addition of nano-TiO2 promotes mullitization, increases sintering, and improves
the mechanical properties of porcelains. In the case of MgO–CaO refractory ceramic, the
addition of nano-ZrO2 improves densification and resistance to hydration [21]. Gogtas
et al. reported that nano-yttria-stabilized zirconia and nano-ZrO2 particles [22] improve
the toughness of Al2O3-based matrices. There is growing interest in the use of oxides, such
as WO3, to change the properties of technical ceramic. Due to such properties as catalytic
activity [23], the existence of amorphous, mesosized, and nanosized porous structures,
abundant quantity on earth, and nontoxic nature, WO3 has found wide application in the
different fields of technical ceramics. Micro- and nanosize powder WO3 can be applied as
ceramics for functional materials, capacitors, and varistors; special ceramic membranes
for photocatalytic processes; ceramics for gas detection; special ceramic films; and thermo-
electric ceramics for high-temperature applications [24–27]. Paul et al. investigated highly
dispersed silver nanoparticles on tungsten oxide nanorods for photoelectrocatalytic CO2
reduction under visible light irradiation [28] and as effective catalysts of benzyl alcohol
dehydrogenation [29]. The influence of WO3 on refractory porous mullite ceramic has
been little studied. Our previous investigations confirmed that micro-WO3 application as a
mullite doping additive accelerates the process of mullitization, which allows for decreas-
ing the sintering temperature of mullite ceramic [30]. The scientific interest in research is
caused by the lack of detailed studies on the influence of nano-WO3 on mullite ceramics’
functional properties.

The novelty of this study lies in the use of nano-WO3 in combination with micro-ZrO2
and micro-WO3 and the investigation of the mullitization improvement in porous mullite
ceramic. An increase in thermal shock resistance and the formation of phases with a low or
negative coefficient of linear thermal expansion allow for the use of such ceramics both at
elevated and sharply changing temperatures.

2. Raw Materials and Testing Methods
2.1. Raw Materials

Two different Nabalox aluminas—α-Al2O3 with an average particle size of 2 µm
and γ-Al2O3 with d50 = 80 µm were purchased from Nabaltec AG of Germany. MEKA
kaolin (d50 = 1.5 µm; SiO2—56.5 wt%, Al2O3—31.0 wt%) was supplied by the German
company Amberger Kaolinwerke. Zirconia stabilized with 2.8 mol% of magnesia with an
average particle size of 0.8 µm was purchased from Goodfellow, United Kingdom. Zirconia
stabilized with 8 mol% of yttria with d50 = 0.5 µm, SiO2 amorphous with d50 = 3–5 µm,
micro-WO3 with d50 = 5 µm, and nano-WO3 with d50 = 50 nm were supplied by GetNano-
Materials, France. Aluminum paste Aquapor-9008 with 70 ± 2% content of solid part
and with d50 = 12 µm was acquired from German Schlenk Metallic Pigments GmbH. It is
well known that a reduction in the raw component particle size promotes the sintering of
ceramics due to increased contacting particle surface area. The purpose of choosing micro-
and nanosized WO3 was to study the potential influence of the reduction in particle size,
from micro- to nanosize, on the properties of the obtained ceramics.

2.2. Material Proportions

The base of the all mullite ceramics samples was prepared from 2 types of aluminas:
alpha and gamma, kaolin, and amorphous SiO2. In order to meet mullite stoichiometry,
Al2O3 and SiO2 were set at a 2.57:1 ratio. The total amount of Al2O3 consisted of 3

4 γ-Al2O3

and 1
4 α-Al2O3. Kaolin was used at 30 wt%. Different microsized ZrO2 sources, such as

yttria-stabilized zirconia (8 mol% Y2O3—YSZ) and magnesia-stabilized zirconia (2.8 mol%
MgO—MSZ), were used in a mixture with microsized WO3 for ceramic modifications. The
ratios of the different stabilized microsized zirconia and microsized tungsten oxide were
1:1 and 1:2 of wt%. Nanosized WO3 was used at 1 wt% in all compositions. The A1 and
A2 samples were the compositions with microsized yttria-stabilized zirconia and tungsten
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trioxide, respectively, in a 1:1 ratio plus nano-WO3 and 1:2 plus nano-WO3. The A3 and A4
samples were the compositions with microsized MSZ and microsized WO3, respectively, in
a 1:1 ratio plus nano-WO3 and 1:2 plus nano-WO3.

