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1. Introduction

The nonparametric approximation methods are now widely being used for the construction of
metamodels for mathematical systems, — Kriging, Radial Basis Functions, Local polynomial
approximations. The simulation results that make up the metamodel can contain statistical errors,
when natural experiments are also included. In this case the so-called space-filling experimental
designs are used instead of the classical D-optimal designs. The first space filling design for a
computer experiment was proposed in [1]. In this work, the designs in which the number of
levels for each variable is equal to the total number of runs were first proposed. In [1], the space
filling criterion based on a function similar to potential energy of gravity was first used. Later,
the same kind of experimental designs was proposed as a Monte Carlo integration technique by
McKay et al. [2], and the name “Latin hypercube samplings” was introduced. Numerous space
filling experimental designs have been developed in an effort to provide more efficient and
effective means for sampling deterministic computer experiments based on Latin hypercubes.
Different space filling criteria for Latin hypercube designs was proposed by many authors:
Maximin Latin hypercubes [3], Minimal Integrated Mean Square Error designs [4], Orthogonal
array-based Latin hypercube designs [5], Orthogonal Latin hypercubes [6], Integrated Mean
Square Error (IMSE) optimal Latin hypercubes [7]. The accuracy of prediction of metamodels,
built on the basis of local polynomial approximation, depends also on weighting functions, used
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in the least squares method. We compared several space filling designs in combination with
several weighting functions for 2-factors test function and 25-factor NASA HSCT approximation
test.

2. Local Quadratic Approximation

In this work, we used local quadratic and linear approximations. Let F be the i-th observation of
the response, and x' — the i-th observation of s predictors (factors). The upper index for the
variable x denotes the number of the point in the experimental design, while the lower index
denotes the component of variable x. To predict the value of response function in s-dimensional
point x, we use a second order polynomial approximation,

F(x) = f, +Zﬂ_/x/ +Zzﬂ/kx,»xk - (1)
j=l J=l k=j
The coefficients f depend on x and are calculated by minimizing the weighted least squares
5 5 5 2
p=argmin Y w(x-x’) X(Fj By =D Bx; - zz,ﬁikxijx,fj , (2)
B jeNy i=1 i=l k=i

where g, B;, B are coefficients of the local quadratic approximation, N, is the set of numbers of

the nearest neighbors of the point x. Here we use a constant number of neighbors — bandwidth
N,. The optimal number of neighbors is determined by leave-one-out crossvalidation [8].

The weight function w depends on the Euclidean distance between the point of interest x and the
points of observations x’. Let u be

-~
q

u(x,x’) = , where x? is the farthest point in the neighborhood of point x. An often-used

e = x

weight function is the tricube function [9] w,(x,x’) = (1 —u(x,x’)’ )3 .
We have also tested other weighting functions:

1
uS

5 Wﬁ(xaxj) = (l_u)4’

i
All weighting functions have zero value if #>1, i.e. all farthest N-N, points are ignored.
Figure 1 shows the graphs of several weighting functions

W) =15 wnx) = wy(nal) = wynxl)=
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w, (6, x7) =1+2u = 3u”; wy(x,x’)=1-10u" +15u* — 61’ ; o (x,x7) = €
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Figure 1. Weighting functions

3. Space Filled Experimental Designs

3.1. Minimal Mean Squared Distance Designs

For the computer experiment, the Minimal Mean Squared Distance (MMSD) experimental
designs were employed. The MMSD designs are space filling designs that give the minimal

Mean Squared Distance (MSD) between the mesh (training) points in design space R and the
nearest point from experimental design D

MSD = \/ HZ znin{ (v -t )2} , 3)

where y"are points from a large sample in design space R* (v=1,..., n), N is the number of points

of the experimental design and 7 is the number of mesh points. We used a 1000000-point Latin
hypercube sample as training points. These designs give points uniformly distributed in the
design space and tend to minimize the expected mean squared error of the local quadratic
approximation. Fang and Wang [10] introduced a similar criterion, named the Mean Squared
Error (MSE) (the corresponding design is called mse-rep-points) and offer several algorithms for
optimizing this criterion in the case of unconstrained levels and for Latin hypercube type
designs. Although there are several numerical methods that claim to generate mse-rep-points for
multivariate case (see [11, 12]), no one has shown that these methods can produce the real
mse-rep-points.

When 7 is not large, Linde, Buzo and Gray [13] suggested an iterative vector quantizer algorithm
LGB based on a training sequence. But there are some drawbacks with the approach: the
resulting output vectors are only locally optimal and depend on the initial set of output vectors.
The training sequence and numerical evaluation of the MSE are based on the Monte Carlo
method that has poor efficiency.

