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1. Introduction

Multi-echelon supply chain cyclic planning and optimisation problem is complicated
by the presence of uncertainty, which could be provided, for example, by deviations of
customer demand and lead times of the processes. When the number of supply chain echelons
is increased, it could result in magnified performance variance in a supply chain. As a result,
the solution considered as optimal could perform different when used in practice. Therefore, it
is important to create the so-called robust solutions, which are tolerated to certain deviations
in environmental variables without a total loss of quality.

There are various classifications of uncertainties described in the literature [1-3]. The
most common classification is provided by Jin and Branke [4], where uncertainties are
divided into four categories based on the evolutionary computation theory:

1. Noise in fitness evaluations. The fitness evaluation often includes a noise, which could
come from various sources. For example, the simulation model used to estimate an
objective function could produce a noise while running different simulation replications.

2. Deviations in the environmental variables. Deviations of environmental variables could
occur after the optimal solution is determined. For example, the end-customer demand
variation could increase after a cyclic planning decision is made.

3. Fitness approximation errors. When the fitness function is expensive to evaluate, its
approximation, called a meta-model, is often applied. This meta-model usually contains
the approximation error.

4. Errors in time — varying optimum evaluations. The fitness function is deterministic, but
it is time-dependent. As a result, optimum also changes over time.

Different methods and algorithms are developed to solve supply chain planning and
optimisation problems. However, only few of them take into account the presence of



uncertainties. This paper investigates the category of uncertainties labelled as ‘deviations in
environmental variables’ in the above-described classification.

2. Optimisation problem statement

In this section the optimisation model and assumptions are presented, as well as the
properties of the optimal solution are discussed.

The multi-objective optimisation problem with the presence of uncertainty in
environmental variables can be symbolically represented in compact form as:

Min E[F(x,8,)] = E[ /| (X, 0, ),.... far (X,6,)], (1)
subject to: g(x, d.) = E[r(x, d.)] <0 and h(x, J,) <0,

where E[-] is a mathematical expectation; X = (x;,...xx) € X, £ = (f,....,fu) € F; X is called a
vector of decision variables; f is called a vector of objective functions; g is a vector of
stochastic constraints; h is a vector of deterministic constraints on the decision variables; r is
a random vector that represents several responses of the simulation model for a given x; J,
represents the uncertainty associated with environmental variables; x;,...xx denote K decision
variables; f},...,fu denote M objective functions; X is called the decision space; F is the
objective space.

As regards the problem of cyclic planning within multi-echelon supply chain network, we
deal with two objective functions [5]. The first one is to minimise the average total cost
represented by the sum of inventory holding, production and ordering costs. The second is
aimed to maximise the average order fill rate FR that is defined as the percentage of end-
customers’ orders filled from the available inventory.

Proceeding from (1), the solution of multi-objective stochastic optimisation problem is
a vector of decision variables x that satisfies all feasible constraints and provides the best
trade-off between multiple objectives. This problem is characterised by two conflicting
objectives, i.e. average total cost and average order fill rate, to be optimised simultaneously.
Therefore, instead of a single optimal solution, there is a whole set of optimal trade-offs
solutions of equivalent quality. An optimal trade-off solution, also called a Pareto — optimal,
is the solution that is not dominated by any other solution in the search space. It means that
there doesn’t exist any other solution that is better in all objectives. The entire set of these
solutions is called a Pareto — optimal set [6].

For example, Figure 1 illustrates the problem with two conflicting objectives.
Solutions 4 and B dominate the others by objectivel and objective2, respectively. Solution C
dominates the other solutions at least by one objective.
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Figure 1. Concept of Pareto optimality



3. Multi — objective evolutionary algorithms

Evolutionary algorithms are well suited to solving multi-objective optimisation
problems, because they could evolve a set of non-dominated solutions instead of a single
solution. Historically, multi-objective evolutionary algorithms can be divided into three
groups: Algorithms based on aggregating functions, Population-based algorithms and Pareto -
based algorithms.

The idea behind aggregating functions is to combine all objective functions into a
single composite objective function using arithmetic operations. Population — based
algorithms apply a separate sub-population for each objective function. Pareto — based
algorithms use the selection schemes based on the concept of Pareto optimality. The last
group of multi-objective evolutionary algorithms can be historically studied as covering two
generations. Algorithms that belong to the first generation use fitness sharing and niching
combined with Pareto ranking. The second generation of algorithms is characterised by the
concept of elitism [7]. In the proposed work the last group of evolutionary algorithms are
described and analysed.

4. Multi — objective robust evolutionary algorithms

Multi-objective evolutionary algorithms described in Section 3 are not intended to
search for robust solutions. Let’s remind that robust are such solutions, which are not
sensitive to slight changes in the environment.