2.3. Sample Preparation Method

Ceramics samples were prepared by slip casting of the concentrated raw materials
slurry. The distilled water percentage was approximately 40 ± 2 wt%. A suspension of
aluminum paste with water was added into the raw materials slurry for pore forming
purposes and then mixed for approximately 10 min. Kaolin as a binder and uniform mixing
using a laboratory mixer allows for obtaining a uniform distribution of all components in
the final slurry and prevents sedimentation of particles. The prepared raw material slurries
were slip casted into molds. The pores of the investigated mullite ceramics were obtained
due to the H2 evolution that was formed due to the reaction between the Al paste and H2O.
The samples were solidified at room temperature and dried at 100 ◦C for 24 h. The samples
were synthesized at 1600 ◦C with a heating rate of 4.2 ◦C/min and with holding at Tmax for
1 h. The fired samples’ cooling rate was the same as the rate of heating. The chosen heating
rate was “industry average”—it was specifically chosen as a compromise between a slow
heating rate and thus increased production costs and a fast heating rate, which, although
being economically favorable, may be detrimental to product quality.

2.4. X-ray Diffraction Analysis

The crystalline phases of the sintered ceramics materials were analyzed using X-ray
diffraction equipment BRUKER D8 Advance with a sealed ceramic copper X-ray tube,
40 kV voltage on copper anode, 40 mA of current intensity, detector 0d Sol-x, 0.1 mm of
receiving slit, 0.6 mm of divergence slit, range of the measurement angle 10–80 2θ◦, step
scan mode, step size 0.008 2θ◦, and time per step 6 s.

2.5. Scanning Electron Microscopy

The microstructures of the sintered samples were investigated using two scanning
electron microscopes. The first was a Hitachi TM3000—TableTop SEM from Tokyo, Japan
with an electron beam energy of 5 keV and 15 keV. The second high-resolution SEM was
an FEI Nova NanoSEM 650 (Eindhoven, The Netherlands) with an electron beam energy
of 10 keV. The low vacuum mode was used for microstructure observation; therefore,
metal sputtering was not used. Energy dispersive mapping analysis was performed for
certain samples.

2.6. Apparent Porosity

Archimedes’ principle and mathematical calculations were used for apparent porosity
determination after soaking the samples in distilled water, respectively, based on European
standard EN 623-2 [31]. The value of the apparent porosity P was calculated by Equation (1),
and the value of water uptake W was calculated by Equation (2):

P = ((m3 − m1)/(m3 − m2)) × 100, (1)

W = ((m3 − m1)/m1) × 100, (2)

where m1 is the mass of the sample in the dry state, m2 is the apparent mass of the immersed
sample, and m3 is the mass of the soaked sample.

2.7. Mercury Porosimetry

The distributions by pore size of the porous mullite ceramics were analyzed using
mercury intrusion porosimetry with a US Quantachrome, Pore Master 33. Hg porosimetry
allows for the determination of the pore size in the range of 0.1–1000 µm. The pore size
determined by Hg porosimetry is related to the range of pressures to be used. The possible
detectable pore diameter is inversely proportional to the pressure. Low-pressure mercury
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porosimetry determines macropores with pore diameters of 14–200 µm but in a vacuum at
360–950 µm. At first, mercury enters the larger pores, and then, as the total pressure slowly
increases, it squeezes into the smaller pores. The pore shape affects the overall pore size
distribution graph [32]. In practice, it is assumed that the pores have a cylindrical shape,
which is characterized by the modified Jung–Laplace or Washburn Equation (3):

∆P =
2γ cos θ

rpora
(3)

where—pressure change when mercury enters the pore, N/m2, Pa;

rpore—corresponding pore radius, µm;
γ—surface tension of mercury, N/m;
θ—wetting angle between the solid surface of the material and mercury.

2.8. Thermal Shock Resistance Testing

The thermal shock resistance tests provided a measure of the ability of the ceramic
materials to withstand several cycles of thermal stresses when subjected to rapid changes
in temperature. Resistance to the rapid change in temperature by the scheme from 20 to
1000 ◦C with exposure for one hour at this temperature and with the subsequent sharp
cooling at 20 ◦C was determined during 10 such cycles.