Practically all the algorithms are based on the following idea. First, all the training set points y;,
j=1,,,n are partitioned in N parts S;, i=1,,,V, thus that

y, €S, if

y_/.—x,.H<Hyj—xk,k¢i. 4)
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Then, the sample conditional means are calculated and a new set of mse-rep-points

X, = 1 Z v, 1s formed, where n; is the number of training points falling in S;. This process

l

ni Yes;

provides a nonincreasing MSE, and the algorithm eventually converges to a locally optimal
solution. These algorithms converge well with a varied choice of training sequences (see for
example Fang and Wang [10])

We use a large sample of Latin hypercube type (N=1000000) for training points.

Some experimental designs in a spherical region (in the case of 2 factors) are shown in Fig. 2.

Figure 2. 16-run 2-factor designs in a unit sphere. Left, the design of Fang and Wang [10]
MSD=0.18247, right, the optimal MSD design, MSD=0.1818.

In contrast to designs given in [10], we use spherical rotations to increase the space diversity of
designs. The MSE and MSD criteria in unit sphere are invariant by these rotations.

The space diversity L of experimental design shows how uniform the projections of design are
on the parameter axis:

L=T] B (5)

s | (N = 1)(xj,max - xj,min)z
The space diversity of design has maximal value when all projections on axes build equidistant
point sequences. This is true according to Latin hypercube designs.
In the case of optimizing the Latin hypercube designs according to the MSD criterion, the
method of mean points, mentioned above, is not applicable because the factors have discrete
levels of value. A direct minimization of the MSD criterion is highly time-consuming, since the
calculation of the criterion itself requires a large amount of calculations.
In the case of the Latin hypercube, we use a modified method of partition of training points.
After the calculation of mean values of parts, the total pairwise-columnwise exchange algorithm
is used, which changes the components of design points to decrease the summary squared
distance between design points and midpoint of the corresponding part of training points. This
algorithm works relatively fast and gives results that cannot be improved with the exchange
method by direct calculation of MSD criterion. Still, this algorithm, as all the algorithms
mentioned above, gives results that are dependant on the initial choice of rep-points. However,
using this experimental design, the differences of local quadratic approximation are practically
unessential.
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3.2 Other Space Filling Designs

For comparing with other space filling designs, four additional criterions have been used:
1. Eglaj’s criterion [1], later proposed also by Morris and Mitchell in a more general form [14]

1/2

N-1 N 1
2 = Zl ;—1 \ > | ©

i=1

2. The MINDIST criterion, which seeks to maximize the minimum distance between any pair of
points in the data collection plan [3]

MINDIST = min Z(x ~x'f. (7)

u,v=l,...,

3. The entropy criterion first proposed by Shewry and Wynn [15] and then adopted by Currin et
al. [16]. The entropy criterion for designs in unit cube [0,1]™ is equivalent to the minimization
of -log|C|, where C is the NxN covariance matrix of the design with elements

c; =exp{—@i‘x};—x,{‘q},0<qé2, (8)
k=1

where i, j=1,...,N. Throughout this paper the value g = 2 is selected thus that the correlation
between two points is a function of their Euclidean distance L,, and & is set equal to 2.

4. The discrepancy criterion, which averages the squared difference in the cumulative density
function [17]

(D.) = (gj —%il‘[[l +0.5]x —0.5 - 0.5/ — o.sﬂ +
u=1 i=l (9)
[1+0.5(x - 0.5 +|x — 0.5 - )

N
u=l v=1 i=1

u v
X; —X;

4. Comparison of Designs and Weighting Functions
4.1. Case of two Parameters

The designs were compared using a two-argument test function

60



1 -1

S N (R A s o (A (1o

fxp)=

where x,=0.05, y,=0.05, x,=-0.05, »»=-0.05 and ¢ is random error with normal distribution and
standard deviation o

Figure 3. Exact test function (10)

Tables 1, 2 show the mean percentage error (MPE) of 36-run approximations.

wpe =12 LS (- £, 0) (1
A 1296 5" VTSRO
where 4 is the amplitude of the function in test points 4= max f(x,,y,)— minx f(x;,»;)

i=l,...,1296 i=l,...,1296
All designs are optimized using 36-run Latin Hypercubes. Here REGULAR stands for 6x6
equidistant lattice and MMSD Latin hypercube