There exist a range of enhanced evolutionary algorithms improved to find robust solutions

mostly by enlarging the search space, i.e. by analysing neighbours of candidate solutions.

Most popular robust evolutionary algorithms are:

- Single/Multi — objective Inverse Robust Evolutionary (SMIRE). The algorithm does not
make assumptions about the uncertainty structure in the formulation of the optimization
search process. For searching robust solutions it uses different IRE schemes, for example
Single, Bi — objective, Tri — objective IRE schemes [8].

- Genetic Algorithm with Robust Searching Scheme (GA/ RS3). In this algorithm the
probable noise vector is added to genotype before fitness evaluation. In order to generate
phenotype, genotype is coded with noise and then it interacts with the environment [9].

- Enhanced Genetic Algorithm. This algorithm combines a simulation model with
stochastic non-dominating multi-objective optimization method and genetic algorithms.
The concept of robustness is implemented in selection process of non-dominated
solutions. In this case solution 4 dominates solution B with confidence level (1 - )%, and

probability HP(fi(A) < f.(B))21—-«a, where ais a confidence level (0 < a<1)[10].
i=l1

- Robust Multi — Objective Evolutionary Algorithm (RMOEA). The RMOEA considers
robustness as independent optimization criteria and implements the features of micro —
genetic algorithm, Tabu restriction, and archival re-evaluation [11].

- Evolutionary Approach for Assessing the Degree of Robustness of Solutions to Multi —
Objective Models. The concept of degree of robustness is incorporated into evolutionary
algorithm and is used in the fitness evaluation process. Non — dominated solutions are
classified by their degree of robustness [12].

- Evolutionary Multi — Objective Approach. In order to find robust solution the fitness of
solution is evaluated by averaging different points from a set of its neighbours [13].

Genetic algorithms, such as Non — dominated Sorting Genetic Algorithm — IT (NSGA

IT) [14], do not search for robust solutions in a direct way. Instead, they evaluate the

robustness of trade-offs solutions included in the Pareto — optimal set. This approach allows

decreasing the computational time. However, it could lead to losing some potential solutions.



5. Development of robust multi-objective genetic algorithm

A robust multi-objective genetic algorithm is developed on the basis of MOSGA [5]
and is called rMOSGA. It is aimed to provide robust solutions to multi-echelon supply chain
cyclic planning and optimisation problem.

The concept of worst scenario robustness measure, which reflects the degree of
variation resulting from the worst objective function value, is taken from RMOEA [11] and
incorporated in rMOSGA. This robustness measure could be defined for the i-th objective as
follows [12]:

aXx'ean (fz (X's 5e)) - fi(X,5e)

' S _1’1’1
Ji (%,0,) = 55

, where x'e[x'-/b,x+tup], (2)

where X"~ is a set of neighbours of the candidate solution x, [/b, up] denotes the lower and
upper bounds of replenishment cycles in the neighbourhood of the candidate solution.
The multi — objective problem to be solved can be re-formulated as follows:

l’l’lil’lf(X, 56) = {fl (Xaae)a-"a fM (Xaae)a fM+1 (Xaae)} ’ (3)

where fy/,1(%,6,) = max (f; (x,6,)).
i=1,M

The following blocks of the original RMOEA have been implemented in rMOSGA:

1. fitness evaluation based on robustness measure (3),

2. selection strategy modified to search for compromise solutions for non-robust and robust
Pareto-optimal sets.

Table 1 represents the main blocks of MOSGA and rMOSGA.

Table 1
Developed blocks of the MOSGA and rMOSGA algorithms
Igorithms MOSGA rMOSGA
Blocks
Fitness Pareto-based ranking Pareto-based ranking and
assignment robustness measure
Crossover and Uniform crossover
mutation One point mutation
Reproduction To the next generation go N individuals from the union of parent
strategy and offspring populations
Selection Tournament selection based on | Tournament selection based on
strategy crowded comparison operator | the crowded comparison
operator and robustness measure

6. Computational study

In this section, an illustrative example of multi-echelon cyclic planning and
optimisation problem is provided to compare the performance of non-robust (MOSGA) and
robust (rtMOSGA) genetic algorithms with respect to the robustness of solutions.