2.9. E Modulus Measurement

The value of the E modulus was determined before and after the first, second, third,
fifth, and tenth thermal shock tests using an acoustic impulse excitation method with
Buzz-O-Sonic 5.0 equipment from BuzzMac International, LLC, Portland, ME, USA. This
method is nondestructive and allows for the use of the same samples for all thermal shock
cycles. The operating principle of the Buzz-O-Sonic system is based on the excitation of
elastic oscillations with an impulse in the material; the created sound is perceived with a
microphone connected to a computer. The acoustic system analyzes sound using the fast
Fourier transform algorithm. This acoustic signal contains the sample’s natural frequencies
of vibration, which are proportional to the elastic (Young’s) modulus, calculated with
Buzz-O-Sonic 5.0 software according to classical beam theory [33].

3. Results and Discussion
3.1. Crystalline Phase Compositions

The X-ray diffraction analysis patterns of the sintered ceramics materials are displayed
in Figures 1 and 2. The use of micro- and nano-WO3 had an influence on the phase
composition of the modified porous mullite ceramic. The main crystalline phase of the
sintered samples corresponds to mullite (Figure 1). The phase of corundum is slightly
observed for the A1 samples (Figure 1a). The mullite ceramic samples with YSZ (A1 and A2)
contained monoclinic ZrO2 (Figure 1a,b). The samples with magnesia-stabilized zirconia
(A3 and A4) additionally contained the zircon phase, but the intensity of monoclinic
tetragonal ZrO2 greatly decreased (Figure 1b,c). The formation of zircon could be explained
by the reaction of amorphous SiO2 and ZrO2 in an equimolar ratio at a temperature of
1200 ◦C [34,35]. Porous mullite ceramic A1 and A2 samples do not contain the zircon
phase due to its dissociation with mullite phase formation after forming a liquid phase
in the Y2O3–Al2O3–SiO2 system at 1550 ◦C [36,37]. The addition of nano-WO3 did not
affect zircon formation in the cases of the A1 and A2 samples. The use of nano-WO3 in
compositions with magnesia-stabilized zirconia and microsize WO3 in 1:1 and 1:2 ratios,
respectively, caused the formation of a zircon phase due to preventing zircon dissipation in
the MgO–Al2O3–SiO2 system in possibly emerging liquid at 1450–1550 ◦C, as in the case of
the Y2O3–Al2O3–SiO2 system.
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Figure 2 displays the X-ray diffraction patterns from 10◦ 2θ to 35◦ 2θ of the prepared
ceramics. It can be seen that, as expected, all samples have crystalline as well as amorphous
phases. The A1 ceramic samples from the composition of the YSZ and WO3 mixture in
a 1:1 ratio and nano-WO3 have additional phases as orthorhombic and hexagonal WO3
(Figure 2a) [38–40]. The A2 samples have orthorhombic and monoclinic WO3 (Figure 2b).
Figure 2c shows that in the case of the A3 samples, the diffraction peaks correspond to
the planes of (002), (200), (020), (120), (022), and (202), proving the monoclinic phase of
tungsten trioxide. It is also possible that a slight presence of the aluminum tungstate phase
is presented in these samples, because some intensity peaks of Al2(WO4)3 and WO3 overlap
each other. The XRD patterns of the A4 sample (Figure 2d) show the presence of Al2(WO4)3.
The separate diffraction peaks in the 2θ◦ range from 14◦ to 26◦, at 30.5◦, 31.5◦, 34◦, and 35◦

correspond to the aluminum tungstate phase [41,42].

3.2. Macrostructure and Microstructure

Figure 3 shows the macrostructure and microstructure of the A1 samples. The A1
samples consist of densely packed mullite crystals. In turn, between the mullite crystals,
there is a glassy phase containing WO3 that confirms the EDS point analysis in Table 1.
Such a glassy phase is uniformly distributed at the structure and displays as lighter parts
on the SEM micrographs in Figure 3a,b.
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Figure 3. Micrographs of the sintered A1 samples’ microstructure with SEM.

The structure of the porous mullite ceramic samples with a mixture of YSZ and
tungsten trioxide in a 1:2 ratio and nano-WO3 additive (A2 sample, Figure 4) is more loose
than the structure of the A1 sample. The glassy phase containing different WO3 is also
shown as white particles and areas on the SEM micrographs.
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Table 1. Elemental composition with EDX point analysis of the A1 sample.