Table 1. Comparison of weighting functions and experimental designs, 0=0

Discrep | EglKrit | Entrp | MaxMin | Regular | MSDLHS
(1-u’)’ 2.5485* | 2.2315 | 2.4936 | 5.8848 2.0807 2.4484
(1-u)’ 2.1945 | 2.1132 | 2.1678 | 6.6713 1.9373 1.9814
14+2u°-3u” 24197 | 2.2435 | 2.5089 | 6.2491 2.0326 2.1033
1-10u7+15u™-61° | 23507 | 2.2464 | 2.2361 | 6.1126 2.1132 2.1375
Const 3.4749 | 4.5726 | 2.9689 | 5.2369 2.9399 3.6178
1/u 2.6542 | 3.0779 | 3.4234 | 5.0943 2.0695 23194
1u' 2.5232 | 2.3923 | 2.3947 | 4.6706 2.0183 2.0552
1/u° 24205 | 2.3021 | 2.0458 | 4.5728 1.9181 1.9543
exp(-(u/g)’) 24988 | 2.1253 | 2.1827 | 6.1128 2.0455 2.2218

* - outlier points exist
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Table 2. Comparison of weighting functions and experimental designs 0=0.0077 (3% of A)

Discrep | EglKrit | Entrp | MaxMin | Regular | MSDLHS
(1-u°) 3.1414 | 3.9615 | 3.7569 | 5.2309 | 3.0908 2.9685
(1-u)* 29009 | 3.3579 | 3.5047 | 5.239 3.0401 2.6489
1+2u°-3u° 2.9207 | 3.8997 | 3.7807 | 4.7263* | 3.0678 2.8148
1-10u°+15u%-64° | 29198 | 3.799 | 3.7173 | 4.9786* | 3.1288 3.0155
Const 3.7619 | 5.0099 | 4.4419 | 4.8610*% | 3.5494 4.1096
u 3.1052 | 3.6902 | 3.5509 | 4.7632* | 3.0409 29711
1 3208 | 3.3491 | 3.6638 | 5.1325 | 3.1084 3.057
1/ 33807 | 3.3646 | 3.6698 | 5.1605* | 3.0658 3.2177
exp(-(w/2)?) 3.1318 | 3.1181 | 3.5547 | 4.802 3.1314 2.6406

* - outlier points exist

As can be seen, MSDLHS with weighting function (1-u)* gives the best results in both cases.
Regular lattice design also gives good results in the case without statistical error, but this design

gives the worst results in the case when the function has very small dependence on one factor.

4.2. Case of 25 Parameters (NASA HSCT Approximation Challenge)

See [ 18] http://www.larc.nasa.gov.MDOB/mdo.test/class2probl

Given: 2490 analysis points, m=25 factors, 1 function of interest.
The challenge: to choose N<= 500 points sample, construct approximation and proof on other
2490-N points.
Table 3: Summary of Results for HSCT Problem

Response Surfaces Kriging Local linear fit
(Srivastava et al. [19]) (Srivastava et al. [19]) MMSD design
Num- | Average Max Root | Average | Max Root | Average Max Root
ber of | Percen- | Percen- | Mean Percen- | Perce | Mean Percen- | Percen- | Mean
Points tage tage Square tage ntage | Square tage tage Square
Error Error Error Error Error Error Error Error Error
126 207.83 5379.0 | 667.66 3.15 21.23 451 0.77 7.01 1.06
283 0.59 6.12 1.00 2.45 11.91 3.04 0.64 8.43 0.99
372 0.17 2.02 0.24 1.15 7.81 1.41 0517 | 597 0727
500 0.49" 2.89°
038" | 2557 | 050"

* _Khatib et al. [20],

5. Conclusion

** - Auzins and Janushevskis, *** - Sub-quadratic fit

MSD optimal Latin hypercubes and local quadratic or linear approximation using weighting
function (1-u)* can give very good results, which can be better than those given by
approximations using other space filling criteria and Kriging or Response surface methods. The
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choice of bandwidth according to the leave-one-out crossvalidation gives mostly an
overvaluation of the optimal number of neighbors, therefore attention must be paid to other,
more complicated algorithms of bandwidth choice.
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Auzins J., JanuSevskis A. Jauni eksperimentu plani metamodelu biivesanai

Raksta petiti eksperimentu plani telpas aizpildiSanai, kas tiek lietoti lokalam kvadratiskajam aproksimacijam.
Videjas kvadratiskas novirzes (VKN) kriterijs tiek piedavats, lai optimizétu planu vienmerigumu. Citi autori So
kritériju sauc ari par vidéjo kvadratisko kliidu. ST raksta autori piedava planu optimizdcijas metodi vienibas kuba un
sferas apgabalos, ko var lietot planiem ar ierobezotam vai neierobezotam limenu verttbam. Ari citi kritériji, tadi ka
entropija, nesaiste, maxmin un Eglaja kritérijs tiek salidzinati, aproksiméjot testa funkciju, pielietojot dazadas svara
funkcijas lokalajai aproksimacijai. Tiek paradits, ka Latinu hiperkuba tipa plani, kas optimizéti péc VKN kriterija,
dod vislabdakos rezultatus, aproksiméjot testa funkciju gan bez statistiskas klidas, gan ar normala sadalijuma
statistisko klidu. Planu optimizdcijas metode tiek lietota, lai izvélétos aproksimaciju art pazistamajam NASA lielu
atrumu civilda transporta lidmasinas uzdevumam. Sai gadijuma, izvéloties fiksétu eksperimentu skaitu (no dotajiem
2490) saskand ar VKN kriteriju un sekojosu linearo aproksimdciju, tiek ieguti labi rezultati, kas ir precizaki neka
citu autoru iegiitie ar atbildes virsmas un Kriginga metodem.