6.1. Input data description

The chemical manufacturing supply chain network is used as a test bed to compare
MOSGA and rMOSGA. Both algorithms are applied to find an optimal cyclic plan of a
chemical product, i.e. liquid based raisin, in order to minimise average total cost and
maximise average order fill rate. Total cost consists of inventory holding, ordering and
production costs. Order fill rate is defined as the percentage of end-customers’ orders filled
from the available inventory. Decision variables are replenishment cycles, which determine
the reorder period for each mature product in the network. Order-up-to levels which define the
quantity to be ordered or produced each cycle are calculated using analytical calculi. The
following assumptions are introduced in the problem: the end-customer demand is normally
distributed and lead times of the processes are constant. Replenishment cycles are defined
according to the power-of-two policy, and are presented in weeks as follows: 7, 14, 28 and 56,
where 56 days is the maximal cycle that corresponds to one full turn of a “planning wheel”.
Initial stocks are equal to order-up-to levels plus average demand multiplied by cycle delays.
Backorders are delivered in full.

6.2. Experimental setup

Both algorithms, i.e. MOSGA and rMOSGA, try to find solutions with a minimised
average total cost and maximised average order fill rate. Additionally, rMOSGA takes into
account the robustness of candidate solutions. To estimate the objective functions values, the
algorithms use a supply chain simulation model. This procedure could be explained as
follows: the genetic algorithm chooses values of decision variables and uses the responses
generated by the simulation model to make decisions regarding the selection of the next
potential solution. To solve the problem, the algorithms are executed with the parameters
summarised in Table 2.

Table 2
Parameters of the algorithms
Algorithms MOSGA rMOSGA
Parameters
Population size 10 10
Iterations 16 16
Neighbours of each individual in population - 2
Number of decision variables 33 33
Number of objective functions 2 2 + robustness
measure
The increase in customer demand standard deviation 1%, 2%, 5% 1%, 2%, 5%

7. Results and discussion

The results provided by MOSGA are better than those provided by rMOSGA with
respect to objective functions values (see Figure 2). The reason is that MOSGA selects
optimal solutions based on dominance relation. However, rMOSGA takes into account
robustness of candidate solutions as an additional objective function.
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Figure 2. Pareto-optimal fronts generated by MOSGA and rMOSGA

Therefore, to determine an algorithm able to provide robust solutions, it is necessary to check
the stability of solutions to uncertainties in environmental variables. For that purpose, two
solutions are randomly selected from non-robust and robust Pareto-optimal fronts.
Subsequently, standard deviations of end-customer demand are increased by 1%, 2% and 5%.
From Figure 3 it can be seen that rMOSGA provides solutions that are less sensitive to
demand variations. For example, the total cost of the first solution is increased by 0.001%
only when standard deviations of end-customer demand are increased by 5%. Solutions found
by MOSGA are less tolerated to deviations of the demand. For example, the total cost of the
second solution is increased after changing standard deviation by 1%.
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Figure 3. The offset of solution points in the presence of uncertainty

8. Conclusions

In this paper the importance of searching for robust solutions is emphasized. The
robust evolutionary algorithm rMOSGA is developed on the basis of the MOSGA algorithm.
The robustness measure is added to fitness assignment block of rMOSGA in order to evaluate
the robustness of candidate solutions.

Both algorithms are applied to the multi-echelon supply chain cyclic planning and
optimization problem. Two types of optimization experiments were performed with these
algorithms. The experimental results indicate that MOSGA performs better on objective
functions, but in the case of solutions sensitivity to uncertainties, it is less tolerated to



deviations of the demand than rtMOSGA whose solutions proved to be more stable under
stochastic demand conditions.
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Merkurjeva Galina, Lagzdina Tatjana. Robustie evoliicijas algoritmi daudz eSelonu piegades kéZu
ciklisko planu optimizacijas uzdevumam

Daudz eselonu piegades kédes ciklisko planu optimizacijas uzdevumd ir nepieciesams, lai risinajumi tiktu
mekleti nenoteiktibas apstaklos. Nenoteiktibas var nakt no pasitijuma apstrades aizkavésanas laikiem un
svarstibam gala patérétaju pieprasijumda. Galvends griitibas Saja problema ir saistitas ar to, ka atrastais
risind@jums var nozimigi izmainities pie nenozimigam izmainam aréjos faktoros. Tapéc ir svarigi definét ta
saucamos robustos risindjumus, kuri ir mazak jutigi pret Sim izmainam. Rakstd ir piedavata robusto evoliicijas
algoritmu analize. So algoritmu mérkis ir meklét robustus risindjumus, kuri pielauj noteiktas nobides aréjos
faktoros taja pasa laika nezaudéjot risinajuma kvalitati. Raksta ir izpétitas divas evoliicijas algoritmu paaudzes
un izanalizéta virkne robusto evoliicijas algoritmu daudzmérku problemu risinasanai. Visbeidzot, raksta tiek
piedavati daudzmérku geneétiska un robusta genétiska algoritma pielietoSanas pieméri piegades kezu ciklisko
planu optimizacijas uzdevuma. Tika veikts ari abu algoritmu salidzinajums nenoteiktibu iespaida, pievienojot
svarstibas gala pateretaju pieprasijumam, ta iemesla dél, ka nav lietderigi salidzinat genétiska un robusta
genetiska algoritma darbibas rezultatus péc mérka funkcijam, jo pirmais meklé optimalus, bet otrais - robustus
risinajumus.