EDS Spot 1 EDS Spot 2 EDS Spot 3

Elements wt% Atomic% wt% Atomic% wt% Atomic%

O K 42.4 65.9 38.5 70.4 47.3 70.7
AlK 23.5 21.7 18.8 20.4 20.6 18.3
SiK 9.5 8.4 3.9 1.3 8.4 7.2

W M 19.7 2.7 34.0 5.4 19.4 2.5
Y L 3.3 0.9 3.3 1.1 2.7 0.7
ZrL 1.6 0.4 1.5 1.4 1.6 0.6
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Figure 5 shows the evenly distributed agglomerates of monoclinic WO3 in the structure,
seen as white areas on the SEM of the A3 sample. The faceted zircon crystals can be visible
at higher SEM magnification, as shown in Figure 5d.

SEM and mapping EDS analysis were performed for the porous mullite ceramic A4 samples,
the raw material compositions of which contained a mixture of magnesia-stabilized zirconia and
tungsten trioxide in a 1:2 ratio and nano-WO3 additive (Figures 6 and 7). Figure 6a,b show the
white phase that according to XRD analysis corresponds to aluminum tungstate. Its presence is
clearly observed in many areas, as determined by EDS analysis (Figure 7).

The SEM and mapping EDS analysis in Figure 7 allow for the designation of two types of
mullite crystals that differ in size and aspect ratio. Two areas define the mullite crystals after the
EDX results: the A and C phases (red and blue colors, respectively). The A4 samples’ structure
is formed as thick long acicular crystals as well as thin elongated needle-shaped mullite crystals.
The C phase corresponds to larger mullite crystals, but the A phase corresponds to thinner
mullite crystals after EDX mapping results (Table 2). The width to length ratio of the thick
mullite crystals is in the 15–22:1 interval. The needle-like thin mullite crystals are showing an
aspect ratio of approximately 11:1 (with a length of 0.5–1.5 µm and a width of 0.1–0.2 µm).
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micrograph corresponds to the SEM micrograph in Figure 6c.

Table 2. Elemental composition with EDX analysis of the A4 sample.

Phase A Phase B Phase C Phase D

Elements wt% Atomic% wt% Atomic% wt% Atomic% wt% Atomic%

O K 33.6 46.9 43.3 67.9 48.5 62.8 44.0 61.9
AlK 49.0 40.5 13.0 12.2 34.8 26.7 24.6 20.4
SiK 15.6 12.4 13.7 12.2 13.6 10.0 20.3 16.2

W M 1.8 0.2 3.8 0.5 2.6 0.3 10.3 1.3
ZrL 0 0 26.2 7.2 0.5 0.2 0.8 0.2

Figure 7 shows that phase B (green color) takes a lower percentage place among
the other phases. Phase B corresponds to the phase of zircon according to the elemental
composition by EDX analysis of the A4 sample. The EDX mapping and Table 2 show that
the D phase (yellow color) has a high weight percentage of such chemical elements as O,
Al, Si, and W but a low weight percentage of zirconium, which can confirm the aluminum
tungstate crystalline phase, as well as the aluminum tungstate glassy phase in these areas.
In turn, the elemental composition of the A4 sample (Figure 8) shows that the W element is
evenly distributed in the sample structure, in contrast to the distribution of the Zr element.
By comparing the XRD results and EDX of the A4 sample, it can be concluded that the
aluminum tungstate phase is evenly distributed in the structure of these samples.
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The SEM results reveal that the morphologies of the microstructures of the A1 and A3
samples present significant similarities due to the amorphous phase between the mullite
crystals. In turn, the amorphous phase is not observed between the mullite crystals in the
A2 and A4 samples.

3.3. Bulk Density and Change in Samples’ Dimensions

The bulk density and percent change in the samples’ dimensions after sintering or
sample shrinkage are shown in Figure 9. The A1 sample that was modified with a mixture
of yttria-stabilized zirconia and tungsten trioxide in a 1:1 ratio plus nano-WO3 has a higher
bulk density of approximately 1.60 ± 0.05 g/cm3. The other samples, A2, A3, and A4, have
a bulk density of approximately 1.25 ± 0.05 g/cm3. The A1 sample has a more densely
packed structure due to the presence of an amorphous phase around the mullite crystals.
The A1 and A2 samples from the compositions with YSZ and WO3, respectively, in a 1:1
ratio and 1:2 plus nano-WO3 have higher shrinkage than the A3 and A4 samples from
the compositions with MSZ and WO3, respectively, in a 1:1 ratio and 1:2 plus nano-WO3.
The usage of YSZ increased the shrinkage of the samples by ≈10% in comparison with the
samples with MSZ due to the formation of a liquid phase in the Y2O3–Al2O3–SiO2 system.
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3.4. Apparent Porosity, Water Uptake, and Pore Sizes