Auzins J. , Janushevskis A. New Experimental Designs for Metamodel Building

This paper explores space-filling experimental designs for use with local quadratic approximations. A Mean
Squared Distance (MSD) criterion is offered for optimization of the uniformity of designs. The same criterion is also
called the Mean Square Error (MSE) criterion by other authors. The authors have proposed a method of
optimization of designs in unit cube and spherical regions, which can be used for designs with constrained or
unconstrained level values. Also, other criteria such as Entropy, Discrepancy, MaxMin and Eglaj’s criterion are
compared by approximation of the test function, using several weight functions for local approximation. It is shown
that the Latin Hypercube type designs, optimized according to the MSD criteria, give the best results by
approximation of test function both without statistical evror and with statistical error with normal distribution. The
design optimization method is used also for the well-known NASA High Speed Civil Transport aircraft (HSCT)
approximation challenge. For this case, the choice of a fixed number of experiments (from the given 2490)
according to the MSD criteria and following local linear approximation gives good results, more accurate than with
solutions proposed by other authors, using the Response surface and the Kriging methods.

Ay3unvw A., Auywesckuc A. Hogvle nianvl IKCHEPUMEHNIOE 01 ROCHPOEHUA Menamooeneil

B cmamve uccredyromcsi memoovl NAAHUPOBAHUsL IKCHEPUMEHMO8 OJisl 3aNOJHEeHUs. NPOCMPAHCMEa 6 Clyude
JOKabHOU Keadpamuunou annpoxcumayuu. Kpumepuil cpeonexseadpamuunvix omrxionenuti (CKO) npeonoowcen o
ONMUMUZAYUU  PAGHOMEPHOCU  IKCHEPUMENmMOo8. [[pyeue agmopvl 2mom Kpumepuii makce HA3bleaiom
CpeoHeK8aopamuyHol owmubKou. Aemopvl Hacmoswel padbomvl NPedasarom Memoo ONMUMU3AYUU HIAAHO8 8
obnacmsx eOuHuuHbIX Ky608 U cghep, Komopwvle Mo2ym Oblmb UCHOIL308AHbL KAK C OSPAHUYEHHbIMU, MAK U C
HeOZPAHUYEHHbIMU YPOBHAMU 3HaAYeHull naanos. Takoce Opyeue Kpumepuu maxue KaK SHMPONuUs, HesA3Kd,
MUHUMAKC U Kpumeputl Denaiica conocmasienvl npu annpoKCUMayuy mecmosol QyHKYuY, UCnoab3ys pasiuiHvle
secogvie QyHKyUU 0l 10KanbHOU annpokcumayuu. Tlokazano, ymo onmumusuposanmsie coenacto kpumepuio CKO
naausl muna Jlamunckux eunepky6os6 oaiom Hauryyuiue pe3yiomamyl 0jist AAPOKCUMAYUU MECMOBOU PYHKYUU KaK
ons cayyas 0Oe3 CMAMUCMUYECKOU OwubKu, max u OAs CAydds CO CAVHAUHOU OWUOKOU C HOPMATbHBIM
pacnpedenenuem. Memoo onmumuszayuu niaHO8 MAaKdice UCHnoabsyemcs 0as uzeecmuou 3adauu HACA no
AnnPOKCUMAayuu  8bICOKOCKOPOCMHO20 CAMOIEMA  2PAACOAHCKO20 mpancnopma. Jlis 2mozo  cayuas 6wvloop
Guxcuposannoco uucna sxcnepumenmos (u3 npeocmasnennvix 2490) coenacno xpumepuro CKO u nocrnedyrowas
JIOKANbHASL TUHEUHAsE annpoKCUMAayusi Odem Xopoulue pe3ylbmamsl, Komopvle 0Oolee MOYHbI, YeM peuleHus
HONYYeHHbLe OPYSUMU ABMOPAMIUL, UCHOTb3YIOUWUMU MEMO0 HOBEPXHOCU OMKAUKA U Memod Kpueunea.
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