Merkuryeva Galina, Lagzdina Tatyana. Robust evolutionary algorithms for multi-echelon supply chain
cyclic planning and optimisation task

Multi-echelon supply chain cyclic planning and optimisation problem requires searching for solutions in the
presence of uncertainty. Uncertainty could be provided by deviations in lead times of the processes and customer
demand. A key difficulty in this problem is that solutions found could falter completely, when a slight change of
the environment occurs. Therefore, it is important to define the so-called robust solutions, which are less
sensitive to such changes. This paper focuses on the analysis of robust multi-objective evolutionary algorithms.
These algorithms are aimed to search robust solutions, which are tolerated to certain deviations of
environmental variables without a total loss of quality. In this paper, two generations of non-robust evolutionary
algorithms and a range of robust evolutionary algorithms for multi-objective problems are investigated. Finally,
the paper provides the application examples of multi-objective robust and non-robust genetic algorithms for
solving multi-echelon supply chain cyclic planning and optimisation problem. Also a comparison of results of
both algorithms under the influence of uncertainties is made, when fluctuations are added to end customer
demand, since a comparison of Genetic Algorithm with robust Genetic Algorithm on objective functions will not
allow to draw an objective conclusion because the first searches for optimal, but the second — for robust
solutions.

MepkypbeBa I@anuna, Jlar3apina TarbsiHa. PoOacTHble 3BOJIONUOHHBIE AJTOPUTMBbI A 3ada4Hu
ONTHUMM3ALMYU HMKJIMYECKOIr0 MVIAHUPOBAHUS B LEMNAX MOCTABOK

IIpobrema yuxkiuuecko2o NAAHUPOBAHUS U ONMUMUIAYUU MHOLOIUETOHHOU CUCMEMbl NOCMABOK mpebyem,
YmoObl NOUCK peweHull Npoucxooul 6 yciosusx Heonpedeiennocmu. Heonpedenennocmv modcem 6Ovimo
8bI36AHA OMKIOHEHUSAMU 60 8PEMEHAX NOCMABOK U CHpOce KoHeuHoz2o nompebumens. Kuouesas crodcnocme
oMol npobieMbl COCMOUmM 6 MOM, UMO HAUOeHHble PeuleHUs MO2YMm CUTbHO Koiebamvcs npu HebOoIbulux
uUsMeHeHUAxX 6 okpyxcaowux ¢axmopax. Ilosmomy eadxcHo onpedenums mMaxk Hasviéaemvle podAcHmHble
pelenus, Komopole MeHee Yy8CMEUmenbHbl K U3MEeHeHUAM maKo2o pood. B dannoii cmamve npednoscen ananus
POOACMHBIX MHO20YeNebIX IBONIOYUOHHLIX AN2OPUIMO8. DMU aleopUmmsl HayeseHvl HA NOUCK POOACMHbIX
peweHull, Komopbule OONYCKaom onpeoeieHHble OMKIOHEHUs. OKPY*CAIOUWUX NepeMeHHbIX De3 nomepu Kavyecmaed
pewenus. B cmamve uccnedosanvi 06a noxoneHuss HepoOACMHBIX IEOTOYUOHHBIX ANCOPUMMOE U  PSIO
POOACMHBIX IBONOYUOHHBIX ANOPUMMOE Ol MHO20YENeBbIX NpobieM, Npusedenvl Npumepvl NpUMeHeHUs
MHO20YeNesblX pOOACMHO20 U HEePOOACMHO20 —2eHEMUYECKUX —aN20pUMMO8 Oasi  peuleHus npoodiemvl
YUKIUYECKO20 NAAHUPOBAHUS U ONMUMUSAYUU MHOSOIULETOHHOU Ccucmemsvl nOcmaeox. Takoice npogedeHo
CpasHeHue pe3yabmamos 00oux aneOpummos noo euusHueM HeonpeoeienHocmell, ¢ 000asieHuem Konebanus 8
CRPOC KOHEeYHO020 nompedumens, Mak KaxK CpaGHeHue 2eHeMUIecKo20 aieopumma ¢ pooacmubim 2eHemuyecKuM
AN2OPUMMOM NO Yene8biM DYHKYUAM He NO360IUM COeNamb 00beKMUBHDIL 8618600 NO MOU NPUYUHE, YO Nepablll
uwem onmuManbhsle, a 6MOPoll - poOAcmHble peuleHU.