The apparent porosity of the sintered samples is shown in Figure 10. The A1 sample
with the higher bulk density has a smaller apparent porosity of approximately 40 ± 2%
and water uptake of approximately 25 ± 1%. This is due to the YSZ (8 mol% Y2O3), which
influenced the formation of a liquid phase that decreased the porosity. Doubling of WO3
prevents liquid formation in the system of Y2O3–WO3, as well as in samples with magnesia-
stabilized zirconia. The samples of A2, A3, and A4 have porosity higher than 63 ± 1% and
water uptake of approximately 40 ± 1%.
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Figure 11 shows the pore size distribution after mercury intrusion porosimetry. One
or two ranges of pore size distributions are observed in the investigated ceramics. In
comparison with the other samples, the A1 sample has one narrow range of pore size
distributions of approximately 2−15 µm, with pronouncing of pores of 8 µm size. It can be
assumed that due to the composition, the formed amorphous phase partially filled pores
larger than 15 microns, and thus only pores in a smaller size range remained. The other
samples, A2, A3, and A4, have two ranges of pore size distributions. These ranges are
from 2 µm to 15 µm and from 15 µm to 1000 µm. The most pronounced pore sizes in these
samples are approximately 5−7 µm and 100−200 µm.
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3.5. Resistance to Thermal Shock

The relative changes in the E modulus of the sintered samples after the thermal shock
tests (10 cycles) are shown in Figure 12. All samples have high stability from the first to
the fifth cycle of the rapid temperature change by the scheme from 20 ◦C to 1000 ◦C and
back to 20 ◦C with holding for one hour at a temperature of 1000 ◦C. In this case, the elastic
modulus losses do not exceed 5%, which is a high rate. The thermal shock resistance for
each sample depends on individual factors. The A1 and A4 samples have a small relative
change in the E modulus after the testing of 10 thermal shock cycles, which is less than 5%.
In the case of the A1 sample, the positive influence lies in the presence of evenly distributed
pores, with a range of pore size distributions from 2 µm to 15 µm and a phase composition
of mullite and monoclinic ZrO2, which prevents the formation and growth of cracks.

The A2, A3, and A4 samples have two distinct arrays of pore sizes of relatively
small (2–15 µm) and larger (15–1000 µm) size. The values of the E modulus of the A2
and A3 samples decreased significantly after the 10th cycle and, respectively, are 20%
and 15% due to the preservation of WO3 with high LTEC and critical crack growth in
the process of the 10th cycle. The A4 samples can better resist the sudden change in
temperature due to the crystallinity structure and phase compositions from mullite, zircon,
and aluminum tungstate. Mullite and zircon have low thermal expansion, respectively,
from 4.0 to 5.9·10−6·◦K−1 [43] and 4.1·10−6·◦K−1 [44] between temperatures of 30 ◦C and
1000 ◦C, and aluminum tungstate has a negative thermal expansion of −1.5·10−6·◦K−1 in
the temperature diapason of 25−850 ◦C [45], which prevents thermal stress formation at
the time of the thermal shock.
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4. Conclusions

The influence of porous mullite ceramic modification with differently stabilized micro-
sized ZrO2 and WO3, as well as with nanosized WO3, on the different properties of highly
porous mullite ceramic materials was investigated. The use of kaolin as a binder, as well as
the mixing of the initial raw materials with a technical mixer and raw material suspension
slip casting, make it possible to obtain a uniform distribution of raw materials, including
nanosized ones. In combination with these oxide compositions, the addition of a small
percentage of nano-WO3 had an effect on the formation of aluminum tungstate with nega-
tive LTEC and zircon with low LTEC. The use of nano-WO3 prevented the dissociation of
zircon in the ceramic samples with magnesia-stabilized zirconia and increased the intensity
of the aluminum tungstate phase in the investigated materials with MSZ and WO3 in a
1:2 ratio, which made it possible to obtain mullite ceramics with increased resistance to
thermal shock.
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